// Copyright 2011 The Snappy-Go Authors. All rights reserved. // Modified for deflate by Klaus Post (c) 2015. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate // We limit how far copy back-references can go, the same as the C++ code. const maxOffset = 1 << 15 // emitLiteral writes a literal chunk and returns the number of bytes written. func emitLiteral(dst *tokens, lit []byte) { ol := dst.n for i, v := range lit { dst.tokens[i+ol] = token(v) } dst.n += len(lit) } // emitCopy writes a copy chunk and returns the number of bytes written. func emitCopy(dst *tokens, offset, length int) { dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize)) dst.n++ } type snappyEnc interface { Encode(dst *tokens, src []byte) Reset() } func newSnappy(level int) snappyEnc { if useSSE42 { e := &snappySSE4{snappyGen: snappyGen{cur: 1}} switch level { case 3: e.enc = e.encodeL3 return e } } e := &snappyGen{cur: 1} switch level { case 1: e.enc = e.encodeL1 case 2: e.enc = e.encodeL2 case 3: e.enc = e.encodeL3 default: panic("invalid level specified") } return e } const tableBits = 14 // Bits used in the table const tableSize = 1 << tableBits // Size of the table // snappyGen maintains the table for matches, // and the previous byte block for level 2. // This is the generic implementation. type snappyGen struct { table [tableSize]int64 block [maxStoreBlockSize]byte prev []byte cur int enc func(dst *tokens, src []byte) } func (e *snappyGen) Encode(dst *tokens, src []byte) { e.enc(dst, src) } // EncodeL1 uses Snappy-like compression, but stores as Huffman // blocks. func (e *snappyGen) encodeL1(dst *tokens, src []byte) { // Return early if src is short. if len(src) <= 4 { if len(src) != 0 { emitLiteral(dst, src) } e.cur += 4 return } // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. if e.cur > 1<<30 { e.cur = 1 } // Iterate over the source bytes. var ( s int // The iterator position. t int // The last position with the same hash as s. lit int // The start position of any pending literal bytes. ) for s+3 < len(src) { // Update the hash table. b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3] h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24 p := &e.table[(h*0x1e35a7bd)>>(32-tableBits)] // We need to to store values in [-1, inf) in table. // To save some initialization time, we make sure that // e.cur is never zero. t, *p = int(*p)-e.cur, int64(s+e.cur) offset := uint(s - t - 1) // If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte. if t < 0 || offset >= (maxOffset-1) || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] { // Skip 1 byte for 16 consecutive missed. s += 1 + ((s - lit) >> 4) continue } // Otherwise, we have a match. First, emit any pending literal bytes. if lit != s { emitLiteral(dst, src[lit:s]) } // Extend the match to be as long as possible. s0 := s s1 := s + maxMatchLength if s1 > len(src) { s1 = len(src) } s, t = s+4, t+4 for s < s1 && src[s] == src[t] { s++ t++ } // Emit the copied bytes. // inlined: emitCopy(dst, s-t, s-s0) dst.tokens[dst.n] = matchToken(uint32(s-s0-3), uint32(s-t-minOffsetSize)) dst.n++ lit = s } // Emit any final pending literal bytes and return. if lit != len(src) { emitLiteral(dst, src[lit:]) } e.cur += len(src) } // EncodeL2 uses a similar algorithm to level 1, but is capable // of matching across blocks giving better compression at a small slowdown. func (e *snappyGen) encodeL2(dst *tokens, src []byte) { // Return early if src is short. if len(src) <= 4 { if len(src) != 0 { emitLiteral(dst, src) } e.prev = nil e.cur += len(src) return } // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. if e.cur > 1<<30 { e.cur = 1 } // Iterate over the source bytes. var ( s int // The iterator position. t int // The last position with the same hash as s. lit int // The start position of any pending literal bytes. ) for s+3 < len(src) { // Update the hash table. b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3] h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24 p := &e.table[(h*0x1e35a7bd)>>(32-tableBits)] // We need to to store values in [-1, inf) in table. // To save some initialization time, we make sure that // e.cur is never zero. t, *p = int(*p)-e.cur, int64(s+e.cur) // If t is positive, the match starts in the current block if t >= 0 { offset := uint(s - t - 1) // Check that the offset is valid and that we match at least 4 bytes if offset >= (maxOffset-1) || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] { // Skip 1 byte for 32 consecutive missed. s += 1 + ((s - lit) >> 5) continue } // Otherwise, we have a match. First, emit any pending literal bytes. if lit != s { emitLiteral(dst, src[lit:s]) } // Extend the match to be as long as possible. s0 := s s1 := s + maxMatchLength if s1 > len(src) { s1 = len(src) } s, t = s+4, t+4 for s < s1 && src[s] == src[t] { s++ t++ } // Emit the copied bytes. // inlined: emitCopy(dst, s-t, s-s0) dst.tokens[dst.n] = matchToken(uint32(s-s0-3), uint32(s-t-minOffsetSize)) dst.n++ lit = s continue } // We found a match in the previous block. tp := len(e.prev) + t if tp < 0 || t > -5 || s-t >= maxOffset || b0 != e.prev[tp] || b1 != e.prev[tp+1] || b2 != e.prev[tp+2] || b3 != e.prev[tp+3] { // Skip 1 byte for 32 consecutive missed. s += 1 + ((s - lit) >> 5) continue } // Otherwise, we have a match. First, emit any pending literal bytes. if lit != s { emitLiteral(dst, src[lit:s]) } // Extend the match to be as long as possible. s0 := s s1 := s + maxMatchLength if s1 > len(src) { s1 = len(src) } s, tp = s+4, tp+4 for s < s1 && src[s] == e.prev[tp] { s++ tp++ if tp == len(e.prev) { t = 0 // continue in current buffer for s < s1 && src[s] == src[t] { s++ t++ } goto l } } l: // Emit the copied bytes. if t < 0 { t = tp - len(e.prev) } dst.tokens[dst.n] = matchToken(uint32(s-s0-3), uint32(s-t-minOffsetSize)) dst.n++ lit = s } // Emit any final pending literal bytes and return. if lit != len(src) { emitLiteral(dst, src[lit:]) } e.cur += len(src) // Store this block, if it was full length. if len(src) == maxStoreBlockSize { copy(e.block[:], src) e.prev = e.block[:len(src)] } else { e.prev = nil } } // EncodeL3 uses a similar algorithm to level 2, but is capable // will keep two matches per hash. // Both hashes are checked if the first isn't ok, and the longest is selected. func (e *snappyGen) encodeL3(dst *tokens, src []byte) { // Return early if src is short. if len(src) <= 4 { if len(src) != 0 { emitLiteral(dst, src) } e.prev = nil e.cur += len(src) return } // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. if e.cur > 1<<30 { e.cur = 1 } // Iterate over the source bytes. var ( s int // The iterator position. lit int // The start position of any pending literal bytes. ) for s+3 < len(src) { // Update the hash table. h := uint32(src[s]) | uint32(src[s+1])<<8 | uint32(src[s+2])<<16 | uint32(src[s+3])<<24 p := &e.table[(h*0x1e35a7bd)>>(32-tableBits)] tmp := *p p1 := int(tmp & 0xffffffff) // Closest match position p2 := int(tmp >> 32) // Furthest match position // We need to to store values in [-1, inf) in table. // To save some initialization time, we make sure that // e.cur is never zero. t1 := p1 - e.cur var l2 int var t2 int l1 := e.matchlen(s, t1, src) // If fist match was ok, don't do the second. if l1 < 16 { t2 = p2 - e.cur l2 = e.matchlen(s, t2, src) // If both are short, continue if l1 < 4 && l2 < 4 { // Update hash table *p = int64(s+e.cur) | (int64(p1) << 32) // Skip 1 byte for 32 consecutive missed. s += 1 + ((s - lit) >> 5) continue } } // Otherwise, we have a match. First, emit any pending literal bytes. if lit != s { emitLiteral(dst, src[lit:s]) } // Update hash table *p = int64(s+e.cur) | (int64(p1) << 32) // Store the longest match l1 will be closest, so we prefer that if equal length if l1 >= l2 { dst.tokens[dst.n] = matchToken(uint32(l1-3), uint32(s-t1-minOffsetSize)) s += l1 } else { dst.tokens[dst.n] = matchToken(uint32(l2-3), uint32(s-t2-minOffsetSize)) s += l2 } dst.n++ lit = s } // Emit any final pending literal bytes and return. if lit != len(src) { emitLiteral(dst, src[lit:]) } e.cur += len(src) // Store this block, if it was full length. if len(src) == maxStoreBlockSize { copy(e.block[:], src) e.prev = e.block[:len(src)] } else { e.prev = nil } } func (e *snappyGen) matchlen(s, t int, src []byte) int { // If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte. offset := uint(s - t - 1) // If we are inside the current block if t >= 0 { if offset >= (maxOffset-1) || src[s] != src[t] || src[s+1] != src[t+1] || src[s+2] != src[t+2] || src[s+3] != src[t+3] { return 0 } // Extend the match to be as long as possible. s0 := s s1 := s + maxMatchLength if s1 > len(src) { s1 = len(src) } s, t = s+4, t+4 for s < s1 && src[s] == src[t] { s++ t++ } return s - s0 } // We found a match in the previous block. tp := len(e.prev) + t if tp < 0 || offset >= (maxOffset-1) || t > -5 || src[s] != e.prev[tp] || src[s+1] != e.prev[tp+1] || src[s+2] != e.prev[tp+2] || src[s+3] != e.prev[tp+3] { return 0 } // Extend the match to be as long as possible. s0 := s s1 := s + maxMatchLength if s1 > len(src) { s1 = len(src) } s, tp = s+4, tp+4 for s < s1 && src[s] == e.prev[tp] { s++ tp++ if tp == len(e.prev) { t = 0 // continue in current buffer for s < s1 && src[s] == src[t] { s++ t++ } return s - s0 } } return s - s0 } // Reset the encoding table. func (e *snappyGen) Reset() { e.prev = nil } // snappySSE4 extends snappyGen. // This implementation can use SSE 4.2 for length matching. type snappySSE4 struct { snappyGen } // EncodeL3 uses a similar algorithm to level 2, // but will keep two matches per hash. // Both hashes are checked if the first isn't ok, and the longest is selected. func (e *snappySSE4) encodeL3(dst *tokens, src []byte) { // Return early if src is short. if len(src) <= 4 { if len(src) != 0 { emitLiteral(dst, src) } e.prev = nil e.cur += len(src) return } // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. if e.cur > 1<<30 { e.cur = 1 } // Iterate over the source bytes. var ( s int // The iterator position. lit int // The start position of any pending literal bytes. ) for s+3 < len(src) { // Load potential matches from hash table. h := uint32(src[s]) | uint32(src[s+1])<<8 | uint32(src[s+2])<<16 | uint32(src[s+3])<<24 p := &e.table[(h*0x1e35a7bd)>>(32-tableBits)] tmp := *p p1 := int(tmp & 0xffffffff) // Closest match position p2 := int(tmp >> 32) // Furthest match position // We need to to store values in [-1, inf) in table. // To save some initialization time, we make sure that // e.cur is never zero. t1 := int(p1) - e.cur var l2 int var t2 int l1 := e.matchlen(s, t1, src) // If fist match was ok, don't do the second. if l1 < 16 { t2 = int(p2) - e.cur l2 = e.matchlen(s, t2, src) // If both are short, continue if l1 < 4 && l2 < 4 { // Update hash table *p = int64(s+e.cur) | (int64(p1) << 32) // Skip 1 byte for 32 consecutive missed. s += 1 + ((s - lit) >> 5) continue } } // Otherwise, we have a match. First, emit any pending literal bytes. if lit != s { emitLiteral(dst, src[lit:s]) } // Update hash table *p = int64(s+e.cur) | (int64(p1) << 32) // Store the longest match l1 will be closest, so we prefer that if equal length if l1 >= l2 { dst.tokens[dst.n] = matchToken(uint32(l1-3), uint32(s-t1-minOffsetSize)) s += l1 } else { dst.tokens[dst.n] = matchToken(uint32(l2-3), uint32(s-t2-minOffsetSize)) s += l2 } dst.n++ lit = s } // Emit any final pending literal bytes and return. if lit != len(src) { emitLiteral(dst, src[lit:]) } e.cur += len(src) // Store this block, if it was full length. if len(src) == maxStoreBlockSize { copy(e.block[:], src) e.prev = e.block[:len(src)] } else { e.prev = nil } } func (e *snappySSE4) matchlen(s, t int, src []byte) int { // If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte. offset := uint(s - t - 1) // If we are inside the current block if t >= 0 { if offset >= (maxOffset - 1) { return 0 } length := len(src) - s if length > maxMatchLength { length = maxMatchLength } // Extend the match to be as long as possible. return matchLenSSE4(src[t:], src[s:], length) } // We found a match in the previous block. tp := len(e.prev) + t if tp < 0 || offset >= (maxOffset-1) || t > -5 || src[s] != e.prev[tp] || src[s+1] != e.prev[tp+1] || src[s+2] != e.prev[tp+2] || src[s+3] != e.prev[tp+3] { return 0 } // Extend the match to be as long as possible. s0 := s s1 := s + maxMatchLength if s1 > len(src) { s1 = len(src) } s, tp = s+4, tp+4 for s < s1 && src[s] == e.prev[tp] { s++ tp++ if tp == len(e.prev) { t = 0 // continue in current buffer for s < s1 && src[s] == src[t] { s++ t++ } return s - s0 } } return s - s0 }