1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

An implementation of Curve25519

This commit is contained in:
Rhys Weatherley 2015-03-12 18:59:55 +10:00
parent ccffa1ec87
commit 0f975de733
7 changed files with 1784 additions and 4 deletions

View File

@ -30,6 +30,7 @@
\li Block cipher modes: CTR, CFB, CBC, OFB
\li Stream ciphers: ChaCha
\li Hash algorithms: SHA1, SHA256, BLAKE2s
\li Public key algorithms: Curve25519
\li Random number generation: \link RNGClass RNG\endlink, TransistorNoiseSource
All cryptographic algorithms have been optimized for 8-bit Arduino platforms
@ -49,10 +50,6 @@ with a 256-bit hash output. It is intended as a high performance drop-in
replacement for SHA256 for when speed is critical but exact SHA256
compatibility is not.
\section crypto_examples Examples
TBD
\section crypto_performance Performance
All figures are for the Arduino Uno running at 16 MHz. Figures for the
@ -75,4 +72,13 @@ Where a cipher supports more than one key size (such as ChaCha), the values
are typically almost identical for 128-bit and 256-bit keys so only the
maximum is shown above.
Public key algorithms have the following results on an Arduino Uno:
<table>
<tr><td>Algorithm</td><td>Operation</td><td>Time</td><td>Comment</td></tr>
<tr><td>Curve25519</td><td>\link Curve25519::eval() eval()\endlink</td><td>3738 ms</td><td>Raw curve evaluation</td></tr>
<tr><td>Curve25519</td><td>\link Curve25519::dh1() dh1()\endlink</td><td>3740 ms</td><td>First half of Diffie-Hellman key agreement</td></tr>
<tr><td>Curve25519</td><td>\link Curve25519::dh2() dh2()\endlink</td><td>3738 ms</td><td>Second half of Diffie-Hellman key agreement</td></tr>
</table>
*/

View File

@ -94,6 +94,7 @@ realtime clock and the LCD library to implement an alarm clock.
\li Block cipher modes: CTR, CFB, CBC, OFB
\li Stream ciphers: ChaCha
\li Hash algorithms: SHA1, SHA256, BLAKE2s
\li Public key algorithms: Curve25519
\li Random number generation: \link RNGClass RNG\endlink, TransistorNoiseSource
More information can be found on the \ref crypto "Cryptographic Library" page.

View File

@ -0,0 +1,831 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "Curve25519.h"
#include "Crypto.h"
#include "RNG.h"
#include "utility/ProgMemUtil.h"
#include <string.h>
/**
* \class Curve25519 Curve25519.h <Curve25519.h>
* \brief Diffie-Hellman key agreement based on the elliptic curve
* modulo 2^255 - 19.
*
* \note This public functions in this class need a substantial amount of
* stack space to store intermediate results while the curve function is
* being evaluated. About 1k of free stack space is recommended for safety.
*
* References: http://cr.yp.to/ecdh.html
* https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
*/
// Number of limbs in a value from the field modulo 2^255 - 19.
// We assume that sizeof(limb_t) is a power of 2: 1, 2, 4, etc.
#define NUM_LIMBS (32 / sizeof(limb_t))
// Number of bits in limb_t.
#define LIMB_BITS (8 * sizeof(limb_t))
/**
* \brief Evaluates the raw Curve25519 function.
*
* \param result The result of evaluating the curve function.
* \param s The S parameter to the curve function.
* \param x The X(Q) parameter to the curve function. If this pointer is
* NULL then the value 9 is used for \a x.
*
* This function is provided to assist with implementating other
* algorithms with the curve. Normally applications should use dh1()
* and dh2() directly instead.
*
* \return Returns true if the function was evaluated; false if \a x is
* not a proper member of the field modulo (2^255 - 19).
*
* Reference: https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
*
* \sa dh1(), dh2()
*/
bool Curve25519::eval(uint8_t result[32], const uint8_t s[32], const uint8_t x[32])
{
limb_t x_1[NUM_LIMBS];
limb_t x_2[NUM_LIMBS];
limb_t x_3[NUM_LIMBS];
limb_t z_2[NUM_LIMBS];
limb_t z_3[NUM_LIMBS];
limb_t A[NUM_LIMBS];
limb_t B[NUM_LIMBS];
limb_t C[NUM_LIMBS];
limb_t D[NUM_LIMBS];
limb_t E[NUM_LIMBS];
limb_t AA[NUM_LIMBS];
limb_t BB[NUM_LIMBS];
limb_t DA[NUM_LIMBS];
limb_t CB[NUM_LIMBS];
uint8_t mask;
uint8_t sposn;
uint8_t select;
uint8_t swap;
bool retval;
// Unpack the "x" argument into the limb representation
// which also masks off the high bit. NULL means 9.
if (x) {
unpack(x_1, x); // x_1 = x
} else {
memset(x_1, 0, sizeof(x_1)); // x_1 = 9
x_1[0] = 9;
}
// Check that "x" is within the range of the modulo field.
// We can do this with a reduction - if there was no borrow
// then the value of "x" was out of range. Timing is sensitive
// here so that we don't reveal anything about the value of "x".
// If there was a reduction, then continue executing the rest
// of this function with the (now) in-range "x" value and
// report the failure at the end.
retval = (bool)(reduceQuick(x_1) & 0x01);
// Initialize the other temporary variables.
memset(x_2, 0, sizeof(x_2)); // x_2 = 1
x_2[0] = 1;
memset(z_2, 0, sizeof(z_2)); // z_2 = 0
memcpy(x_3, x_1, sizeof(x_1)); // x_3 = x
memcpy(z_3, x_2, sizeof(x_2)); // z_3 = 1
// Iterate over all 255 bits of "s" from the highest to the lowest.
// We ignore the high bit of the 256-bit representation of "s".
mask = 0x40;
sposn = 31;
swap = 0;
for (uint8_t t = 255; t > 0; --t) {
// Conditional swaps on entry to this bit but only if we
// didn't swap on the previous bit.
select = s[sposn] & mask;
swap ^= select;
cswap(swap, x_2, x_3);
cswap(swap, z_2, z_3);
// Evaluate the curve.
add(A, x_2, z_2); // A = x_2 + z_2
square(AA, A); // AA = A^2
sub(B, x_2, z_2); // B = x_2 - z_2
square(BB, B); // BB = B^2
sub(E, AA, BB); // E = AA - BB
add(C, x_3, z_3); // C = x_3 + z_3
sub(D, x_3, z_3); // D = x_3 - z_3
mul(DA, D, A); // DA = D * A
mul(CB, C, B); // CB = C * B
add(x_3, DA, CB); // x_3 = (DA + CB)^2
square(x_3, x_3);
sub(z_3, DA, CB); // z_3 = x_1 * (DA - CB)^2
square(z_3, z_3);
mul(z_3, z_3, x_1);
mul(x_2, AA, BB); // x_2 = AA * BB
mulA24(z_2, E); // z_2 = E * (AA + a24 * E)
add(z_2, z_2, AA);
mul(z_2, z_2, E);
// Move onto the next lower bit of "s".
mask >>= 1;
if (!mask) {
--sposn;
mask = 0x80;
swap = select << 7;
} else {
swap = select >> 1;
}
}
// Final conditional swaps.
cswap(swap, x_2, x_3);
cswap(swap, z_2, z_3);
// Compute x_2 * (z_2 ^ (p - 2)) where p = 2^255 - 19.
recip(z_3, z_2);
mul(x_2, x_2, z_3);
// Pack the result into the return array.
pack(result, x_2);
// Clean up and exit.
clean(x_1);
clean(x_2);
clean(x_3);
clean(z_2);
clean(z_3);
clean(A);
clean(B);
clean(C);
clean(D);
clean(E);
clean(AA);
clean(BB);
clean(DA);
clean(CB);
return retval;
}
/**
* \brief Performs phase 1 of a Diffie-Hellman key exchange using Curve25519.
*
* \param k The key value to send to the other party as part of the exchange.
* \param f The generated secret value for this party. This must not be
* transmitted to any party or stored in permanent storage. It only needs
* to be kept in memory until dh2() is called.
*
* The \a f value is generated with \link RNGClass::rand() RNG.rand()\endlink.
* It is the caller's responsibility to ensure that the global random number
* pool has sufficient entropy to generate the 32 bytes of \a f safely
* before calling this function.
*
* The following example demonstrates how to perform a full Diffie-Hellman
* key exchange using dh1() and dh2():
*
* \code
* uint8_t f[32];
* uint8_t k[32];
*
* // Generate the secret value "f" and the public value "k".
* Curve25519::dh1(k, f);
*
* // Send "k" to the other party.
* ...
*
* // Read the "k" value that the other party sent to us.
* ...
*
* // Generate the shared secret in "k" using the previous secret value "f".
* if (!Curve25519::dh2(k, f)) {
* // The received "k" value was invalid - abort the session.
* ...
* }
*
* // The "k" value can now be used to generate session keys for encryption.
* ...
* \endcode
*
* Reference: https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
*
* \sa dh2()
*/
void Curve25519::dh1(uint8_t k[32], uint8_t f[32])
{
do {
// Generate a random "f" value and then adjust the value to make
// it valid as an "s" value for eval(). According to the specification
// we need to mask off the 3 right-most bits of f[0], mask off the
// left-most bit of f[31], and set the second to left-most bit of f[31].
RNG.rand(f, 32);
f[0] &= 0xF8;
f[31] = (f[31] & 0x7F) | 0x40;
// Evaluate the curve function: k = Curve25519::eval(f, 9).
// We pass NULL to eval() to indicate the value 9. There is no
// need to check the return value from eval() because we know
// that 9 is a valid field element.
eval(k, f, 0);
// If "k" is weak for contributory behaviour then reject it,
// generate another "f" value, and try again. This case is
// highly unlikely but we still perform the check just in case.
} while (isWeakPoint(k));
}
/**
* \brief Performs phase 2 of a Diffie-Hellman key exchange using Curve25519.
*
* \param k On entry, this is the key value that was received from the other
* party as part of the exchange. On exit, this will be the shared secret.
* \param f The secret value for this party that was generated by dh1().
* The \a f value will be destroyed by this function.
*
* \return Returns true if the key exchange was successful, or false if
* the \a k value is invalid.
*
* Reference: https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
*
* \sa dh1()
*/
bool Curve25519::dh2(uint8_t k[32], uint8_t f[32])
{
uint8_t weak;
// Evaluate the curve function: k = Curve25519::eval(f, k).
// If "k" is weak for contributory behaviour before or after
// the curve evaluation, then fail the exchange. For safety
// we perform every phase of the weak checks even if we could
// bail out earlier so that the execution takes the same
// amount of time for weak and non-weak "k" values.
weak = isWeakPoint(k); // Is "k" weak before?
weak |= ((eval(k, f, k) ^ 0x01) & 0x01); // Is "k" weak during?
weak |= isWeakPoint(k); // Is "k" weak after?
clean(f, 32);
return (bool)((weak ^ 0x01) & 0x01);
}
/**
* \brief Determines if a Curve25519 point is weak for contributory behaviour.
*
* \param k The point to check.
* \return Returns 1 if \a k is weak for contributory behavior or
* returns zero if \a k is not weak.
*/
uint8_t Curve25519::isWeakPoint(const uint8_t k[32])
{
// List of weak points from http://cr.yp.to/ecdh.html
// That page lists some others but they are variants on these
// of the form "point + i * (2^255 - 19)" for i = 0, 1, 2.
// Here we mask off the high bit and eval() catches the rest.
static const uint8_t points[5][32] PROGMEM = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0xE0, 0xEB, 0x7A, 0x7C, 0x3B, 0x41, 0xB8, 0xAE,
0x16, 0x56, 0xE3, 0xFA, 0xF1, 0x9F, 0xC4, 0x6A,
0xDA, 0x09, 0x8D, 0xEB, 0x9C, 0x32, 0xB1, 0xFD,
0x86, 0x62, 0x05, 0x16, 0x5F, 0x49, 0xB8, 0x00},
{0x5F, 0x9C, 0x95, 0xBC, 0xA3, 0x50, 0x8C, 0x24,
0xB1, 0xD0, 0xB1, 0x55, 0x9C, 0x83, 0xEF, 0x5B,
0x04, 0x44, 0x5C, 0xC4, 0x58, 0x1C, 0x8E, 0x86,
0xD8, 0x22, 0x4E, 0xDD, 0xD0, 0x9F, 0x11, 0x57},
{0xEC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F}
};
// Check each of the weak points in turn. We perform the
// comparisons carefully so as not to reveal the value of "k"
// in the instruction timing. If "k" is indeed weak then
// we still check everything so as not to reveal which
// weak point it is.
uint8_t result = 0;
for (uint8_t posn = 0; posn < 5; ++posn) {
const uint8_t *point = points[posn];
uint8_t check = (pgm_read_byte(point + 31) ^ k[31]) & 0x7F;
for (uint8_t index = 31; index > 0; --index)
check |= (pgm_read_byte(point + index - 1) ^ k[index - 1]);
result |= (uint8_t)((((uint16_t)0x0100) - check) >> 8);
}
// The "result" variable will be non-zero if there was a match.
return result;
}
/**
* \brief Reduces a number modulo 2^255 - 19.
*
* \param result The array that will contain the result when the
* function exits. Must be NUM_LIMBS limbs in size.
* \param x The number to be reduced, which must be NUM_LIMBS * 2 limbs in
* size and less than or equal to square(2^255 - 19 - 1). This array will
* be modified by the reduction process.
* \param size The size of the high order half of \a x. This indicates
* the size of \a x in limbs. If it is shorter than NUM_LIMBS then the
* reduction can be performed quicker.
*/
void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
{
/*
Note: This explaination is best viewed with a UTF-8 text viewer.
To help explain what this function is doing, the following describes
how to efficiently compute reductions modulo a base of the form (2 - b)
where b is greater than zero and (b + 1)² <= 2.
Here we are interested in reducing the result of multiplying two
numbers that are less than or equal to (2 - b - 1). That is,
multiplying numbers that have already been reduced.
Given some x less than or equal to (2 - b - 1)², we want to find a
y less than (2 - b) such that:
y x mod (2 - b)
We know that for all integer values of k >= 0:
y x - k * (2 - b)
x - k * 2 + k * b
In our case we choose k = x / 2 and then let:
w = (x mod 2) + x / 2 * b
The value w will either be the answer y or y can be obtained by
repeatedly subtracting (2 - b) from w until it is less than (2 - b).
At most b subtractions will be required.
In our case b is 19 which is more subtractions than we would like to do,
but we can handle that by performing the above reduction twice and then
performing a single trial subtraction:
w = (x mod 2) + x / 2 * b
y = (w mod 2) + w / 2 * b
if y >= (2 - b)
y -= (2 - b)
The value y is the answer we want for reducing x modulo (2 - b).
*/
dlimb_t carry;
uint8_t posn;
// Calculate (x mod 2^255) + ((x / 2^255) * 19) which will
// either produce the answer we want or it will produce a
// value of the form "answer + j * (2^255 - 19)".
carry = ((dlimb_t)(x[NUM_LIMBS - 1] >> (LIMB_BITS - 1))) * 19U;
x[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < size; ++posn) {
carry += ((dlimb_t)(x[posn + NUM_LIMBS])) * 38U;
carry += x[posn];
x[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
if (size < NUM_LIMBS) {
// The high order half of the number is short; e.g. for mulA24().
// Propagate the carry through the rest of the low order part.
for (posn = size; posn < NUM_LIMBS; ++posn) {
carry += x[posn];
x[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
}
// The "j" value may still be too large due to the final carry-out.
// We must repeat the reduction. If we already have the answer,
// then this won't do any harm but we must still do the calculation
// to preserve the overall timing.
carry *= 38U;
carry += ((dlimb_t)(x[NUM_LIMBS - 1] >> (LIMB_BITS - 1))) * 19U;
x[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < NUM_LIMBS; ++posn) {
carry += x[posn];
x[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// At this point "x" will either be the answer or it will be the
// answer plus (2^255 - 19). Perform a trial subtraction which
// is equivalent to adding 19 and subtracting 2^255. We put the
// trial answer into the top-most limbs of the original "x" array.
// We add 19 here; the subtraction of 2^255 occurs in the next step.
carry = 19U;
for (posn = 0; posn < NUM_LIMBS; ++posn) {
carry += x[posn];
x[posn + NUM_LIMBS] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// If there was a borrow, then the bottom-most limbs of "x" are the
// correct answer. If there was no borrow, then the top-most limbs
// of "x" are the correct answer. Select the correct answer but do
// it in a way that instruction timing will not reveal which value
// was selected. Borrow will occur if the high bit of the previous
// result is 0: turn the high bit into a selection mask.
limb_t mask = (limb_t)(((slimb_t)(x[NUM_LIMBS * 2 - 1])) >> (LIMB_BITS - 1));
limb_t nmask = ~mask;
x[NUM_LIMBS * 2 - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < NUM_LIMBS; ++posn) {
result[posn] = (x[posn] & nmask) | (x[posn + NUM_LIMBS] & mask);
}
}
/**
* \brief Quickly reduces a number modulo 2^255 - 19.
*
* \param x The number to be reduced, which must be NUM_LIMBS limbs in size
* and less than or equal to 2 * (2^255 - 19 - 1).
* \return Zero if \a x was greater than or equal to (2^255 - 19).
*
* The answer is also put into \a x and will consist of NUM_LIMBS limbs.
*
* This function is intended for reducing the result of additions where
* the caller knows that \a x is within the described range. A single
* trial subtraction is all that is needed to reduce the number.
*/
Curve25519::limb_t Curve25519::reduceQuick(limb_t *x)
{
limb_t temp[NUM_LIMBS];
dlimb_t carry;
uint8_t posn;
// Perform a trial subtraction of (2^255 - 19) from "x" which is
// equivalent to adding 19 and subtracting 2^255. We add 19 here;
// the subtraction of 2^255 occurs in the next step.
carry = 19U;
for (posn = 0; posn < NUM_LIMBS; ++posn) {
carry += x[posn];
temp[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// If there was a borrow, then the original "x" is the correct answer.
// If there was no borrow, then "temp" is the correct answer. Select the
// correct answer but do it in a way that instruction timing will not
// reveal which value was selected. Borrow will occur if the high bit
// of "temp" is 0: turn the high bit into a selection mask.
limb_t mask = (limb_t)(((slimb_t)(temp[NUM_LIMBS - 1])) >> (LIMB_BITS - 1));
limb_t nmask = ~mask;
temp[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < NUM_LIMBS; ++posn) {
x[posn] = (x[posn] & nmask) | (temp[posn] & mask);
}
// Clean up "temp".
clean(temp);
// Return a zero value if we actually subtracted (2^255 - 19) from "x".
return nmask;
}
/**
* \brief Multiplies two values and then reduces the result modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS limbs in size and can
* be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19. This can be the same array as \a x.
*/
void Curve25519::mul(limb_t *result, const limb_t *x, const limb_t *y)
{
limb_t temp[NUM_LIMBS * 2];
uint8_t i, j;
dlimb_t carry;
limb_t word;
// Multiply the lowest word of x by y.
carry = 0;
word = x[0];
for (i = 0; i < NUM_LIMBS; ++i) {
carry += ((dlimb_t)(y[i])) * word;
temp[i] = (limb_t)carry;
carry >>= LIMB_BITS;
}
temp[NUM_LIMBS] = (limb_t)carry;
// Multiply and add the remaining words of x by y.
for (i = 1; i < NUM_LIMBS; ++i) {
word = x[i];
carry = 0;
for (j = 0; j < NUM_LIMBS; ++j) {
carry += ((dlimb_t)(y[j])) * word;
carry += temp[i + j];
temp[i + j] = (limb_t)carry;
carry >>= LIMB_BITS;
}
temp[i + NUM_LIMBS] = (limb_t)carry;
}
// Reduce the intermediate result modulo 2^255 - 19.
reduce(result, temp, NUM_LIMBS);
clean(temp);
}
/**
* \fn void Curve25519::square(limb_t *result, const limb_t *x)
* \brief Squares a value and then reduces it modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS limbs in size and
* can be the same array as \a x.
* \param x The value to square, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19.
*/
/**
* \brief Multiplies a value by the a24 constant and then reduces the result
* modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS limbs in size and can
* be the same array as \a x.
* \param x The value to multiply by a24, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19.
*/
void Curve25519::mulA24(limb_t *result, const limb_t *x)
{
// The constant a24 = 121665 (0x1DB41) as a limb array.
#if CURVE25519_LIMB_8BIT
static limb_t const a24[3] PROGMEM = {0x41, 0xDB, 0x01};
#define pgm_read_a24(index) (pgm_read_byte(&(a24[(index)])))
#elif CURVE25519_LIMB_16BIT
static limb_t const a24[2] PROGMEM = {0xDB41, 0x0001};
#define pgm_read_a24(index) (pgm_read_word(&(a24[(index)])))
#elif CURVE25519_LIMB_32BIT
static limb_t const a24[1] PROGMEM = {0x0001DB41};
#define pgm_read_a24(index) (pgm_read_dword(&(a24[(index)])))
#else
#error "limb_t must be 8, 16, or 32 bits in size"
#endif
#define NUM_A24_LIMBS (sizeof(a24) / sizeof(limb_t))
// Multiply the lowest limb of a24 by x and zero-extend into the result.
limb_t temp[NUM_LIMBS * 2];
uint8_t i, j;
dlimb_t carry = 0;
limb_t word = pgm_read_a24(0);
for (i = 0; i < NUM_LIMBS; ++i) {
carry += ((dlimb_t)(x[i])) * word;
temp[i] = (limb_t)carry;
carry >>= LIMB_BITS;
}
temp[NUM_LIMBS] = (limb_t)carry;
// Multiply and add the remaining limbs of a24.
for (i = 1; i < NUM_A24_LIMBS; ++i) {
word = pgm_read_a24(i);
carry = 0;
for (j = 0; j < NUM_LIMBS; ++j) {
carry += ((dlimb_t)(x[j])) * word;
carry += temp[i + j];
temp[i + j] = (limb_t)carry;
carry >>= LIMB_BITS;
}
temp[i + NUM_LIMBS] = (limb_t)carry;
}
// Reduce the intermediate result modulo 2^255 - 19.
reduce(result, temp, NUM_A24_LIMBS);
clean(temp);
}
/**
* \brief Adds two values and then reduces the result modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS limbs in size and can
* be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19.
*/
void Curve25519::add(limb_t *result, const limb_t *x, const limb_t *y)
{
dlimb_t carry = 0;
uint8_t posn;
// Add the two arrays to obtain the intermediate result.
for (posn = 0; posn < NUM_LIMBS; ++posn) {
carry += x[posn];
carry += y[posn];
result[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// Reduce the result using the quick trial subtraction method.
reduceQuick(result);
}
/**
* \brief Subtracts two values and then reduces the result modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS limbs in size and can
* be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS limbs in size
* and less than 2^255 - 19.
*/
void Curve25519::sub(limb_t *result, const limb_t *x, const limb_t *y)
{
dlimb_t borrow;
uint8_t posn;
// Subtract y from x to generate the intermediate result.
borrow = 0;
for (posn = 0; posn < NUM_LIMBS; ++posn) {
borrow = ((dlimb_t)x[posn]) - y[posn] - ((borrow >> LIMB_BITS) & 0x01);
result[posn] = (limb_t)borrow;
}
// If we had a borrow, then the result has gone negative and we
// have to add 2^255 - 19 to the result to make it positive again.
// The top bits of "borrow" will be all 1's if there is a borrow
// or it will be all 0's if there was no borrow. Easiest is to
// conditionally subtract 19 and then mask off the high bit.
borrow = (borrow >> LIMB_BITS) & 19U;
borrow = ((dlimb_t)result[0]) - borrow;
result[0] = (limb_t)borrow;
for (posn = 1; posn < NUM_LIMBS; ++posn) {
borrow = ((dlimb_t)result[posn]) - ((borrow >> LIMB_BITS) & 0x01);
result[posn] = (limb_t)borrow;
}
result[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
}
/**
* \brief Conditionally swaps two values if a selection value is non-zero.
*
* \param select Non-zero to swap \a x and \a y, zero to leave them unchanged.
* \param x The first value to conditionally swap.
* \param y The second value to conditionally swap.
*
* The swap is performed in a way that it should take the same amount of
* time irrespective of the value of \a select.
*/
void Curve25519::cswap(uint8_t select, limb_t *x, limb_t *y)
{
uint8_t posn;
limb_t dummy;
limb_t sel;
// Turn "select" into an all-zeroes or all-ones mask. We don't care
// which bit or bits is set in the original "select" value.
sel = (limb_t)(((((dlimb_t)1) << LIMB_BITS) - select) >> LIMB_BITS);
--sel;
// Swap the two values based on "select". Algorithm from:
// https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
for (posn = 0; posn < NUM_LIMBS; ++posn) {
dummy = sel & (x[posn] ^ y[posn]);
x[posn] ^= dummy;
y[posn] ^= dummy;
}
}
/**
* \brief Computes the reciprocal of a number modulo 2^255 - 19.
*
* \param result The result as a array of NUM_LIMBS limbs in size. This can
* be the same array as \a x.
* \param x The number to compute the reciprocal for.
*/
void Curve25519::recip(limb_t *result, const limb_t *x)
{
limb_t t1[NUM_LIMBS];
uint8_t i, j;
// The reciprocal is the same as x ^ (p - 2) where p = 2^255 - 19.
// The big-endian hexadecimal expansion of (p - 2) is:
// 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEB
//
// The naive implementation needs to do 2 multiplications per 1 bit and
// 1 multiplication per 0 bit. We can improve upon this by creating a
// pattern 0000000001 ... 0000000001. If we square and multiply the
// pattern by itself we can turn the pattern into the partial results
// 0000000011 ... 0000000011, 0000000111 ... 0000000111, etc.
// This averages out to about 1.1 multiplications per 1 bit instead of 2.
// Build a pattern of 250 bits in length of repeated copies of 0000000001.
#define RECIP_GROUP_SIZE 10
#define RECIP_GROUP_BITS 250 // Must be a multiple of RECIP_GROUP_SIZE.
square(t1, x);
for (j = 0; j < (RECIP_GROUP_SIZE - 1); ++j)
square(t1, t1);
mul(result, t1, x);
for (i = 0; i < ((RECIP_GROUP_BITS / RECIP_GROUP_SIZE) - 2); ++i) {
for (j = 0; j < RECIP_GROUP_SIZE; ++j)
square(t1, t1);
mul(result, result, t1);
}
// Multiply bit-shifted versions of the 0000000001 pattern into
// the result to "fill in" the gaps in the pattern.
square(t1, result);
mul(result, result, t1);
for (j = 0; j < (RECIP_GROUP_SIZE - 2); ++j) {
square(t1, t1);
mul(result, result, t1);
}
// Deal with the 5 lowest bits of (p - 2), 01011, from highest to lowest.
square(result, result);
square(result, result);
mul(result, result, x);
square(result, result);
square(result, result);
mul(result, result, x);
square(result, result);
mul(result, result, x);
// Clean up and exit.
clean(t1);
}
/**
* \brief Unpacks the little-endian byte representation of a field element
* into a limb array.
*
* \param result The limb array.
* \param x The byte representation.
*
* The top-most bit of \a result will be set to zero so that the value
* is guaranteed to be 255 bits rather than 256.
*
* \sa pack()
*/
void Curve25519::unpack(limb_t *result, const uint8_t *x)
{
#if CURVE25519_LIMB_8BIT
memcpy(result, x, 32);
result[31] &= 0x7F;
#elif CURVE25519_LIMB_16BIT
for (uint8_t posn = 0; posn < 16; ++posn) {
result[posn] = ((limb_t)x[posn * 2]) | (((limb_t)x[posn * 2 + 1]) << 8);
}
result[15] &= 0x7FFF;
#elif CURVE25519_LIMB_32BIT
for (uint8_t posn = 0; posn < 8; ++posn) {
result[posn] = ((limb_t)x[posn * 4]) |
(((limb_t)x[posn * 4 + 1]) << 8) |
(((limb_t)x[posn * 4 + 2]) << 16) |
(((limb_t)x[posn * 4 + 3]) << 24);
}
result[7] &= 0x7FFFFFFF;
#endif
}
/**
* \brief Packs the limb array representation of a field element into a
* byte array.
*
* \param result The byte array.
* \param x The limb representation.
*
* \sa unpack()
*/
void Curve25519::pack(uint8_t *result, const limb_t *x)
{
#if CURVE25519_LIMB_8BIT
memcpy(result, x, 32);
#elif CURVE25519_LIMB_16BIT
for (uint8_t posn = 0; posn < 16; ++posn) {
limb_t value = x[posn];
result[posn * 2] = (uint8_t)value;
result[posn * 2 + 1] = (uint8_t)(value >> 8);
}
#elif CURVE25519_LIMB_32BIT
for (uint8_t posn = 0; posn < 8; ++posn) {
limb_t value = x[posn];
result[posn * 4] = (uint8_t)value;
result[posn * 4 + 1] = (uint8_t)(value >> 8);
result[posn * 4 + 2] = (uint8_t)(value >> 16);
result[posn * 4 + 3] = (uint8_t)(value >> 24);
}
#endif
}

View File

@ -0,0 +1,93 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef CRYPTO_CURVE15519_h
#define CRYPTO_CURVE15519_h
#include <inttypes.h>
#include <stddef.h>
// Define exactly one of these to 1 to set the size of the basic limb type.
// 16-bit limbs seems to give the best performance on 8-bit AVR micros.
#define CURVE25519_LIMB_8BIT 0
#define CURVE25519_LIMB_16BIT 1
#define CURVE25519_LIMB_32BIT 0
class Curve25519
{
public:
static bool eval(uint8_t result[32], const uint8_t s[32], const uint8_t x[32]);
static void dh1(uint8_t k[32], uint8_t f[32]);
static bool dh2(uint8_t k[32], uint8_t f[32]);
#if defined(TEST_CURVE25519_FIELD_OPS)
public:
#else
private:
#endif
// Define the limb types to use on this platform.
#if CURVE25519_LIMB_8BIT
typedef uint8_t limb_t;
typedef int8_t slimb_t;
typedef uint16_t dlimb_t;
#elif CURVE25519_LIMB_16BIT
typedef uint16_t limb_t;
typedef int16_t slimb_t;
typedef uint32_t dlimb_t;
#elif CURVE25519_LIMB_32BIT
typedef uint32_t limb_t;
typedef int32_t slimb_t;
typedef uint64_t dlimb_t;
#else
#error "limb_t must be 8, 16, or 32 bits in size"
#endif
static uint8_t isWeakPoint(const uint8_t k[32]);
static void reduce(limb_t *result, limb_t *x, uint8_t size);
static limb_t reduceQuick(limb_t *x);
static void mul(limb_t *result, const limb_t *x, const limb_t *y);
static void square(limb_t *result, const limb_t *x)
{
mul(result, x, x);
}
static void mulA24(limb_t *result, const limb_t *x);
static void add(limb_t *result, const limb_t *x, const limb_t *y);
static void sub(limb_t *result, const limb_t *x, const limb_t *y);
static void cswap(uint8_t select, limb_t *x, limb_t *y);
static void recip(limb_t *result, const limb_t *x);
static void unpack(limb_t *result, const uint8_t *x);
static void pack(uint8_t *result, const limb_t *x);
// Constructor and destructor are private - cannot instantiate this class.
Curve25519() {}
~Curve25519() {}
};
#endif

View File

@ -0,0 +1,221 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the Curve25519 algorithm.
*/
#include <Crypto.h>
#include <Curve25519.h>
#include <RNG.h>
#include <string.h>
void printNumber(const char *name, const uint8_t *x)
{
static const char hexchars[] = "0123456789ABCDEF";
Serial.print(name);
Serial.print(" = ");
for (uint8_t posn = 0; posn < 32; ++posn) {
Serial.print(hexchars[(x[posn] >> 4) & 0x0F]);
Serial.print(hexchars[x[posn] & 0x0F]);
}
Serial.println();
}
// Check the eval() function using the test vectors from:
// https://tools.ietf.org/html/draft-turner-thecurve25519function-01
void testEval()
{
static uint8_t alice_private[32] = {
0x77, 0x07, 0x6d, 0x0a, 0x73, 0x18, 0xa5, 0x7d,
0x3c, 0x16, 0xc1, 0x72, 0x51, 0xb2, 0x66, 0x45,
0xdf, 0x4c, 0x2f, 0x87, 0xeb, 0xc0, 0x99, 0x2a,
0xb1, 0x77, 0xfb, 0xa5, 0x1d, 0xb9, 0x2c, 0x2a
};
static uint8_t const alice_public[32] = {
0x85, 0x20, 0xf0, 0x09, 0x89, 0x30, 0xa7, 0x54,
0x74, 0x8b, 0x7d, 0xdc, 0xb4, 0x3e, 0xf7, 0x5a,
0x0d, 0xbf, 0x3a, 0x0d, 0x26, 0x38, 0x1a, 0xf4,
0xeb, 0xa4, 0xa9, 0x8e, 0xaa, 0x9b, 0x4e, 0x6a
};
static uint8_t bob_private[32] = {
0x5d, 0xab, 0x08, 0x7e, 0x62, 0x4a, 0x8a, 0x4b,
0x79, 0xe1, 0x7f, 0x8b, 0x83, 0x80, 0x0e, 0xe6,
0x6f, 0x3b, 0xb1, 0x29, 0x26, 0x18, 0xb6, 0xfd,
0x1c, 0x2f, 0x8b, 0x27, 0xff, 0x88, 0xe0, 0xeb
};
static uint8_t const bob_public[32] = {
0xde, 0x9e, 0xdb, 0x7d, 0x7b, 0x7d, 0xc1, 0xb4,
0xd3, 0x5b, 0x61, 0xc2, 0xec, 0xe4, 0x35, 0x37,
0x3f, 0x83, 0x43, 0xc8, 0x5b, 0x78, 0x67, 0x4d,
0xad, 0xfc, 0x7e, 0x14, 0x6f, 0x88, 0x2b, 0x4f
};
static uint8_t const shared_secret[32] = {
0x4a, 0x5d, 0x9d, 0x5b, 0xa4, 0xce, 0x2d, 0xe1,
0x72, 0x8e, 0x3b, 0xf4, 0x80, 0x35, 0x0f, 0x25,
0xe0, 0x7e, 0x21, 0xc9, 0x47, 0xd1, 0x9e, 0x33,
0x76, 0xf0, 0x9b, 0x3c, 0x1e, 0x16, 0x17, 0x42
};
// Fix up the private keys by applying the standard masks.
alice_private[0] &= 0xF8;
alice_private[31] = (alice_private[31] & 0x7F) | 0x40;
bob_private[0] &= 0xF8;
bob_private[31] = (bob_private[31] & 0x7F) | 0x40;
// Evaluate the curve function and check the public keys.
uint8_t result[32];
Serial.println("Fixed test vectors:");
Serial.print("Computing Alice's public key ... ");
Serial.flush();
unsigned long start = micros();
Curve25519::eval(result, alice_private, 0);
unsigned long elapsed = micros() - start;
if (memcmp(result, alice_public, 32) == 0) {
Serial.print("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", alice_public);
}
Serial.print(" (elapsed ");
Serial.print(elapsed);
Serial.println(" us)");
Serial.print("Computing Bob's public key ... ");
Serial.flush();
start = micros();
Curve25519::eval(result, bob_private, 0);
elapsed = micros() - start;
if (memcmp(result, bob_public, 32) == 0) {
Serial.print("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", bob_public);
}
Serial.print(" (elapsed ");
Serial.print(elapsed);
Serial.println(" us)");
// Compute the shared secret from each side.
Serial.print("Computing Alice's shared secret ... ");
Serial.flush();
start = micros();
Curve25519::eval(result, alice_private, bob_public);
elapsed = micros() - start;
if (memcmp(result, shared_secret, 32) == 0) {
Serial.print("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", shared_secret);
}
Serial.print(" (elapsed ");
Serial.print(elapsed);
Serial.println(" us)");
Serial.print("Computing Bob's shared secret ... ");
Serial.flush();
start = micros();
Curve25519::eval(result, bob_private, alice_public);
elapsed = micros() - start;
if (memcmp(result, shared_secret, 32) == 0) {
Serial.print("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", shared_secret);
}
Serial.print(" (elapsed ");
Serial.print(elapsed);
Serial.println(" us)");
}
void testDH()
{
static uint8_t alice_k[32];
static uint8_t alice_f[32];
static uint8_t bob_k[32];
static uint8_t bob_f[32];
Serial.println("Diffie-Hellman key exchange:");
Serial.print("Generate random k/f for Alice ... ");
Serial.flush();
unsigned long start = micros();
Curve25519::dh1(alice_k, alice_f);
unsigned long elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Generate random k/f for Bob ... ");
Serial.flush();
start = micros();
Curve25519::dh1(bob_k, bob_f);
elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Generate shared secret for Alice ... ");
Serial.flush();
start = micros();
Curve25519::dh2(bob_k, alice_f);
elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Generate shared secret for Bob ... ");
Serial.flush();
start = micros();
Curve25519::dh2(alice_k, bob_f);
elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Check that the shared secrets match ... ");
if (memcmp(alice_k, bob_k, 32) == 0)
Serial.println("ok");
else
Serial.println("failed");
}
void setup()
{
Serial.begin(9600);
// Start the random number generator. We don't initialise a noise
// source here because we don't need one for testing purposes.
// Real DH applications should of course use a proper noise source.
RNG.begin("TestCurve25519 1.0", 500);
// Perform the tests.
testEval();
Serial.println();
testDH();
Serial.println();
}
void loop()
{
}

View File

@ -0,0 +1,622 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the Curve25519 field mathematics independent
of the full curve operation itself.
*/
// Enable access to the internals of Curve25519 to test the raw field ops.
#define TEST_CURVE25519_FIELD_OPS 1
#include <Crypto.h>
#include <Curve25519.h>
#include <utility/ProgMemUtil.h>
#include <string.h>
// Copy some definitions from the Curve25519 class for convenience.
#define NUM_LIMBS (32 / sizeof(Curve25519::limb_t))
#define LIMB_BITS (8 * sizeof(Curve25519::limb_t))
#define limb_t Curve25519::limb_t
#define dlimb_t Curve25519::dlimb_t
#define INVERSE_LIMB (~((limb_t)0))
// For simpleMod() below we need a type that is 4 times the size of limb_t.
#if CURVE25519_LIMB_8BIT
#define qlimb_t uint32_t
#elif CURVE25519_LIMB_16BIT
#define qlimb_t uint64_t
#else
#define CURVE25519_NO_QLIMB 1
#endif
limb_t arg1[NUM_LIMBS];
limb_t arg2[NUM_LIMBS];
limb_t result[NUM_LIMBS];
limb_t result2[NUM_LIMBS * 2 + 1];
limb_t temp[NUM_LIMBS];
// Convert a decimal string in program memory into a number.
void fromString(limb_t *x, uint8_t size, const char *str)
{
uint8_t ch, posn;
memset(x, 0, sizeof(limb_t) * size);
while ((ch = pgm_read_byte((uint8_t *)str)) != '\0') {
if (ch >= '0' && ch <= '9') {
// Quick and simple method to multiply by 10 and add the new digit.
dlimb_t carry = ch - '0';
for (posn = 0; posn < size; ++posn) {
carry += ((dlimb_t)x[posn]) * 10U;
x[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
}
++str;
}
}
// Compare two numbers of NUM_LIMBS in length. Returns -1, 0, or 1.
int compare(const limb_t *x, const limb_t *y)
{
for (uint8_t posn = NUM_LIMBS; posn > 0; --posn) {
limb_t a = x[posn - 1];
limb_t b = y[posn - 1];
if (a < b)
return -1;
else if (a > b)
return 1;
}
return 0;
}
// Compare two numbers where one is a decimal string. Returns -1, 0, or 1.
int compare(const limb_t *x, const char *y)
{
limb_t val[NUM_LIMBS];
fromString(val, NUM_LIMBS, y);
return compare(x, val);
}
void printNumber(const char *name, const limb_t *x)
{
static const char hexchars[] = "0123456789ABCDEF";
Serial.print(name);
Serial.print(" = ");
for (uint8_t posn = 0; posn < NUM_LIMBS; ++posn) {
for (uint8_t bit = LIMB_BITS; bit > 0; ) {
bit -= 4;
Serial.print(hexchars[(x[posn] >> bit) & 0x0F]);
}
Serial.print(' ');
}
Serial.println();
}
// Standard numbers that are useful in field operation tests.
char const num_0[] PROGMEM = "0";
char const num_1[] PROGMEM = "1";
char const num_2[] PROGMEM = "2";
char const num_4[] PROGMEM = "4";
char const num_5[] PROGMEM = "5";
char const num_128[] PROGMEM = "128";
char const num_256[] PROGMEM = "256";
char const num_2_64_m7[] PROGMEM = "18446744073709551609"; // 2^64 - 7
char const num_2_129_m5[] PROGMEM = "680564733841876926926749214863536422907"; // 2^129 - 5
char const num_pi[] PROGMEM = "31415926535897932384626433832795028841971693993751058209749445923078164062862"; // 77 digits of pi
char const num_2_255_m253[] PROGMEM = "57896044618658097711785492504343953926634992332820282019728792003956564819715"; // 2^255 - 253
char const num_2_255_m20[] PROGMEM = "57896044618658097711785492504343953926634992332820282019728792003956564819948"; // 2^255 - 20
char const num_2_255_m19[] PROGMEM = "57896044618658097711785492504343953926634992332820282019728792003956564819949"; // 2^255 - 19
char const num_2_255_m19_x2[] PROGMEM = "115792089237316195423570985008687907853269984665640564039457584007913129639898"; // (2^255 - 19) * 2
char const num_a24[] PROGMEM = "121665";
// Table of useful numbers less than 2^255 - 19.
const char * const numbers[] = {
num_0,
num_1,
num_2,
num_4,
num_5,
num_128,
num_256,
num_2_64_m7,
num_2_129_m5,
num_pi,
num_2_255_m253,
num_2_255_m20,
0
};
#define numbers_count ((sizeof(numbers) / sizeof(numbers[0])) - 1)
#define foreach_number(var) \
const char *var = numbers[0]; \
for (unsigned index##var = 0; index##var < numbers_count; \
++index##var, var = numbers[index##var])
void printProgMem(const char *str)
{
uint8_t ch;
while ((ch = pgm_read_byte((uint8_t *)str)) != '\0') {
Serial.print((char)ch);
++str;
}
}
// Simple implementation of modular addition to cross-check the library.
void simpleAdd(limb_t *result, const limb_t *x, const limb_t *y)
{
uint8_t posn;
dlimb_t carry = 0;
for (posn = 0; posn < NUM_LIMBS; ++posn) {
carry += x[posn];
carry += y[posn];
result[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
if (compare(result, num_2_255_m19) >= 0) {
// Subtract 2^255 - 19 to get the final result.
// Same as add 19 and then subtract 2^255.
carry = 19;
for (posn = 0; posn < NUM_LIMBS; ++posn) {
carry += result[posn];
result[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
result[NUM_LIMBS - 1] -= ((limb_t)1) << (LIMB_BITS - 1);
}
}
// Simple implementation of subtraction to cross-check the library.
// Note: this does not reduce the result modulo 2^255 - 19 and we
// assume that x is greater than or equal to y.
void simpleSub(limb_t *result, const limb_t *x, const limb_t *y)
{
uint8_t posn;
dlimb_t borrow = 0;
for (posn = 0; posn < NUM_LIMBS; ++posn) {
borrow = ((dlimb_t)x[posn]) - y[posn] - borrow;
result[posn] = (limb_t)borrow;
borrow = (borrow >> LIMB_BITS) != 0;
}
}
// Simple implementation of multiplication to cross-check the library.
// Note: this does not reduce the result modulo 2^255 - 19.
// The "result" buffer must contain at least NUM_LIMBS * 2 limbs.
void simpleMul(limb_t *result, const limb_t *x, const limb_t *y)
{
memset(result, 0, NUM_LIMBS * 2 * sizeof(limb_t));
for (uint8_t i = 0; i < NUM_LIMBS; ++i) {
for (uint8_t j = 0; j < NUM_LIMBS; ++j) {
uint8_t n = i + j;
dlimb_t carry =
((dlimb_t)x[i]) * y[j] + result[n];
result[n] = (limb_t)carry;
carry >>= LIMB_BITS;
++n;
while (carry != 0 && n < (NUM_LIMBS * 2)) {
carry += result[n];
result[n] = (limb_t)carry;
carry >>= LIMB_BITS;
++n;
}
}
}
}
#if defined(CURVE25519_NO_QLIMB)
// Quick check to correct the estimate on a quotient word.
static inline limb_t correctEstimate
(limb_t q, limb_t y1, limb_t y2, dlimb_t x01, limb_t x2)
{
// Algorithm D from section 4.3.1 of "The Art Of Computer Programming",
// D. Knuth, Volume 2, "Seminumerical Algorithms", Second Edition, 1981.
//
// We want to check if (y2 * q) > ((x01 - y1 * q) * b + x2) where
// b is (1 << LIMB_BITS). If it is, then q must be reduced by 1.
//
// One wrinkle that isn't obvious from Knuth's description is that it
// is possible for (x01 - y1 * q) >= b, especially in the case where
// x0 = y1 and q = b - 1. This will cause an overflow of the intermediate
// double-word result ((x01 - y1 * q) * b).
//
// In assembly language, we could use the carry flag to detect when
// (x01 - y1 * q) * b overflows, but we can't access the carry flag
// in C++. So we have to account for the carry in a different way here.
// Calculate the remainder using the estimated quotient.
dlimb_t r = x01 - ((dlimb_t)y1) * q;
// If there will be a double-word carry when we calculate (r * b),
// then (y2 * q) is obviously going to be less than (r * b), so we
// can stop here. The estimated quotient is correct.
if (r & (((dlimb_t)INVERSE_LIMB) << LIMB_BITS))
return q;
// Bail out if (y2 * q) <= (r * b + x2). The estimate is correct.
dlimb_t y2q = ((dlimb_t)y2) * q;
if (y2q <= ((r << LIMB_BITS) + x2))
return q;
// Correct for the estimated quotient being off by 1.
--q;
// Now repeat the check to correct for q values that are off by 2.
r += y1; // r' = (x01 - y1 * (q - 1)) = (x01 - y1 * q + y2) = r + y1
if (r & (((dlimb_t)INVERSE_LIMB) << LIMB_BITS))
return q;
// y2q' = (y2 * (q - 1)) = (y2 * q - y2) = y2q - y2
if ((y2q - y2) <= ((r << LIMB_BITS) + x2))
return q;
// Perform the final correction for q values that are off by 2.
return q - 1;
}
#endif
// Simple implementation of modular division to cross-check the library.
// Calling this "simple" is a bit of a misnomer. It is a full implementation
// of Algorithm D from section 4.3.1 of "The Art Of Computer Programming",
// D. Knuth, Volume 2, "Seminumerical Algorithms", Second Edition, 1981.
// This is quite slow on embedded platforms, but it should be correct.
// Note: "x" is assumed to be (NUM_LIMBS * 2 + 1) limbs in size because
// we need a limb for the extra leading zero word added by step D1.
void simpleMod(limb_t *x)
{
limb_t divisor[NUM_LIMBS];
uint8_t j, k;
// Step D1. Normalize.
// The divisor (2^255 - 19) and "x" need to be shifted left until
// the top-most bit of the divisor is 1. Since we know that the
// next-to-top-most bit of (2^255 - 19) is already 1 and the top-most
// bit of "x" is zero, shifting everything into place is pretty easy.
fromString(divisor, NUM_LIMBS, num_2_255_m19_x2);
for (j = (NUM_LIMBS * 2); j > 1; --j) {
x[j - 1] = (x[j - 1] << 1) | (x[j - 2] >> (LIMB_BITS - 1));
}
x[0] <<= 1;
x[NUM_LIMBS * 2] = 0; // Extra leading word.
// Step D2/D7. Loop on j
for (j = 0; j <= NUM_LIMBS; ++j) {
// Step D3. Calculate an estimate of the top-most quotient word.
limb_t *u = x + NUM_LIMBS * 2 - 2 - j;
limb_t *v = divisor + NUM_LIMBS - 2;
limb_t q;
dlimb_t uword = ((((dlimb_t)u[2]) << LIMB_BITS) + u[1]);
if (u[2] == v[1])
q = ~((limb_t)0);
else
q = (limb_t)(uword / v[1]);
// Step D3, part 2. Correct the estimate downwards by 1 or 2.
// One subtlety of Knuth's algorithm is that it looks like the test
// is working with double-word quantities but it is actually using
// double-word plus a carry bit. So we need to use qlimb_t for this.
#if !defined(CURVE25519_NO_QLIMB)
qlimb_t test = ((((qlimb_t)uword) - ((dlimb_t)q) * v[1]) << LIMB_BITS) + u[0];
if ((((dlimb_t)q) * v[0]) > test) {
--q;
test = ((((qlimb_t)uword) - ((dlimb_t)q) * v[1]) << LIMB_BITS) + u[0];
if ((((dlimb_t)q) * v[0]) > test)
--q;
}
#else
// 32-bit platform - we don't have a 128-bit numeric type so we have
// to calculate the estimate in another way to preserve the carry bit.
q = correctEstimate(q, v[0], v[1], uword, u[0]);
#endif
// Step D4. Multiply and subtract.
u = x + (NUM_LIMBS - j);
v = divisor;
dlimb_t carry = 0;
dlimb_t borrow = 0;
for (k = 0; k < NUM_LIMBS; ++k) {
carry += ((dlimb_t)v[k]) * q;
borrow = ((dlimb_t)u[k]) - ((limb_t)carry) - borrow;
u[k] = (dlimb_t)borrow;
carry >>= LIMB_BITS;
borrow = ((borrow >> LIMB_BITS) != 0);
}
borrow = ((dlimb_t)u[k]) - ((limb_t)carry) - borrow;
u[k] = (dlimb_t)borrow;
// Step D5. Test remainder. Nothing further to do if no borrow.
if ((borrow >> LIMB_BITS) == 0)
continue;
// Step D6. Borrow occurred: add back.
carry = 0;
for (k = 0; k < NUM_LIMBS; ++k) {
carry += u[k];
carry += v[k];
u[k] = (limb_t)carry;
carry >>= LIMB_BITS;
}
u[k] += (limb_t)carry;
}
// Step D8. Unnormalize.
// Shift the remainder right by 1 bit to undo the earlier left shift.
for (j = 0; j < (NUM_LIMBS - 1); ++j) {
x[j] = (x[j] >> 1) | (x[j + 1] << (LIMB_BITS - 1));
}
x[NUM_LIMBS - 1] >>= 1;
}
void testAdd(const char *x, const char *y)
{
printProgMem(x);
Serial.print(" + ");
printProgMem(y);
Serial.print(": ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
fromString(arg2, NUM_LIMBS, y);
Curve25519::add(result, arg1, arg2);
simpleAdd(result2, arg1, arg2);
if (compare(result, result2) == 0) {
Serial.println("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", result2);
}
}
void testAdd()
{
Serial.println("Addition:");
foreach_number (x) {
foreach_number (y) {
testAdd(x, y);
}
}
Serial.println();
}
void testSub(const char *x, const char *y)
{
printProgMem(x);
Serial.print(" - ");
printProgMem(y);
Serial.print(": ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
fromString(arg2, NUM_LIMBS, y);
Curve25519::sub(result, arg1, arg2);
if (compare(arg1, arg2) >= 0) {
// First argument is larger than the second.
simpleSub(result2, arg1, arg2);
} else {
// First argument is smaller than the second.
// Compute arg1 + (2^255 - 19 - arg2).
fromString(temp, NUM_LIMBS, num_2_255_m19);
simpleSub(result2, temp, arg2);
simpleAdd(result2, arg1, result2);
}
if (compare(result, result2) == 0) {
Serial.println("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", result2);
}
}
void testSub()
{
Serial.println("Subtraction:");
foreach_number (x) {
foreach_number (y) {
testSub(x, y);
}
}
Serial.println();
}
void testMul(const char *x, const char *y)
{
printProgMem(x);
Serial.print(" * ");
printProgMem(y);
Serial.print(": ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
fromString(arg2, NUM_LIMBS, y);
if (compare(arg1, arg2) != 0)
Curve25519::mul(result, arg1, arg2);
else
Curve25519::square(result, arg1);
simpleMul(result2, arg1, arg2);
simpleMod(result2);
if (compare(result, result2) == 0) {
Serial.println("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", result2);
}
}
void testMul()
{
Serial.println("Multiplication:");
foreach_number (x) {
foreach_number (y) {
testMul(x, y);
}
}
Serial.println();
}
void testMulA24(const char *x)
{
printProgMem(x);
Serial.print(" * ");
printProgMem(num_a24);
Serial.print(": ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
fromString(arg2, NUM_LIMBS, num_a24);
Curve25519::mulA24(result, arg1);
simpleMul(result2, arg1, arg2);
simpleMod(result2);
if (compare(result, result2) == 0) {
Serial.println("ok");
} else {
Serial.println("failed");
printNumber("actual ", result);
printNumber("expected", result2);
}
}
void testMulA24()
{
Serial.println("Multiplication by a24:");
foreach_number (x) {
testMulA24(x);
}
Serial.println();
}
void testSwap(const char *x, const char *y, uint8_t select)
{
printProgMem(x);
Serial.print(" <-> ");
printProgMem(y);
Serial.print(": ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
fromString(arg2, NUM_LIMBS, y);
memcpy(result, arg1, NUM_LIMBS * sizeof(limb_t));
memcpy(result2, arg2, NUM_LIMBS * sizeof(limb_t));
// Swap the values using the selection bit.
Curve25519::cswap(select, result, result2);
bool ok = compare(result, arg2) == 0 && compare(result2, arg1) == 0;
// Don't swap the values back yet.
Curve25519::cswap(0, result, result2);
if (ok)
ok = compare(result, arg2) == 0 && compare(result2, arg1) == 0;
// Swap the values back.
Curve25519::cswap(select, result, result2);
if (ok)
ok = compare(result, arg1) == 0 && compare(result2, arg2) == 0;
// No swap.
Curve25519::cswap(0, result, result2);
if (ok)
ok = compare(result, arg1) == 0 && compare(result2, arg2) == 0;
if (ok) {
Serial.println("ok");
} else {
Serial.println("failed");
}
}
void testSwap()
{
Serial.println("Swap:");
uint8_t bit = 0;
foreach_number (x) {
foreach_number (y) {
testSwap(x, y, ((uint8_t)1) << bit);
bit = (bit + 1) % 8;
}
}
Serial.println();
}
void testRecip(const char *x)
{
printProgMem(x);
Serial.print("^-1");
Serial.print(": ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
Curve25519::recip(result, arg1);
bool ok;
if (compare(arg1, num_0) == 0) {
// 0^-1 = 0
ok = (compare(result, num_0) == 0);
} else {
// Multiply the result with arg1 - we expect 1 as the result.
Curve25519::mul(result2, result, arg1);
ok = (compare(result2, num_1) == 0);
}
if (ok) {
Serial.println("ok");
} else {
Serial.println("failed");
printNumber("actual", result);
}
}
void testRecip()
{
Serial.println("Reciprocal:");
foreach_number (x) {
testRecip(x);
}
Serial.println();
}
void setup()
{
Serial.begin(9600);
testAdd();
testSub();
testMul();
testMulA24();
testSwap();
testRecip();
}
void loop()
{
}

View File

@ -7,6 +7,8 @@ BLAKE2s KEYWORD1
SHA1 KEYWORD1
SHA256 KEYWORD1
Curve25519 KEYWORD1
CBC KEYWORD1
CFB KEYWORD1
CTR KEYWORD1
@ -38,3 +40,7 @@ save KEYWORD2
loop KEYWORD2
destroy KEYWORD2
calibrating KEYWORD2
eval KEYWORD2
dh1 KEYWORD2
dh2 KEYWORD2