1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

EAX block cipher mode with authentication

This commit is contained in:
Rhys Weatherley 2015-12-19 09:18:41 +10:00
parent dadfcf55f2
commit 738d86cf2b
5 changed files with 1027 additions and 2 deletions

View File

@ -29,7 +29,7 @@
\li Block ciphers: AES128, AES192, AES256, Speck \li Block ciphers: AES128, AES192, AES256, Speck
\li Block cipher modes: CTR, CFB, CBC, OFB, GCM \li Block cipher modes: CTR, CFB, CBC, OFB, GCM
\li Stream ciphers: ChaCha \li Stream ciphers: ChaCha
\li Authenticated encryption with associated data (AEAD): ChaChaPoly, GCM \li Authenticated encryption with associated data (AEAD): ChaChaPoly, EAX, GCM
\li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes) \li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes)
\li Message authenticators: Poly1305, GHASH \li Message authenticators: Poly1305, GHASH
\li Public key algorithms: Curve25519, Ed25519 \li Public key algorithms: Curve25519, Ed25519
@ -89,6 +89,9 @@ Ardunino Mega 2560 running at 16 MHz are similar:
<tr><td>GCM&lt;AES128&gt;</td><td align="right">186.47us</td><td align="right">186.42us</td><td align="right">1388.43us</td><td align="right">316</td></tr> <tr><td>GCM&lt;AES128&gt;</td><td align="right">186.47us</td><td align="right">186.42us</td><td align="right">1388.43us</td><td align="right">316</td></tr>
<tr><td>GCM&lt;AES192&gt;</td><td align="right">194.17us</td><td align="right">193.72us</td><td align="right">1628.67us</td><td align="right">348</td></tr> <tr><td>GCM&lt;AES192&gt;</td><td align="right">194.17us</td><td align="right">193.72us</td><td align="right">1628.67us</td><td align="right">348</td></tr>
<tr><td>GCM&lt;AES256&gt;</td><td align="right">201.47us</td><td align="right">201.02us</td><td align="right">1923.78us</td><td align="right">380</td></tr> <tr><td>GCM&lt;AES256&gt;</td><td align="right">201.47us</td><td align="right">201.02us</td><td align="right">1923.78us</td><td align="right">380</td></tr>
<tr><td>EAX&lt;AES128&gt;</td><td align="right">78.37us</td><td align="right">78.37us</td><td align="right">1445.15us</td><td align="right">300</td></tr>
<tr><td>EAX&lt;Speck&gt; (128-bit key)</td><td align="right">26.01us</td><td align="right">26.01us</td><td align="right">735.46us</td><td align="right">362</td></tr>
<tr><td>EAX&lt;SpeckLowMemory&gt; (128-bit key)</td><td align="right">75.08us</td><td align="right">75.07us</td><td align="right">1243.66us</td><td align="right">122</td></tr>
<tr><td colspan="5"> </td></tr> <tr><td colspan="5"> </td></tr>
<tr><td>Hash Algorithm</td><td align="right">Hashing (per byte)</td><td align="right">Finalization</td><td> </td><td>State Size (bytes)</td></tr> <tr><td>Hash Algorithm</td><td align="right">Hashing (per byte)</td><td align="right">Finalization</td><td> </td><td>State Size (bytes)</td></tr>
<tr><td>SHA1</td><td align="right">21.90us</td><td align="right">1423.28us</td><td align="right"> </td><td align="right">95</td></tr> <tr><td>SHA1</td><td align="right">21.90us</td><td align="right">1423.28us</td><td align="right"> </td><td align="right">95</td></tr>
@ -143,6 +146,9 @@ All figures are for the Arduino Due running at 84 MHz:
<tr><td>GCM&lt;AES128&gt;</td><td align="right">11.01us</td><td align="right">10.92us</td><td align="right">247.90us</td><td align="right">344</td></tr> <tr><td>GCM&lt;AES128&gt;</td><td align="right">11.01us</td><td align="right">10.92us</td><td align="right">247.90us</td><td align="right">344</td></tr>
<tr><td>GCM&lt;AES192&gt;</td><td align="right">12.40us</td><td align="right">12.31us</td><td align="right">294.07us</td><td align="right">376</td></tr> <tr><td>GCM&lt;AES192&gt;</td><td align="right">12.40us</td><td align="right">12.31us</td><td align="right">294.07us</td><td align="right">376</td></tr>
<tr><td>GCM&lt;AES256&gt;</td><td align="right">13.73us</td><td align="right">13.64us</td><td align="right">347.40us</td><td align="right">408</td></tr> <tr><td>GCM&lt;AES256&gt;</td><td align="right">13.73us</td><td align="right">13.64us</td><td align="right">347.40us</td><td align="right">408</td></tr>
<tr><td>EAX&lt;AES128&gt;</td><td align="right">14.17us</td><td align="right">14.17us</td><td align="right">266.56us</td><td align="right">312</td></tr>
<tr><td>EAX&lt;Speck&gt; (128-bit key)</td><td align="right">2.65us</td><td align="right">2.65us</td><td align="right">79.38us</td><td align="right">384</td></tr>
<tr><td>EAX&lt;SpeckLowMemory&gt; (128-bit key)</td><td align="right">6.40us</td><td align="right">6.39us</td><td align="right">108.25us</td><td align="right">122</td></tr>
<tr><td colspan="5"> </td></tr> <tr><td colspan="5"> </td></tr>
<tr><td>Hash Algorithm</td><td align="right">Hashing (per byte)</td><td align="right">Finalization</td><td> </td><td>State Size (bytes)</td></tr> <tr><td>Hash Algorithm</td><td align="right">Hashing (per byte)</td><td align="right">Finalization</td><td> </td><td>State Size (bytes)</td></tr>
<tr><td>SHA1</td><td align="right">0.94us</td><td align="right">62.55us</td><td align="right"> </td><td align="right">112</td></tr> <tr><td>SHA1</td><td align="right">0.94us</td><td align="right">62.55us</td><td align="right"> </td><td align="right">112</td></tr>

View File

@ -94,7 +94,7 @@ realtime clock and the LCD library to implement an alarm clock.
\li Block ciphers: AES128, AES192, AES256, Speck \li Block ciphers: AES128, AES192, AES256, Speck
\li Block cipher modes: CTR, CFB, CBC, OFB, GCM \li Block cipher modes: CTR, CFB, CBC, OFB, GCM
\li Stream ciphers: ChaCha \li Stream ciphers: ChaCha
\li Authenticated encryption with associated data (AEAD): ChaChaPoly, GCM \li Authenticated encryption with associated data (AEAD): ChaChaPoly, EAX, GCM
\li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes) \li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes)
\li Message authenticators: Poly1305, GHASH \li Message authenticators: Poly1305, GHASH
\li Public key algorithms: Curve25519, Ed25519 \li Public key algorithms: Curve25519, Ed25519

397
libraries/Crypto/EAX.cpp Normal file
View File

@ -0,0 +1,397 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "EAX.h"
#include "Crypto.h"
#include <string.h>
/**
* \class EAXCommon EAX.h <EAX.h>
* \brief Concrete base class to assist with implementing EAX for
* 128-bit block ciphers.
*
* References: https://en.wikipedia.org/wiki/EAX_mode,
* http://web.cs.ucdavis.edu/~rogaway/papers/eax.html
*
* \sa EAX
*/
/**
* \brief Constructs a new cipher in EAX mode.
*
* This constructor must be followed by a call to setBlockCipher().
*/
EAXCommon::EAXCommon()
: blockCipher(0)
{
state.encPosn = 0;
state.authPosn = 0;
state.authMode = 0;
}
EAXCommon::~EAXCommon()
{
clean(state);
}
size_t EAXCommon::keySize() const
{
return blockCipher->keySize();
}
size_t EAXCommon::ivSize() const
{
// Can use any size but 16 is recommended.
return 16;
}
size_t EAXCommon::tagSize() const
{
// Tags can be up to 16 bytes in length.
return 16;
}
bool EAXCommon::setKey(const uint8_t *key, size_t len)
{
return blockCipher->setKey(key, len);
}
bool EAXCommon::setIV(const uint8_t *iv, size_t len)
{
// Must have at least 1 byte for the IV.
if (!len)
return false;
// Hash the IV to create the initial nonce for CTR mode. Also creates B.
omacInitFirst(state.counter);
omacUpdate(state.counter, iv, len);
omacFinal(state.counter);
// The tag is initially the nonce value. Will be XOR'ed with
// the hash of the authenticated and encrypted data later.
memcpy(state.tag, state.counter, 16);
// Start the hashing context for the authenticated data.
omacInit(state.hash, 1);
state.encPosn = 16;
state.authMode = 1;
// The EAX context is ready to go.
return true;
}
void EAXCommon::encrypt(uint8_t *output, const uint8_t *input, size_t len)
{
if (state.authMode)
closeAuthData();
encryptCTR(output, input, len);
omacUpdate(state.hash, output, len);
}
void EAXCommon::decrypt(uint8_t *output, const uint8_t *input, size_t len)
{
if (state.authMode)
closeAuthData();
omacUpdate(state.hash, input, len);
encryptCTR(output, input, len);
}
void EAXCommon::addAuthData(const void *data, size_t len)
{
if (state.authMode)
omacUpdate(state.hash, (const uint8_t *)data, len);
}
void EAXCommon::computeTag(void *tag, size_t len)
{
closeTag();
if (len > 16)
len = 16;
memcpy(tag, state.tag, len);
}
bool EAXCommon::checkTag(const void *tag, size_t len)
{
// Can never match if the expected tag length is too long.
if (len > 16)
return false;
// Compute the final tag and check it.
closeTag();
return secure_compare(state.tag, tag, len);
}
void EAXCommon::clear()
{
clean(state);
}
// Doubles a 128-bit value in the GF(2^128) field.
static void gfDouble(uint8_t value[16])
{
uint16_t temp = 0;
for (uint8_t index = 16; index > 0; ) {
--index;
temp |= (((uint16_t)(value[index])) << 1);
value[index] = (uint8_t)temp;
temp >>= 8;
}
value[15] ^= (uint8_t)((-temp) & 0x87);
}
/**
* \brief Initialises the first OMAC hashing context and creates the B value.
*
* \param omac The OMAC hashing context.
*/
void EAXCommon::omacInitFirst(uint8_t omac[16])
{
// Start the OMAC context for the nonce. We assume that the
// data that follows will be at least 1 byte in length so that
// we can encrypt the zeroes now to derive the B value.
memset(omac, 0, 16);
blockCipher->encryptBlock(omac, omac);
state.authPosn = 0;
// Generate the B value from the encrypted block of zeroes.
// We will need this later when finalising the OMAC hashes.
memcpy(state.b, omac, 16);
gfDouble(state.b);
}
/**
* \brief Initialises an OMAC hashing context.
*
* \param omac The OMAC hashing context.
* \param t The tag value indicating which OMAC calculation we are doing.
*/
void EAXCommon::omacInit(uint8_t omac[16], uint8_t t)
{
memset(omac, 0, 15);
omac[15] = t;
state.authPosn = 16;
}
/**
* \brief Updates an OMAC hashing context with more data.
*
* \param omac The OMAC hashing context.
* \param data Points to the data to be hashed.
* \parm len The number of bytes to be hashed.
*/
void EAXCommon::omacUpdate(uint8_t omac[16], const uint8_t *data, size_t len)
{
while (len > 0) {
// Encrypt the current block if it is already full.
if (state.authPosn == 16) {
blockCipher->encryptBlock(omac, omac);
state.authPosn = 0;
}
// XOR the incoming data with the current block.
uint8_t size = 16 - state.authPosn;
if (size > len)
size = (uint8_t)len;
for (uint8_t index = 0; index < size; ++index)
omac[(state.authPosn)++] ^= data[index];
// Move onto the next block.
len -= size;
data += size;
}
}
/**
* \brief Finalises an OMAC hashing context.
*
* \param omac The OMAC hashing context on entry, the final OMAC value on exit.
*/
void EAXCommon::omacFinal(uint8_t omac[16])
{
// Apply padding if necessary.
if (state.authPosn != 16) {
// Need padding: XOR with P = 2 * B.
uint8_t p[16];
memcpy(p, state.b, 16);
gfDouble(p);
omac[state.authPosn] ^= 0x80;
for (uint8_t index = 0; index < 16; ++index)
omac[index] ^= p[index];
clean(p);
} else {
// No padding necessary: XOR with B.
for (uint8_t index = 0; index < 16; ++index)
omac[index] ^= state.b[index];
}
// Encrypt the hash to get the final OMAC value.
blockCipher->encryptBlock(omac, omac);
}
/**
* \brief Closes the authenticated data portion of the session and
* starts encryption or decryption.
*/
void EAXCommon::closeAuthData()
{
// Finalise the OMAC hash and XOR it with the final tag.
omacFinal(state.hash);
for (uint8_t index = 0; index < 16; ++index)
state.tag[index] ^= state.hash[index];
state.authMode = 0;
// Initialise the hashing context for the ciphertext data.
omacInit(state.hash, 2);
}
/**
* \brief Encrypts or decrypts a region using the block cipher in CTR mode.
*
* \param output The output buffer to write to, which may be the same
* buffer as \a input. The \a output buffer must have at least as many
* bytes as the \a input buffer.
* \param input The input buffer to read from.
* \param len The number of bytes to process.
*/
void EAXCommon::encryptCTR(uint8_t *output, const uint8_t *input, size_t len)
{
while (len > 0) {
// Do we need to start a new block?
if (state.encPosn == 16) {
// Encrypt the counter to create the next keystream block.
blockCipher->encryptBlock(state.stream, state.counter);
state.encPosn = 0;
// Increment the counter, taking care not to reveal
// any timing information about the starting value.
// We iterate through the entire counter region even
// if we could stop earlier because a byte is non-zero.
uint16_t temp = 1;
uint8_t index = 16;
while (index > 0) {
--index;
temp += state.counter[index];
state.counter[index] = (uint8_t)temp;
temp >>= 8;
}
}
// Encrypt/decrypt the current input block.
uint8_t size = 16 - state.encPosn;
if (size > len)
size = (uint8_t)len;
for (uint8_t index = 0; index < size; ++index)
output[index] = input[index] ^ state.stream[(state.encPosn)++];
// Move onto the next block.
len -= size;
input += size;
output += size;
}
}
void EAXCommon::closeTag()
{
// If we were only authenticating, then close off auth mode.
if (state.authMode)
closeAuthData();
// Finalise the hash over the ciphertext and XOR with the final tag.
omacFinal(state.hash);
for (uint8_t index = 0; index < 16; ++index)
state.tag[index] ^= state.hash[index];
}
/**
* \fn void EAXCommon::setBlockCipher(BlockCipher *cipher)
* \brief Sets the block cipher to use for this EAX object.
*
* \param cipher The block cipher to use to implement EAX mode.
* This object must have a block size of 128 bits (16 bytes).
*/
/**
* \class EAX EAX.h <EAX.h>
* \brief Implementation of the EAX authenticated cipher.
*
* EAX mode converts a block cipher into an authenticated cipher
* that uses the block cipher T to encrypt and authenticate.
*
* The size of the key is determined by the underlying block cipher T.
* The IV is recommended to be 128 bits (16 bytes) in length, but other
* lengths are supported as well. The default tagSize() is 128 bits
* (16 bytes) but the EAX specification does allow smaller tag sizes.
*
* The template parameter T must be a concrete subclass of BlockCipher
* indicating the specific block cipher to use. The block cipher must
* have a block size of 128 bits. For example, the following creates a
* EAX object using AES256 as the underlying cipher and then uses it
* to encrypt and authenticate a \c plaintext block:
*
* \code
* EAX<AES256> eax;
* eax.setKey(key, sizeof(key));
* eax.setIV(iv, sizeof(iv));
* eax.addAuthData(adata, sizeof(adata));
* eax.encrypt(ciphertext, plaintext, sizeof(plaintext));
* eax.computeTag(tag, sizeof(tag));
* \endcode
*
* The decryption process is almost identical to convert a \c ciphertext and
* \a tag back into plaintext and then check the tag:
*
* \code
* EAX<AES256> eax;
* eax.setKey(key, sizeof(key));
* eax.setIV(iv, sizeof(iv));
* eax.addAuthData(adata, sizeof(adata));
* eax.decrypt(ciphertext, plaintext, sizeof(plaintext));
* if (!eax.checkTag(tag, sizeof(tag))) {
* // The data was invalid - do not use it.
* ...
* }
* \endcode
*
* The EAX class can also be used to implement message authentication
* by omitting the plaintext:
*
* \code
* EAX<AES256> eax;
* eax.setKey(key, sizeof(key));
* eax.setIV(iv, sizeof(iv));
* eax.addAuthData(adata1, sizeof(adata1));
* eax.addAuthData(adata2, sizeof(adata1));
* ...
* eax.addAuthData(adataN, sizeof(adataN));
* eax.computeTag(tag, sizeof(tag));
* \endcode
*
* References: https://en.wikipedia.org/wiki/EAX_mode,
* http://web.cs.ucdavis.edu/~rogaway/papers/eax.html
*
* \sa EAXCommon, GCM
*/
/**
* \fn EAX::EAX()
* \brief Constructs a new EAX object for the block cipher T.
*/

88
libraries/Crypto/EAX.h Normal file
View File

@ -0,0 +1,88 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef CRYPTO_EAX_h
#define CRYPTO_EAX_h
#include "AuthenticatedCipher.h"
#include "BlockCipher.h"
class EAXCommon : public AuthenticatedCipher
{
public:
virtual ~EAXCommon();
size_t keySize() const;
size_t ivSize() const;
size_t tagSize() const;
bool setKey(const uint8_t *key, size_t len);
bool setIV(const uint8_t *iv, size_t len);
void encrypt(uint8_t *output, const uint8_t *input, size_t len);
void decrypt(uint8_t *output, const uint8_t *input, size_t len);
void addAuthData(const void *data, size_t len);
void computeTag(void *tag, size_t len);
bool checkTag(const void *tag, size_t len);
void clear();
protected:
EAXCommon();
void setBlockCipher(BlockCipher *cipher) { blockCipher = cipher; }
private:
BlockCipher *blockCipher;
struct {
uint8_t counter[16];
uint8_t stream[16];
uint8_t tag[16];
uint8_t hash[16];
uint8_t b[16];
uint8_t encPosn;
uint8_t authPosn;
uint8_t authMode;
} state;
void omacInitFirst(uint8_t omac[16]);
void omacInit(uint8_t omac[16], uint8_t t);
void omacUpdate(uint8_t omac[16], const uint8_t *data, size_t len);
void omacFinal(uint8_t omac[16]);
void closeAuthData();
void encryptCTR(uint8_t *output, const uint8_t *input, size_t len);
void closeTag();
};
template <typename T>
class EAX : public EAXCommon
{
public:
EAX() { setBlockCipher(&cipher); }
private:
T cipher;
};
#endif

View File

@ -0,0 +1,534 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the EAX implementation to verify correct behaviour.
*/
#include <Crypto.h>
#include <EAX.h>
#include <AES.h>
#include <Speck.h>
#include <SpeckLowMemory.h>
#include <string.h>
#include <avr/pgmspace.h>
#define MAX_PLAINTEXT_LEN 64
struct TestVector
{
const char *name;
uint8_t key[16];
uint8_t plaintext[MAX_PLAINTEXT_LEN];
uint8_t ciphertext[MAX_PLAINTEXT_LEN];
uint8_t authdata[20];
uint8_t iv[16];
uint8_t tag[16];
size_t authsize;
size_t datasize;
size_t tagsize;
size_t ivsize;
};
// Test vectors for AES in EAX mode from Appendix G of:
// http://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf
static TestVector const testVectorEAX1 PROGMEM = {
.name = "EAX #1",
.key = {0x23, 0x39, 0x52, 0xDE, 0xE4, 0xD5, 0xED, 0x5F,
0x9B, 0x9C, 0x6D, 0x6F, 0xF8, 0x0F, 0xF4, 0x78},
.plaintext = {0x00},
.ciphertext = {0x00},
.authdata = {0x6B, 0xFB, 0x91, 0x4F, 0xD0, 0x7E, 0xAE, 0x6B},
.iv = {0x62, 0xEC, 0x67, 0xF9, 0xC3, 0xA4, 0xA4, 0x07,
0xFC, 0xB2, 0xA8, 0xC4, 0x90, 0x31, 0xA8, 0xB3},
.tag = {0xE0, 0x37, 0x83, 0x0E, 0x83, 0x89, 0xF2, 0x7B,
0x02, 0x5A, 0x2D, 0x65, 0x27, 0xE7, 0x9D, 0x01},
.authsize = 8,
.datasize = 0,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX2 PROGMEM = {
.name = "EAX #2",
.key = {0x91, 0x94, 0x5D, 0x3F, 0x4D, 0xCB, 0xEE, 0x0B,
0xF4, 0x5E, 0xF5, 0x22, 0x55, 0xF0, 0x95, 0xA4},
.plaintext = {0xF7, 0xFB},
.ciphertext = {0x19, 0xDD},
.authdata = {0xFA, 0x3B, 0xFD, 0x48, 0x06, 0xEB, 0x53, 0xFA},
.iv = {0xBE, 0xCA, 0xF0, 0x43, 0xB0, 0xA2, 0x3D, 0x84,
0x31, 0x94, 0xBA, 0x97, 0x2C, 0x66, 0xDE, 0xBD},
.tag = {0x5C, 0x4C, 0x93, 0x31, 0x04, 0x9D, 0x0B, 0xDA,
0xB0, 0x27, 0x74, 0x08, 0xF6, 0x79, 0x67, 0xE5},
.authsize = 8,
.datasize = 2,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX3 PROGMEM = {
.name = "EAX #3",
.key = {0x01, 0xF7, 0x4A, 0xD6, 0x40, 0x77, 0xF2, 0xE7,
0x04, 0xC0, 0xF6, 0x0A, 0xDA, 0x3D, 0xD5, 0x23},
.plaintext = {0x1A, 0x47, 0xCB, 0x49, 0x33},
.ciphertext = {0xD8, 0x51, 0xD5, 0xBA, 0xE0},
.authdata = {0x23, 0x4A, 0x34, 0x63, 0xC1, 0x26, 0x4A, 0xC6},
.iv = {0x70, 0xC3, 0xDB, 0x4F, 0x0D, 0x26, 0x36, 0x84,
0x00, 0xA1, 0x0E, 0xD0, 0x5D, 0x2B, 0xFF, 0x5E},
.tag = {0x3A, 0x59, 0xF2, 0x38, 0xA2, 0x3E, 0x39, 0x19,
0x9D, 0xC9, 0x26, 0x66, 0x26, 0xC4, 0x0F, 0x80},
.authsize = 8,
.datasize = 5,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX4 PROGMEM = {
.name = "EAX #4",
.key = {0xD0, 0x7C, 0xF6, 0xCB, 0xB7, 0xF3, 0x13, 0xBD,
0xDE, 0x66, 0xB7, 0x27, 0xAF, 0xD3, 0xC5, 0xE8},
.plaintext = {0x48, 0x1C, 0x9E, 0x39, 0xB1},
.ciphertext = {0x63, 0x2A, 0x9D, 0x13, 0x1A},
.authdata = {0x33, 0xCC, 0xE2, 0xEA, 0xBF, 0xF5, 0xA7, 0x9D},
.iv = {0x84, 0x08, 0xDF, 0xFF, 0x3C, 0x1A, 0x2B, 0x12,
0x92, 0xDC, 0x19, 0x9E, 0x46, 0xB7, 0xD6, 0x17},
.tag = {0xD4, 0xC1, 0x68, 0xA4, 0x22, 0x5D, 0x8E, 0x1F,
0xF7, 0x55, 0x93, 0x99, 0x74, 0xA7, 0xBE, 0xDE},
.authsize = 8,
.datasize = 5,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX5 PROGMEM = {
.name = "EAX #5",
.key = {0x35, 0xB6, 0xD0, 0x58, 0x00, 0x05, 0xBB, 0xC1,
0x2B, 0x05, 0x87, 0x12, 0x45, 0x57, 0xD2, 0xC2},
.plaintext = {0x40, 0xD0, 0xC0, 0x7D, 0xA5, 0xE4},
.ciphertext = {0x07, 0x1D, 0xFE, 0x16, 0xC6, 0x75},
.authdata = {0xAE, 0xB9, 0x6E, 0xAE, 0xBE, 0x29, 0x70, 0xE9},
.iv = {0xFD, 0xB6, 0xB0, 0x66, 0x76, 0xEE, 0xDC, 0x5C,
0x61, 0xD7, 0x42, 0x76, 0xE1, 0xF8, 0xE8, 0x16},
.tag = {0xCB, 0x06, 0x77, 0xE5, 0x36, 0xF7, 0x3A, 0xFE,
0x6A, 0x14, 0xB7, 0x4E, 0xE4, 0x98, 0x44, 0xDD},
.authsize = 8,
.datasize = 6,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX6 PROGMEM = {
.name = "EAX #6",
.key = {0xBD, 0x8E, 0x6E, 0x11, 0x47, 0x5E, 0x60, 0xB2,
0x68, 0x78, 0x4C, 0x38, 0xC6, 0x2F, 0xEB, 0x22},
.plaintext = {0x4D, 0xE3, 0xB3, 0x5C, 0x3F, 0xC0, 0x39, 0x24,
0x5B, 0xD1, 0xFB, 0x7D},
.ciphertext = {0x83, 0x5B, 0xB4, 0xF1, 0x5D, 0x74, 0x3E, 0x35,
0x0E, 0x72, 0x84, 0x14},
.authdata = {0xD4, 0x48, 0x2D, 0x1C, 0xA7, 0x8D, 0xCE, 0x0F},
.iv = {0x6E, 0xAC, 0x5C, 0x93, 0x07, 0x2D, 0x8E, 0x85,
0x13, 0xF7, 0x50, 0x93, 0x5E, 0x46, 0xDA, 0x1B},
.tag = {0xAB, 0xB8, 0x64, 0x4F, 0xD6, 0xCC, 0xB8, 0x69,
0x47, 0xC5, 0xE1, 0x05, 0x90, 0x21, 0x0A, 0x4F},
.authsize = 8,
.datasize = 12,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX7 PROGMEM = {
.name = "EAX #7",
.key = {0x7C, 0x77, 0xD6, 0xE8, 0x13, 0xBE, 0xD5, 0xAC,
0x98, 0xBA, 0xA4, 0x17, 0x47, 0x7A, 0x2E, 0x7D},
.plaintext = {0x8B, 0x0A, 0x79, 0x30, 0x6C, 0x9C, 0xE7, 0xED,
0x99, 0xDA, 0xE4, 0xF8, 0x7F, 0x8D, 0xD6, 0x16,
0x36},
.ciphertext = {0x02, 0x08, 0x3E, 0x39, 0x79, 0xDA, 0x01, 0x48,
0x12, 0xF5, 0x9F, 0x11, 0xD5, 0x26, 0x30, 0xDA,
0x30},
.authdata = {0x65, 0xD2, 0x01, 0x79, 0x90, 0xD6, 0x25, 0x28},
.iv = {0x1A, 0x8C, 0x98, 0xDC, 0xD7, 0x3D, 0x38, 0x39,
0x3B, 0x2B, 0xF1, 0x56, 0x9D, 0xEE, 0xFC, 0x19},
.tag = {0x13, 0x73, 0x27, 0xD1, 0x06, 0x49, 0xB0, 0xAA,
0x6E, 0x1C, 0x18, 0x1D, 0xB6, 0x17, 0xD7, 0xF2},
.authsize = 8,
.datasize = 17,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX8 PROGMEM = {
.name = "EAX #8",
.key = {0x5F, 0xFF, 0x20, 0xCA, 0xFA, 0xB1, 0x19, 0xCA,
0x2F, 0xC7, 0x35, 0x49, 0xE2, 0x0F, 0x5B, 0x0D},
.plaintext = {0x1B, 0xDA, 0x12, 0x2B, 0xCE, 0x8A, 0x8D, 0xBA,
0xF1, 0x87, 0x7D, 0x96, 0x2B, 0x85, 0x92, 0xDD,
0x2D, 0x56},
.ciphertext = {0x2E, 0xC4, 0x7B, 0x2C, 0x49, 0x54, 0xA4, 0x89,
0xAF, 0xC7, 0xBA, 0x48, 0x97, 0xED, 0xCD, 0xAE,
0x8C, 0xC3},
.authdata = {0x54, 0xB9, 0xF0, 0x4E, 0x6A, 0x09, 0x18, 0x9A},
.iv = {0xDD, 0xE5, 0x9B, 0x97, 0xD7, 0x22, 0x15, 0x6D,
0x4D, 0x9A, 0xFF, 0x2B, 0xC7, 0x55, 0x98, 0x26},
.tag = {0x3B, 0x60, 0x45, 0x05, 0x99, 0xBD, 0x02, 0xC9,
0x63, 0x82, 0x90, 0x2A, 0xEF, 0x7F, 0x83, 0x2A},
.authsize = 8,
.datasize = 18,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX9 PROGMEM = {
.name = "EAX #9",
.key = {0xA4, 0xA4, 0x78, 0x2B, 0xCF, 0xFD, 0x3E, 0xC5,
0xE7, 0xEF, 0x6D, 0x8C, 0x34, 0xA5, 0x61, 0x23},
.plaintext = {0x6C, 0xF3, 0x67, 0x20, 0x87, 0x2B, 0x85, 0x13,
0xF6, 0xEA, 0xB1, 0xA8, 0xA4, 0x44, 0x38, 0xD5,
0xEF, 0x11},
.ciphertext = {0x0D, 0xE1, 0x8F, 0xD0, 0xFD, 0xD9, 0x1E, 0x7A,
0xF1, 0x9F, 0x1D, 0x8E, 0xE8, 0x73, 0x39, 0x38,
0xB1, 0xE8},
.authdata = {0x89, 0x9A, 0x17, 0x58, 0x97, 0x56, 0x1D, 0x7E},
.iv = {0xB7, 0x81, 0xFC, 0xF2, 0xF7, 0x5F, 0xA5, 0xA8,
0xDE, 0x97, 0xA9, 0xCA, 0x48, 0xE5, 0x22, 0xEC},
.tag = {0xE7, 0xF6, 0xD2, 0x23, 0x16, 0x18, 0x10, 0x2F,
0xDB, 0x7F, 0xE5, 0x5F, 0xF1, 0x99, 0x17, 0x00},
.authsize = 8,
.datasize = 18,
.tagsize = 16,
.ivsize = 16
};
static TestVector const testVectorEAX10 PROGMEM = {
.name = "EAX #10",
.key = {0x83, 0x95, 0xFC, 0xF1, 0xE9, 0x5B, 0xEB, 0xD6,
0x97, 0xBD, 0x01, 0x0B, 0xC7, 0x66, 0xAA, 0xC3},
.plaintext = {0xCA, 0x40, 0xD7, 0x44, 0x6E, 0x54, 0x5F, 0xFA,
0xED, 0x3B, 0xD1, 0x2A, 0x74, 0x0A, 0x65, 0x9F,
0xFB, 0xBB, 0x3C, 0xEA, 0xB7},
.ciphertext = {0xCB, 0x89, 0x20, 0xF8, 0x7A, 0x6C, 0x75, 0xCF,
0xF3, 0x96, 0x27, 0xB5, 0x6E, 0x3E, 0xD1, 0x97,
0xC5, 0x52, 0xD2, 0x95, 0xA7},
.authdata = {0x12, 0x67, 0x35, 0xFC, 0xC3, 0x20, 0xD2, 0x5A},
.iv = {0x22, 0xE7, 0xAD, 0xD9, 0x3C, 0xFC, 0x63, 0x93,
0xC5, 0x7E, 0xC0, 0xB3, 0xC1, 0x7D, 0x6B, 0x44},
.tag = {0xCF, 0xC4, 0x6A, 0xFC, 0x25, 0x3B, 0x46, 0x52,
0xB1, 0xAF, 0x37, 0x95, 0xB1, 0x24, 0xAB, 0x6E},
.authsize = 8,
.datasize = 21,
.tagsize = 16,
.ivsize = 16
};
TestVector testVector;
EAX<AES128> *eax;
EAX<Speck> *eaxSpeck;
EAX<SpeckLowMemory> *eaxSpeckLowMemory;
byte buffer[128];
bool testCipher_N(AuthenticatedCipher *cipher, const struct TestVector *test, size_t inc)
{
size_t posn, len;
uint8_t tag[16];
cipher->clear();
if (!cipher->setKey(test->key, 16)) {
Serial.print("setKey ");
return false;
}
if (!cipher->setIV(test->iv, test->ivsize)) {
Serial.print("setIV ");
return false;
}
memset(buffer, 0xBA, sizeof(buffer));
if (!inc)
inc = 1;
for (posn = 0; posn < test->authsize; posn += inc) {
len = test->authsize - posn;
if (len > inc)
len = inc;
cipher->addAuthData(test->authdata + posn, len);
}
for (posn = 0; posn < test->datasize; posn += inc) {
len = test->datasize - posn;
if (len > inc)
len = inc;
cipher->encrypt(buffer + posn, test->plaintext + posn, len);
}
if (memcmp(buffer, test->ciphertext, test->datasize) != 0) {
Serial.print(buffer[0], HEX);
Serial.print("->");
Serial.print(test->ciphertext[0], HEX);
return false;
}
cipher->computeTag(tag, sizeof(tag));
if (memcmp(tag, test->tag, sizeof(tag)) != 0) {
Serial.print("computed wrong tag ... ");
return false;
}
cipher->setKey(test->key, 16);
cipher->setIV(test->iv, test->ivsize);
for (posn = 0; posn < test->authsize; posn += inc) {
len = test->authsize - posn;
if (len > inc)
len = inc;
cipher->addAuthData(test->authdata + posn, len);
}
for (posn = 0; posn < test->datasize; posn += inc) {
len = test->datasize - posn;
if (len > inc)
len = inc;
cipher->decrypt(buffer + posn, test->ciphertext + posn, len);
}
if (memcmp(buffer, test->plaintext, test->datasize) != 0)
return false;
if (!cipher->checkTag(tag, sizeof(tag))) {
Serial.print("tag did not check ... ");
return false;
}
return true;
}
void testCipher(AuthenticatedCipher *cipher, const struct TestVector *test)
{
bool ok;
memcpy_P(&testVector, test, sizeof(TestVector));
test = &testVector;
Serial.print(test->name);
Serial.print(" ... ");
ok = testCipher_N(cipher, test, test->datasize);
ok &= testCipher_N(cipher, test, 1);
ok &= testCipher_N(cipher, test, 2);
ok &= testCipher_N(cipher, test, 5);
ok &= testCipher_N(cipher, test, 8);
ok &= testCipher_N(cipher, test, 13);
ok &= testCipher_N(cipher, test, 16);
if (ok)
Serial.println("Passed");
else
Serial.println("Failed");
}
void perfCipherSetKey(AuthenticatedCipher *cipher, const struct TestVector *test, const char *cipherName)
{
unsigned long start;
unsigned long elapsed;
int count;
memcpy_P(&testVector, test, sizeof(TestVector));
test = &testVector;
Serial.print(cipherName);
Serial.print(' ');
Serial.print(test->name);
Serial.print(" SetKey ... ");
start = micros();
for (count = 0; count < 1000; ++count) {
cipher->setKey(test->key, 16);
cipher->setIV(test->iv, test->ivsize);
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per operation, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" per second");
}
void perfCipherEncrypt(AuthenticatedCipher *cipher, const struct TestVector *test, const char *cipherName)
{
unsigned long start;
unsigned long elapsed;
int count;
memcpy_P(&testVector, test, sizeof(TestVector));
test = &testVector;
Serial.print(cipherName);
Serial.print(' ');
Serial.print(test->name);
Serial.print(" Encrypt ... ");
cipher->setKey(test->key, 16);
cipher->setIV(test->iv, test->ivsize);
start = micros();
for (count = 0; count < 500; ++count) {
cipher->encrypt(buffer, buffer, 128);
}
elapsed = micros() - start;
Serial.print(elapsed / (128.0 * 500.0));
Serial.print("us per byte, ");
Serial.print((128.0 * 500.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
void perfCipherDecrypt(AuthenticatedCipher *cipher, const struct TestVector *test, const char *cipherName)
{
unsigned long start;
unsigned long elapsed;
int count;
memcpy_P(&testVector, test, sizeof(TestVector));
test = &testVector;
Serial.print(cipherName);
Serial.print(' ');
Serial.print(test->name);
Serial.print(" Decrypt ... ");
cipher->setKey(test->key, 16);
cipher->setIV(test->iv, test->ivsize);
start = micros();
for (count = 0; count < 500; ++count) {
cipher->decrypt(buffer, buffer, 128);
}
elapsed = micros() - start;
Serial.print(elapsed / (128.0 * 500.0));
Serial.print("us per byte, ");
Serial.print((128.0 * 500.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
void perfCipherAddAuthData(AuthenticatedCipher *cipher, const struct TestVector *test, const char *cipherName)
{
unsigned long start;
unsigned long elapsed;
int count;
memcpy_P(&testVector, test, sizeof(TestVector));
test = &testVector;
Serial.print(cipherName);
Serial.print(' ');
Serial.print(test->name);
Serial.print(" AddAuthData ... ");
cipher->setKey(test->key, 16);
cipher->setIV(test->iv, test->ivsize);
start = micros();
memset(buffer, 0xBA, 128);
for (count = 0; count < 500; ++count) {
cipher->addAuthData(buffer, 128);
}
elapsed = micros() - start;
Serial.print(elapsed / (128.0 * 500.0));
Serial.print("us per byte, ");
Serial.print((128.0 * 500.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
void perfCipherComputeTag(AuthenticatedCipher *cipher, const struct TestVector *test, const char *cipherName)
{
unsigned long start;
unsigned long elapsed;
int count;
memcpy_P(&testVector, test, sizeof(TestVector));
test = &testVector;
Serial.print(cipherName);
Serial.print(' ');
Serial.print(test->name);
Serial.print(" ComputeTag ... ");
cipher->setKey(test->key, 16);
cipher->setIV(test->iv, test->ivsize);
start = micros();
for (count = 0; count < 1000; ++count) {
cipher->computeTag(buffer, 16);
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per operation, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" per second");
}
void perfCipher(AuthenticatedCipher *cipher, const struct TestVector *test, const char *cipherName)
{
perfCipherSetKey(cipher, test, cipherName);
perfCipherEncrypt(cipher, test, cipherName);
perfCipherDecrypt(cipher, test, cipherName);
perfCipherAddAuthData(cipher, test, cipherName);
perfCipherComputeTag(cipher, test, cipherName);
}
void setup()
{
Serial.begin(9600);
Serial.println();
Serial.println("State Sizes:");
Serial.print("EAX<AES128> ... ");
Serial.println(sizeof(*eax));
Serial.print("EAX<Speck> ... ");
Serial.println(sizeof(*eaxSpeck));
Serial.print("EAX<SpeckLowMemory> ... ");
Serial.println(sizeof(*eaxSpeckLowMemory));
Serial.println();
Serial.println("Test Vectors:");
eax = new EAX<AES128>();
testCipher(eax, &testVectorEAX1);
testCipher(eax, &testVectorEAX2);
testCipher(eax, &testVectorEAX3);
testCipher(eax, &testVectorEAX4);
testCipher(eax, &testVectorEAX5);
testCipher(eax, &testVectorEAX6);
testCipher(eax, &testVectorEAX7);
testCipher(eax, &testVectorEAX8);
testCipher(eax, &testVectorEAX9);
testCipher(eax, &testVectorEAX10);
Serial.println();
Serial.println("Performance Tests:");
perfCipher(eax, &testVectorEAX1, "AES-128");
Serial.println();
delete eax;
eaxSpeck = new EAX<Speck>();
perfCipher(eaxSpeck, &testVectorEAX1, "Speck");
Serial.println();
delete eaxSpeck;
eaxSpeckLowMemory = new EAX<SpeckLowMemory>();
perfCipher(eaxSpeckLowMemory, &testVectorEAX1, "SpeckLowMemory");
delete eaxSpeckLowMemory;
}
void loop()
{
}