1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

Ed25519 signature algorithm

This commit is contained in:
Rhys Weatherley 2015-04-18 08:42:37 +10:00
parent a936aa3e4a
commit 786e52f923
13 changed files with 1672 additions and 127 deletions

View File

@ -32,7 +32,7 @@
\li Authenticated encryption with associated data (AEAD): ChaChaPoly, GCM \li Authenticated encryption with associated data (AEAD): ChaChaPoly, GCM
\li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes) \li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes)
\li Message authenticators: Poly1305, GHASH \li Message authenticators: Poly1305, GHASH
\li Public key algorithms: Curve25519 \li Public key algorithms: Curve25519, Ed25519
\li Random number generation: \link RNGClass RNG\endlink, TransistorNoiseSource, RingOscillatorNoiseSource \li Random number generation: \link RNGClass RNG\endlink, TransistorNoiseSource, RingOscillatorNoiseSource
All cryptographic algorithms have been optimized for 8-bit Arduino platforms All cryptographic algorithms have been optimized for 8-bit Arduino platforms
@ -96,6 +96,9 @@ Ardunino Mega 2560 running at 16 MHz are similar:
<tr><td>Curve25519::eval()</td><td align="right">3119ms</td><td colspan="3">Raw curve evaluation</td></tr> <tr><td>Curve25519::eval()</td><td align="right">3119ms</td><td colspan="3">Raw curve evaluation</td></tr>
<tr><td>Curve25519::dh1()</td><td align="right">3121ms</td><td colspan="3">First half of Diffie-Hellman key agreement</td></tr> <tr><td>Curve25519::dh1()</td><td align="right">3121ms</td><td colspan="3">First half of Diffie-Hellman key agreement</td></tr>
<tr><td>Curve25519::dh2()</td><td align="right">3120ms</td><td colspan="3">Second half of Diffie-Hellman key agreement</td></tr> <tr><td>Curve25519::dh2()</td><td align="right">3120ms</td><td colspan="3">Second half of Diffie-Hellman key agreement</td></tr>
<tr><td>Ed25519::sign()</td><td align="right">5688ms</td><td colspan="3">Digital signature generation</td></tr>
<tr><td>Ed25519::verify()</td><td align="right">9030ms</td><td colspan="3">Digital signature verification</td></tr>
<tr><td>Ed25519::derivePublicKey()</td><td align="right">5642ms</td><td colspan="3">Derive a public key from a private key</td></tr>
</table> </table>
Where a cipher supports more than one key size (such as ChaCha), the values Where a cipher supports more than one key size (such as ChaCha), the values

View File

@ -97,7 +97,7 @@ realtime clock and the LCD library to implement an alarm clock.
\li Authenticated encryption with associated data (AEAD): ChaChaPoly, GCM \li Authenticated encryption with associated data (AEAD): ChaChaPoly, GCM
\li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes) \li Hash algorithms: SHA1, SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes)
\li Message authenticators: Poly1305, GHASH \li Message authenticators: Poly1305, GHASH
\li Public key algorithms: Curve25519 \li Public key algorithms: Curve25519, Ed25519
\li Random number generation: \link RNGClass RNG\endlink, TransistorNoiseSource, RingOscillatorNoiseSource \li Random number generation: \link RNGClass RNG\endlink, TransistorNoiseSource, RingOscillatorNoiseSource
More information can be found on the \ref crypto "Cryptographic Library" page. More information can be found on the \ref crypto "Cryptographic Library" page.

View File

@ -22,6 +22,7 @@
#include "BigNumberUtil.h" #include "BigNumberUtil.h"
#include "utility/EndianUtil.h" #include "utility/EndianUtil.h"
#include "utility/LimbUtil.h"
#include <string.h> #include <string.h>
/** /**
@ -363,3 +364,273 @@ void BigNumberUtil::packBE(uint8_t *bytes, size_t len,
} }
#endif #endif
} }
/**
* \brief Adds two big numbers.
*
* \param result The result of the addition. This can be the same
* as either \a x or \a y.
* \param x The first big number.
* \param y The second big number.
* \param size The size of the values in limbs.
*
* \return Returns 1 if there was a carry out or 0 if there was no carry out.
*
* \sa sub(), mul()
*/
limb_t BigNumberUtil::add(limb_t *result, const limb_t *x,
const limb_t *y, size_t size)
{
dlimb_t carry = 0;
while (size > 0) {
carry += *x++;
carry += *y++;
*result++ = (limb_t)carry;
carry >>= LIMB_BITS;
--size;
}
return (limb_t)carry;
}
/**
* \brief Subtracts one big number from another.
*
* \param result The result of the subtraction. This can be the same
* as either \a x or \a y.
* \param x The first big number.
* \param y The second big number to subtract from \a x.
* \param size The size of the values in limbs.
*
* \return Returns 1 if there was a borrow, or 0 if there was no borrow.
*
* \sa add(), mul()
*/
limb_t BigNumberUtil::sub(limb_t *result, const limb_t *x,
const limb_t *y, size_t size)
{
dlimb_t borrow = 0;
while (size > 0) {
borrow = ((dlimb_t)(*x++)) - (*y++) - ((borrow >> LIMB_BITS) & 0x01);
*result++ = (limb_t)borrow;
--size;
}
return ((limb_t)(borrow >> LIMB_BITS)) & 0x01;
}
/**
* \brief Multiplies two big numbers.
*
* \param result The result of the multiplication. The array must be
* \a xcount + \a ycount limbs in size.
* \param x Points to the first value to multiply.
* \param xcount The number of limbs in \a x.
* \param y Points to the second value to multiply.
* \param ycount The number of limbs in \a y.
*
* \sa mul_P()
*/
void BigNumberUtil::mul(limb_t *result, const limb_t *x, size_t xcount,
const limb_t *y, size_t ycount)
{
size_t i, j;
dlimb_t carry;
limb_t word;
const limb_t *xx;
limb_t *rr;
// Multiply the lowest limb of y by x.
carry = 0;
word = y[0];
xx = x;
rr = result;
for (i = 0; i < xcount; ++i) {
carry += ((dlimb_t)(*xx++)) * word;
*rr++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*rr = (limb_t)carry;
// Multiply and add the remaining limbs of y by x.
for (i = 1; i < ycount; ++i) {
word = y[i];
carry = 0;
xx = x;
rr = result + i;
for (j = 0; j < xcount; ++j) {
carry += ((dlimb_t)(*xx++)) * word;
carry += *rr;
*rr++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*rr = (limb_t)carry;
}
}
/**
* \brief Reduces \a x modulo \a y using subtraction.
*
* \param result The result of the reduction. This can be the
* same as \a x.
* \param x The number to be reduced.
* \param y The base to use for the modulo reduction.
* \param size The size of the values in limbs.
*
* It is assumed that \a x is less than \a y * 2 so that a single
* conditional subtraction will bring it down below \a y. The reduction
* is performed in constant time.
*
* \sa reduceQuick_P()
*/
void BigNumberUtil::reduceQuick(limb_t *result, const limb_t *x,
const limb_t *y, size_t size)
{
// Subtract "y" from "x" and turn the borrow into an AND mask.
limb_t mask = sub(result, x, y, size);
mask = (~mask) + 1;
// Add "y" back to the result if the mask is non-zero.
dlimb_t carry = 0;
while (size > 0) {
carry += *result;
carry += (*y++ & mask);
*result++ = (limb_t)carry;
carry >>= LIMB_BITS;
--size;
}
}
/**
* \brief Adds two big numbers where one of them is in program memory.
*
* \param result The result of the addition. This can be the same as \a x.
* \param x The first big number.
* \param y The second big number. This must point into program memory.
* \param size The size of the values in limbs.
*
* \return Returns 1 if there was a carry out or 0 if there was no carry out.
*
* \sa sub_P(), mul_P()
*/
limb_t BigNumberUtil::add_P(limb_t *result, const limb_t *x,
const limb_t *y, size_t size)
{
dlimb_t carry = 0;
while (size > 0) {
carry += *x++;
carry += pgm_read_limb(y++);
*result++ = (limb_t)carry;
carry >>= LIMB_BITS;
--size;
}
return (limb_t)carry;
}
/**
* \brief Subtracts one big number from another where one is in program memory.
*
* \param result The result of the subtraction. This can be the same as \a x.
* \param x The first big number.
* \param y The second big number to subtract from \a x. This must point
* into program memory.
* \param size The size of the values in limbs.
*
* \return Returns 1 if there was a borrow, or 0 if there was no borrow.
*
* \sa add_P(), mul_P()
*/
limb_t BigNumberUtil::sub_P(limb_t *result, const limb_t *x,
const limb_t *y, size_t size)
{
dlimb_t borrow = 0;
while (size > 0) {
borrow = ((dlimb_t)(*x++)) - pgm_read_limb(y++) - ((borrow >> LIMB_BITS) & 0x01);
*result++ = (limb_t)borrow;
--size;
}
return ((limb_t)(borrow >> LIMB_BITS)) & 0x01;
}
/**
* \brief Multiplies two big numbers where one is in program memory.
*
* \param result The result of the multiplication. The array must be
* \a xcount + \a ycount limbs in size.
* \param x Points to the first value to multiply.
* \param xcount The number of limbs in \a x.
* \param y Points to the second value to multiply. This must point
* into program memory.
* \param ycount The number of limbs in \a y.
*
* \sa mul()
*/
void BigNumberUtil::mul_P(limb_t *result, const limb_t *x, size_t xcount,
const limb_t *y, size_t ycount)
{
size_t i, j;
dlimb_t carry;
limb_t word;
const limb_t *xx;
limb_t *rr;
// Multiply the lowest limb of y by x.
carry = 0;
word = pgm_read_limb(&(y[0]));
xx = x;
rr = result;
for (i = 0; i < xcount; ++i) {
carry += ((dlimb_t)(*xx++)) * word;
*rr++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*rr = (limb_t)carry;
// Multiply and add the remaining limb of y by x.
for (i = 1; i < ycount; ++i) {
word = pgm_read_limb(&(y[i]));
carry = 0;
xx = x;
rr = result + i;
for (j = 0; j < xcount; ++j) {
carry += ((dlimb_t)(*xx++)) * word;
carry += *rr;
*rr++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*rr = (limb_t)carry;
}
}
/**
* \brief Reduces \a x modulo \a y using subtraction where \a y is
* in program memory.
*
* \param result The result of the reduction. This can be the
* same as \a x.
* \param x The number to be reduced.
* \param y The base to use for the modulo reduction. This must point
* into program memory.
* \param size The size of the values in limbs.
*
* It is assumed that \a x is less than \a y * 2 so that a single
* conditional subtraction will bring it down below \a y. The reduction
* is performed in constant time.
*
* \sa reduceQuick()
*/
void BigNumberUtil::reduceQuick_P(limb_t *result, const limb_t *x,
const limb_t *y, size_t size)
{
// Subtract "y" from "x" and turn the borrow into an AND mask.
limb_t mask = sub_P(result, x, y, size);
mask = (~mask) + 1;
// Add "y" back to the result if the mask is non-zero.
dlimb_t carry = 0;
while (size > 0) {
carry += *result;
carry += (pgm_read_limb(y++) & mask);
*result++ = (limb_t)carry;
carry >>= LIMB_BITS;
--size;
}
}

View File

@ -61,6 +61,24 @@ public:
static void packBE(uint8_t *bytes, size_t len, static void packBE(uint8_t *bytes, size_t len,
const limb_t *limbs, size_t count); const limb_t *limbs, size_t count);
static limb_t add(limb_t *result, const limb_t *x,
const limb_t *y, size_t size);
static limb_t sub(limb_t *result, const limb_t *x,
const limb_t *y, size_t size);
static void mul(limb_t *result, const limb_t *x, size_t xcount,
const limb_t *y, size_t ycount);
static void reduceQuick(limb_t *result, const limb_t *x,
const limb_t *y, size_t size);
static limb_t add_P(limb_t *result, const limb_t *x,
const limb_t *y, size_t size);
static limb_t sub_P(limb_t *result, const limb_t *x,
const limb_t *y, size_t size);
static void mul_P(limb_t *result, const limb_t *x, size_t xcount,
const limb_t *y, size_t ycount);
static void reduceQuick_P(limb_t *result, const limb_t *x,
const limb_t *y, size_t size);
private: private:
// Constructor and destructor are private - cannot instantiate this class. // Constructor and destructor are private - cannot instantiate this class.
BigNumberUtil() {} BigNumberUtil() {}

View File

@ -23,7 +23,7 @@
#include "Curve25519.h" #include "Curve25519.h"
#include "Crypto.h" #include "Crypto.h"
#include "RNG.h" #include "RNG.h"
#include "utility/ProgMemUtil.h" #include "utility/LimbUtil.h"
#include <string.h> #include <string.h>
/** /**
@ -37,15 +37,10 @@
* *
* References: http://cr.yp.to/ecdh.html * References: http://cr.yp.to/ecdh.html
* https://tools.ietf.org/html/draft-irtf-cfrg-curves-02 * https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
*
* \sa Ed25519
*/ */
// Number of limbs in a value from the field modulo 2^255 - 19.
// We assume that sizeof(limb_t) is a power of 2: 1, 2, 4, etc.
#define NUM_LIMBS (32 / sizeof(limb_t))
// Number of bits in limb_t.
#define LIMB_BITS (8 * sizeof(limb_t))
// The overhead of clean() calls in mul(), reduceQuick(), etc can // The overhead of clean() calls in mul(), reduceQuick(), etc can
// add up to a lot of processing time during eval(). Only do such // add up to a lot of processing time during eval(). Only do such
// cleanups if strict mode has been enabled. Other implementations // cleanups if strict mode has been enabled. Other implementations
@ -78,20 +73,20 @@
*/ */
bool Curve25519::eval(uint8_t result[32], const uint8_t s[32], const uint8_t x[32]) bool Curve25519::eval(uint8_t result[32], const uint8_t s[32], const uint8_t x[32])
{ {
limb_t x_1[NUM_LIMBS]; limb_t x_1[NUM_LIMBS_256BIT];
limb_t x_2[NUM_LIMBS]; limb_t x_2[NUM_LIMBS_256BIT];
limb_t x_3[NUM_LIMBS]; limb_t x_3[NUM_LIMBS_256BIT];
limb_t z_2[NUM_LIMBS]; limb_t z_2[NUM_LIMBS_256BIT];
limb_t z_3[NUM_LIMBS]; limb_t z_3[NUM_LIMBS_256BIT];
limb_t A[NUM_LIMBS]; limb_t A[NUM_LIMBS_256BIT];
limb_t B[NUM_LIMBS]; limb_t B[NUM_LIMBS_256BIT];
limb_t C[NUM_LIMBS]; limb_t C[NUM_LIMBS_256BIT];
limb_t D[NUM_LIMBS]; limb_t D[NUM_LIMBS_256BIT];
limb_t E[NUM_LIMBS]; limb_t E[NUM_LIMBS_256BIT];
limb_t AA[NUM_LIMBS]; limb_t AA[NUM_LIMBS_256BIT];
limb_t BB[NUM_LIMBS]; limb_t BB[NUM_LIMBS_256BIT];
limb_t DA[NUM_LIMBS]; limb_t DA[NUM_LIMBS_256BIT];
limb_t CB[NUM_LIMBS]; limb_t CB[NUM_LIMBS_256BIT];
uint8_t mask; uint8_t mask;
uint8_t sposn; uint8_t sposn;
uint8_t select; uint8_t select;
@ -102,8 +97,8 @@ bool Curve25519::eval(uint8_t result[32], const uint8_t s[32], const uint8_t x[3
// which also masks off the high bit. NULL means 9. // which also masks off the high bit. NULL means 9.
if (x) { if (x) {
// x1 = x // x1 = x
BigNumberUtil::unpackLE(x_1, NUM_LIMBS, x, 32); BigNumberUtil::unpackLE(x_1, NUM_LIMBS_256BIT, x, 32);
x_1[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1); x_1[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
} else { } else {
memset(x_1, 0, sizeof(x_1)); // x_1 = 9 memset(x_1, 0, sizeof(x_1)); // x_1 = 9
x_1[0] = 9; x_1[0] = 9;
@ -178,7 +173,7 @@ bool Curve25519::eval(uint8_t result[32], const uint8_t s[32], const uint8_t x[3
mul(x_2, x_2, z_3); mul(x_2, x_2, z_3);
// Pack the result into the return array. // Pack the result into the return array.
BigNumberUtil::packLE(result, 32, x_2, NUM_LIMBS); BigNumberUtil::packLE(result, 32, x_2, NUM_LIMBS_256BIT);
// Clean up and exit. // Clean up and exit.
clean(x_1); clean(x_1);
@ -354,13 +349,13 @@ uint8_t Curve25519::isWeakPoint(const uint8_t k[32])
* \brief Reduces a number modulo 2^255 - 19. * \brief Reduces a number modulo 2^255 - 19.
* *
* \param result The array that will contain the result when the * \param result The array that will contain the result when the
* function exits. Must be NUM_LIMBS limbs in size. * function exits. Must be NUM_LIMBS_256BIT limbs in size.
* \param x The number to be reduced, which must be NUM_LIMBS * 2 limbs in * \param x The number to be reduced, which must be NUM_LIMBS_512BIT
* size and less than or equal to square(2^255 - 19 - 1). This array will * limbs in size and less than or equal to square(2^255 - 19 - 1).
* be modified by the reduction process. * This array will be modified by the reduction process.
* \param size The size of the high order half of \a x. This indicates * \param size The size of the high order half of \a x. This indicates
* the size of \a x in limbs. If it is shorter than NUM_LIMBS then the * the size of \a x in limbs. If it is shorter than NUM_LIMBS_256BIT
* reduction can be performed quicker. * then the reduction can be performed quicker.
*/ */
void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size) void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
{ {
@ -411,18 +406,18 @@ void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
// Calculate (x mod 2^255) + ((x / 2^255) * 19) which will // Calculate (x mod 2^255) + ((x / 2^255) * 19) which will
// either produce the answer we want or it will produce a // either produce the answer we want or it will produce a
// value of the form "answer + j * (2^255 - 19)". // value of the form "answer + j * (2^255 - 19)".
carry = ((dlimb_t)(x[NUM_LIMBS - 1] >> (LIMB_BITS - 1))) * 19U; carry = ((dlimb_t)(x[NUM_LIMBS_256BIT - 1] >> (LIMB_BITS - 1))) * 19U;
x[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1); x[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < size; ++posn) { for (posn = 0; posn < size; ++posn) {
carry += ((dlimb_t)(x[posn + NUM_LIMBS])) * 38U; carry += ((dlimb_t)(x[posn + NUM_LIMBS_256BIT])) * 38U;
carry += x[posn]; carry += x[posn];
x[posn] = (limb_t)carry; x[posn] = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
} }
if (size < NUM_LIMBS) { if (size < NUM_LIMBS_256BIT) {
// The high order half of the number is short; e.g. for mulA24(). // The high order half of the number is short; e.g. for mulA24().
// Propagate the carry through the rest of the low order part. // Propagate the carry through the rest of the low order part.
for (posn = size; posn < NUM_LIMBS; ++posn) { for (posn = size; posn < NUM_LIMBS_256BIT; ++posn) {
carry += x[posn]; carry += x[posn];
x[posn] = (limb_t)carry; x[posn] = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
@ -434,9 +429,9 @@ void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
// then this won't do any harm but we must still do the calculation // then this won't do any harm but we must still do the calculation
// to preserve the overall timing. // to preserve the overall timing.
carry *= 38U; carry *= 38U;
carry += ((dlimb_t)(x[NUM_LIMBS - 1] >> (LIMB_BITS - 1))) * 19U; carry += ((dlimb_t)(x[NUM_LIMBS_256BIT - 1] >> (LIMB_BITS - 1))) * 19U;
x[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1); x[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
carry += x[posn]; carry += x[posn];
x[posn] = (limb_t)carry; x[posn] = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
@ -448,9 +443,9 @@ void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
// trial answer into the top-most limbs of the original "x" array. // trial answer into the top-most limbs of the original "x" array.
// We add 19 here; the subtraction of 2^255 occurs in the next step. // We add 19 here; the subtraction of 2^255 occurs in the next step.
carry = 19U; carry = 19U;
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
carry += x[posn]; carry += x[posn];
x[posn + NUM_LIMBS] = (limb_t)carry; x[posn + NUM_LIMBS_256BIT] = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
} }
@ -460,22 +455,22 @@ void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
// it in a way that instruction timing will not reveal which value // it in a way that instruction timing will not reveal which value
// was selected. Borrow will occur if the high bit of the previous // was selected. Borrow will occur if the high bit of the previous
// result is 0: turn the high bit into a selection mask. // result is 0: turn the high bit into a selection mask.
limb_t mask = (limb_t)(((slimb_t)(x[NUM_LIMBS * 2 - 1])) >> (LIMB_BITS - 1)); limb_t mask = (limb_t)(((slimb_t)(x[NUM_LIMBS_512BIT - 1])) >> (LIMB_BITS - 1));
limb_t nmask = ~mask; limb_t nmask = ~mask;
x[NUM_LIMBS * 2 - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1); x[NUM_LIMBS_512BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
result[posn] = (x[posn] & nmask) | (x[posn + NUM_LIMBS] & mask); result[posn] = (x[posn] & nmask) | (x[posn + NUM_LIMBS_256BIT] & mask);
} }
} }
/** /**
* \brief Quickly reduces a number modulo 2^255 - 19. * \brief Quickly reduces a number modulo 2^255 - 19.
* *
* \param x The number to be reduced, which must be NUM_LIMBS limbs in size * \param x The number to be reduced, which must be NUM_LIMBS_256BIT
* and less than or equal to 2 * (2^255 - 19 - 1). ( limbs in size and less than or equal to 2 * (2^255 - 19 - 1).
* \return Zero if \a x was greater than or equal to (2^255 - 19). * \return Zero if \a x was greater than or equal to (2^255 - 19).
* *
* The answer is also put into \a x and will consist of NUM_LIMBS limbs. * The answer is also put into \a x and will consist of NUM_LIMBS_256BIT limbs.
* *
* This function is intended for reducing the result of additions where * This function is intended for reducing the result of additions where
* the caller knows that \a x is within the described range. A single * the caller knows that \a x is within the described range. A single
@ -483,7 +478,7 @@ void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
*/ */
limb_t Curve25519::reduceQuick(limb_t *x) limb_t Curve25519::reduceQuick(limb_t *x)
{ {
limb_t temp[NUM_LIMBS]; limb_t temp[NUM_LIMBS_256BIT];
dlimb_t carry; dlimb_t carry;
uint8_t posn; uint8_t posn;
limb_t *xx; limb_t *xx;
@ -495,7 +490,7 @@ limb_t Curve25519::reduceQuick(limb_t *x)
carry = 19U; carry = 19U;
xx = x; xx = x;
tt = temp; tt = temp;
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
carry += *xx++; carry += *xx++;
*tt++ = (limb_t)carry; *tt++ = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
@ -506,12 +501,12 @@ limb_t Curve25519::reduceQuick(limb_t *x)
// correct answer but do it in a way that instruction timing will not // correct answer but do it in a way that instruction timing will not
// reveal which value was selected. Borrow will occur if the high bit // reveal which value was selected. Borrow will occur if the high bit
// of "temp" is 0: turn the high bit into a selection mask. // of "temp" is 0: turn the high bit into a selection mask.
limb_t mask = (limb_t)(((slimb_t)(temp[NUM_LIMBS - 1])) >> (LIMB_BITS - 1)); limb_t mask = (limb_t)(((slimb_t)(temp[NUM_LIMBS_256BIT - 1])) >> (LIMB_BITS - 1));
limb_t nmask = ~mask; limb_t nmask = ~mask;
temp[NUM_LIMBS - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1); temp[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
xx = x; xx = x;
tt = temp; tt = temp;
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
*xx = ((*xx) & nmask) | ((*tt++) & mask); *xx = ((*xx) & nmask) | ((*tt++) & mask);
++xx; ++xx;
} }
@ -524,53 +519,68 @@ limb_t Curve25519::reduceQuick(limb_t *x)
} }
/** /**
* \brief Multiplies two values and then reduces the result modulo 2^255 - 19. * \brief Multiplies two 256-bit values to produce a 512-bit result.
* *
* \param result The result, which must be NUM_LIMBS limbs in size and can * \param result The result, which must be NUM_LIMBS_512BIT limbs in size
* be the same array as \a x or \a y. * and must not overlap with \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS limbs in size * \param x The first value to multiply, which must be NUM_LIMBS_256BIT
* and less than 2^255 - 19. * limbs in size.
* \param y The second value to multiply, which must be NUM_LIMBS limbs in size * \param y The second value to multiply, which must be NUM_LIMBS_256BIT
* and less than 2^255 - 19. This can be the same array as \a x. * limbs in size.
*
* \sa mul()
*/ */
void Curve25519::mul(limb_t *result, const limb_t *x, const limb_t *y) void Curve25519::mulNoReduce(limb_t *result, const limb_t *x, const limb_t *y)
{ {
limb_t temp[NUM_LIMBS * 2];
uint8_t i, j; uint8_t i, j;
dlimb_t carry; dlimb_t carry;
limb_t word; limb_t word;
const limb_t *yy; const limb_t *yy;
limb_t *tt; limb_t *rr;
// Multiply the lowest word of x by y. // Multiply the lowest word of x by y.
carry = 0; carry = 0;
word = x[0]; word = x[0];
yy = y; yy = y;
tt = temp; rr = result;
for (i = 0; i < NUM_LIMBS; ++i) { for (i = 0; i < NUM_LIMBS_256BIT; ++i) {
carry += ((dlimb_t)(*yy++)) * word; carry += ((dlimb_t)(*yy++)) * word;
*tt++ = (limb_t)carry; *rr++ = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
} }
*tt = (limb_t)carry; *rr = (limb_t)carry;
// Multiply and add the remaining words of x by y. // Multiply and add the remaining words of x by y.
for (i = 1; i < NUM_LIMBS; ++i) { for (i = 1; i < NUM_LIMBS_256BIT; ++i) {
word = x[i]; word = x[i];
carry = 0; carry = 0;
yy = y; yy = y;
tt = temp + i; rr = result + i;
for (j = 0; j < NUM_LIMBS; ++j) { for (j = 0; j < NUM_LIMBS_256BIT; ++j) {
carry += ((dlimb_t)(*yy++)) * word; carry += ((dlimb_t)(*yy++)) * word;
carry += *tt; carry += *rr;
*tt++ = (limb_t)carry; *rr++ = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
} }
*tt = (limb_t)carry; *rr = (limb_t)carry;
} }
}
// Reduce the intermediate result modulo 2^255 - 19. /**
reduce(result, temp, NUM_LIMBS); * \brief Multiplies two values and then reduces the result modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS_256BIT limbs in size
* and can be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS_256BIT limbs
* in size and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS_256BIT limbs
* in size and less than 2^255 - 19. This can be the same array as \a x.
*/
void Curve25519::mul(limb_t *result, const limb_t *x, const limb_t *y)
{
limb_t temp[NUM_LIMBS_512BIT];
mulNoReduce(temp, x, y);
reduce(result, temp, NUM_LIMBS_256BIT);
strict_clean(temp); strict_clean(temp);
} }
@ -578,9 +588,9 @@ void Curve25519::mul(limb_t *result, const limb_t *x, const limb_t *y)
* \fn void Curve25519::square(limb_t *result, const limb_t *x) * \fn void Curve25519::square(limb_t *result, const limb_t *x)
* \brief Squares a value and then reduces it modulo 2^255 - 19. * \brief Squares a value and then reduces it modulo 2^255 - 19.
* *
* \param result The result, which must be NUM_LIMBS limbs in size and * \param result The result, which must be NUM_LIMBS_256BIT limbs in size and
* can be the same array as \a x. * can be the same array as \a x.
* \param x The value to square, which must be NUM_LIMBS limbs in size * \param x The value to square, which must be NUM_LIMBS_256BIT limbs in size
* and less than 2^255 - 19. * and less than 2^255 - 19.
*/ */
@ -588,36 +598,33 @@ void Curve25519::mul(limb_t *result, const limb_t *x, const limb_t *y)
* \brief Multiplies a value by the a24 constant and then reduces the result * \brief Multiplies a value by the a24 constant and then reduces the result
* modulo 2^255 - 19. * modulo 2^255 - 19.
* *
* \param result The result, which must be NUM_LIMBS limbs in size and can * \param result The result, which must be NUM_LIMBS_256BIT limbs in size
* be the same array as \a x. * and can be the same array as \a x.
* \param x The value to multiply by a24, which must be NUM_LIMBS limbs in size * \param x The value to multiply by a24, which must be NUM_LIMBS_256BIT
* and less than 2^255 - 19. * limbs in size and less than 2^255 - 19.
*/ */
void Curve25519::mulA24(limb_t *result, const limb_t *x) void Curve25519::mulA24(limb_t *result, const limb_t *x)
{ {
// The constant a24 = 121665 (0x1DB41) as a limb array. // The constant a24 = 121665 (0x1DB41) as a limb array.
#if BIGNUMBER_LIMB_8BIT #if BIGNUMBER_LIMB_8BIT
static limb_t const a24[3] PROGMEM = {0x41, 0xDB, 0x01}; static limb_t const a24[3] PROGMEM = {0x41, 0xDB, 0x01};
#define pgm_read_a24(index) (pgm_read_byte(&(a24[(index)])))
#elif BIGNUMBER_LIMB_16BIT #elif BIGNUMBER_LIMB_16BIT
static limb_t const a24[2] PROGMEM = {0xDB41, 0x0001}; static limb_t const a24[2] PROGMEM = {0xDB41, 0x0001};
#define pgm_read_a24(index) (pgm_read_word(&(a24[(index)])))
#elif BIGNUMBER_LIMB_32BIT #elif BIGNUMBER_LIMB_32BIT
static limb_t const a24[1] PROGMEM = {0x0001DB41}; static limb_t const a24[1] PROGMEM = {0x0001DB41};
#define pgm_read_a24(index) (pgm_read_dword(&(a24[(index)])))
#else #else
#error "limb_t must be 8, 16, or 32 bits in size" #error "limb_t must be 8, 16, or 32 bits in size"
#endif #endif
#define NUM_A24_LIMBS (sizeof(a24) / sizeof(limb_t)) #define NUM_A24_LIMBS (sizeof(a24) / sizeof(limb_t))
// Multiply the lowest limb of a24 by x and zero-extend into the result. // Multiply the lowest limb of a24 by x and zero-extend into the result.
limb_t temp[NUM_LIMBS * 2]; limb_t temp[NUM_LIMBS_512BIT];
uint8_t i, j; uint8_t i, j;
dlimb_t carry = 0; dlimb_t carry = 0;
limb_t word = pgm_read_a24(0); limb_t word = pgm_read_limb(&(a24[0]));
const limb_t *xx = x; const limb_t *xx = x;
limb_t *tt = temp; limb_t *tt = temp;
for (i = 0; i < NUM_LIMBS; ++i) { for (i = 0; i < NUM_LIMBS_256BIT; ++i) {
carry += ((dlimb_t)(*xx++)) * word; carry += ((dlimb_t)(*xx++)) * word;
*tt++ = (limb_t)carry; *tt++ = (limb_t)carry;
carry >>= LIMB_BITS; carry >>= LIMB_BITS;
@ -626,11 +633,11 @@ void Curve25519::mulA24(limb_t *result, const limb_t *x)
// Multiply and add the remaining limbs of a24. // Multiply and add the remaining limbs of a24.
for (i = 1; i < NUM_A24_LIMBS; ++i) { for (i = 1; i < NUM_A24_LIMBS; ++i) {
word = pgm_read_a24(i); word = pgm_read_limb(&(a24[i]));
carry = 0; carry = 0;
xx = x; xx = x;
tt = temp + i; tt = temp + i;
for (j = 0; j < NUM_LIMBS; ++j) { for (j = 0; j < NUM_LIMBS_256BIT; ++j) {
carry += ((dlimb_t)(*xx++)) * word; carry += ((dlimb_t)(*xx++)) * word;
carry += *tt; carry += *tt;
*tt++ = (limb_t)carry; *tt++ = (limb_t)carry;
@ -644,15 +651,69 @@ void Curve25519::mulA24(limb_t *result, const limb_t *x)
strict_clean(temp); strict_clean(temp);
} }
/**
* \brief Multiplies two values and then reduces the result modulo 2^255 - 19,
* where one of the values is in program memory.
*
* \param result The result, which must be NUM_LIMBS_256BIT limbs in size
* and can be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS_256BIT limbs
* in size and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS_256BIT limbs
* in size and less than 2^255 - 19. This array must be in program memory.
*/
void Curve25519::mul_P(limb_t *result, const limb_t *x, const limb_t *y)
{
limb_t temp[NUM_LIMBS_512BIT];
uint8_t i, j;
dlimb_t carry;
limb_t word;
const limb_t *yy;
limb_t *tt;
// Multiply the lowest word of x by y.
carry = 0;
word = x[0];
yy = y;
tt = temp;
for (i = 0; i < NUM_LIMBS_256BIT; ++i) {
carry += ((dlimb_t)(pgm_read_limb(yy))) * word;
*tt++ = (limb_t)carry;
carry >>= LIMB_BITS;
++yy;
}
*tt = (limb_t)carry;
// Multiply and add the remaining words of x by y.
for (i = 1; i < NUM_LIMBS_256BIT; ++i) {
word = x[i];
carry = 0;
yy = y;
tt = temp + i;
for (j = 0; j < NUM_LIMBS_256BIT; ++j) {
carry += ((dlimb_t)(pgm_read_limb(yy))) * word;
carry += *tt;
*tt++ = (limb_t)carry;
carry >>= LIMB_BITS;
++yy;
}
*tt = (limb_t)carry;
}
// Reduce the intermediate result modulo 2^255 - 19.
reduce(result, temp, NUM_LIMBS_256BIT);
strict_clean(temp);
}
/** /**
* \brief Adds two values and then reduces the result modulo 2^255 - 19. * \brief Adds two values and then reduces the result modulo 2^255 - 19.
* *
* \param result The result, which must be NUM_LIMBS limbs in size and can * \param result The result, which must be NUM_LIMBS_256BIT limbs in size
* be the same array as \a x or \a y. * and can be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS limbs in size * \param x The first value to multiply, which must be NUM_LIMBS_256BIT
* and less than 2^255 - 19. * limbs in size and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS limbs in size * \param y The second value to multiply, which must be NUM_LIMBS_256BIT
* and less than 2^255 - 19. * limbs in size and less than 2^255 - 19.
*/ */
void Curve25519::add(limb_t *result, const limb_t *x, const limb_t *y) void Curve25519::add(limb_t *result, const limb_t *x, const limb_t *y)
{ {
@ -661,7 +722,7 @@ void Curve25519::add(limb_t *result, const limb_t *x, const limb_t *y)
limb_t *rr = result; limb_t *rr = result;
// Add the two arrays to obtain the intermediate result. // Add the two arrays to obtain the intermediate result.
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
carry += *x++; carry += *x++;
carry += *y++; carry += *y++;
*rr++ = (limb_t)carry; *rr++ = (limb_t)carry;
@ -675,12 +736,12 @@ void Curve25519::add(limb_t *result, const limb_t *x, const limb_t *y)
/** /**
* \brief Subtracts two values and then reduces the result modulo 2^255 - 19. * \brief Subtracts two values and then reduces the result modulo 2^255 - 19.
* *
* \param result The result, which must be NUM_LIMBS limbs in size and can * \param result The result, which must be NUM_LIMBS_256BIT limbs in size
* be the same array as \a x or \a y. * and can be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS limbs in size * \param x The first value to multiply, which must be NUM_LIMBS_256BIT
* and less than 2^255 - 19. * limbs in size and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS limbs in size * \param y The second value to multiply, which must be NUM_LIMBS_256BIT
* and less than 2^255 - 19. * limbs in size and less than 2^255 - 19.
*/ */
void Curve25519::sub(limb_t *result, const limb_t *x, const limb_t *y) void Curve25519::sub(limb_t *result, const limb_t *x, const limb_t *y)
{ {
@ -690,7 +751,7 @@ void Curve25519::sub(limb_t *result, const limb_t *x, const limb_t *y)
// Subtract y from x to generate the intermediate result. // Subtract y from x to generate the intermediate result.
borrow = 0; borrow = 0;
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
borrow = ((dlimb_t)(*x++)) - (*y++) - ((borrow >> LIMB_BITS) & 0x01); borrow = ((dlimb_t)(*x++)) - (*y++) - ((borrow >> LIMB_BITS) & 0x01);
*rr++ = (limb_t)borrow; *rr++ = (limb_t)borrow;
} }
@ -704,7 +765,7 @@ void Curve25519::sub(limb_t *result, const limb_t *x, const limb_t *y)
borrow = (borrow >> LIMB_BITS) & 19U; borrow = (borrow >> LIMB_BITS) & 19U;
borrow = ((dlimb_t)(*rr)) - borrow; borrow = ((dlimb_t)(*rr)) - borrow;
*rr++ = (limb_t)borrow; *rr++ = (limb_t)borrow;
for (posn = 1; posn < NUM_LIMBS; ++posn) { for (posn = 1; posn < NUM_LIMBS_256BIT; ++posn) {
borrow = ((dlimb_t)(*rr)) - ((borrow >> LIMB_BITS) & 0x01); borrow = ((dlimb_t)(*rr)) - ((borrow >> LIMB_BITS) & 0x01);
*rr++ = (limb_t)borrow; *rr++ = (limb_t)borrow;
} }
@ -720,8 +781,10 @@ void Curve25519::sub(limb_t *result, const limb_t *x, const limb_t *y)
* *
* The swap is performed in a way that it should take the same amount of * The swap is performed in a way that it should take the same amount of
* time irrespective of the value of \a select. * time irrespective of the value of \a select.
*
* \sa cmove()
*/ */
void Curve25519::cswap(uint8_t select, limb_t *x, limb_t *y) void Curve25519::cswap(limb_t select, limb_t *x, limb_t *y)
{ {
uint8_t posn; uint8_t posn;
limb_t dummy; limb_t dummy;
@ -734,7 +797,7 @@ void Curve25519::cswap(uint8_t select, limb_t *x, limb_t *y)
// Swap the two values based on "select". Algorithm from: // Swap the two values based on "select". Algorithm from:
// https://tools.ietf.org/html/draft-irtf-cfrg-curves-02 // https://tools.ietf.org/html/draft-irtf-cfrg-curves-02
for (posn = 0; posn < NUM_LIMBS; ++posn) { for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
dummy = sel & (x[posn] ^ y[posn]); dummy = sel & (x[posn] ^ y[posn]);
x[posn] ^= dummy; x[posn] ^= dummy;
y[posn] ^= dummy; y[posn] ^= dummy;
@ -742,20 +805,48 @@ void Curve25519::cswap(uint8_t select, limb_t *x, limb_t *y)
} }
/** /**
* \brief Computes the reciprocal of a number modulo 2^255 - 19. * \brief Conditionally moves \a y into \a x if a selection value is non-zero.
* *
* \param result The result as a array of NUM_LIMBS limbs in size. This can * \param select Non-zero to move \a y into \a x, zero to leave \a x unchanged.
* be the same array as \a x. * \param x The destination to move into.
* \param x The number to compute the reciprocal for. * \param y The value to conditionally move.
*
* The move is performed in a way that it should take the same amount of
* time irrespective of the value of \a select.
*
* \sa cswap()
*/ */
void Curve25519::recip(limb_t *result, const limb_t *x) void Curve25519::cmove(limb_t select, limb_t *x, const limb_t *y)
{ {
limb_t t1[NUM_LIMBS]; uint8_t posn;
limb_t dummy;
limb_t sel;
// Turn "select" into an all-zeroes or all-ones mask. We don't care
// which bit or bits is set in the original "select" value.
sel = (limb_t)(((((dlimb_t)1) << LIMB_BITS) - select) >> LIMB_BITS);
--sel;
// Move y into x based on "select". Similar to conditional swap above.
for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
dummy = sel & (x[posn] ^ y[posn]);
x[posn] ^= dummy;
}
}
/**
* \brief Raise x to the power of (2^250 - 1).
*
* \param result The result array, which must be NUM_LIMBS_256BIT limbs in size.
* \param x The value to raise.
*/
void Curve25519::pow250(limb_t *result, const limb_t *x)
{
limb_t t1[NUM_LIMBS_256BIT];
uint8_t i, j; uint8_t i, j;
// The reciprocal is the same as x ^ (p - 2) where p = 2^255 - 19. // The big-endian hexadecimal expansion of (2^250 - 1) is:
// The big-endian hexadecimal expansion of (p - 2) is: // 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
// 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEB
// //
// The naive implementation needs to do 2 multiplications per 1 bit and // The naive implementation needs to do 2 multiplications per 1 bit and
// 1 multiplication per 0 bit. We can improve upon this by creating a // 1 multiplication per 0 bit. We can improve upon this by creating a
@ -786,6 +877,25 @@ void Curve25519::recip(limb_t *result, const limb_t *x)
mul(result, result, t1); mul(result, result, t1);
} }
// Clean up and exit.
clean(t1);
}
/**
* \brief Computes the reciprocal of a number modulo 2^255 - 19.
*
* \param result The result as a array of NUM_LIMBS_256BIT limbs in size.
* This cannot be the same array as \a x.
* \param x The number to compute the reciprocal for.
*/
void Curve25519::recip(limb_t *result, const limb_t *x)
{
// The reciprocal is the same as x ^ (p - 2) where p = 2^255 - 19.
// The big-endian hexadecimal expansion of (p - 2) is:
// 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEB
// Start with the 250 upper bits of the expansion of (p - 2).
pow250(result, x);
// Deal with the 5 lowest bits of (p - 2), 01011, from highest to lowest. // Deal with the 5 lowest bits of (p - 2), 01011, from highest to lowest.
square(result, result); square(result, result);
square(result, result); square(result, result);
@ -795,7 +905,59 @@ void Curve25519::recip(limb_t *result, const limb_t *x)
mul(result, result, x); mul(result, result, x);
square(result, result); square(result, result);
mul(result, result, x); mul(result, result, x);
}
// Clean up and exit.
clean(t1); /**
* \brief Computes the square root of a number modulo 2^255 - 19.
*
* \param result The result as a array of NUM_LIMBS_256BIT limbs in size.
* This must not overlap with \a x.
* \param x The number to compute the square root for.
*
* For any number \a x, there are two square roots: positive and negative.
* For example, both 2 and -2 are square roots of 4 because 2 * 2 = -2 * -2.
* This function will return one or the other. Callers must determine which
* square root they are interested in and invert the result as necessary.
*
* \note This function is not constant time so it should only be used
* on publicly-known values.
*/
bool Curve25519::sqrt(limb_t *result, const limb_t *x)
{
// sqrt(-1) mod (2^255 - 19).
static limb_t const numSqrtM1[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0x4A0EA0B0), LIMB(0xC4EE1B27), LIMB(0xAD2FE478), LIMB(0x2F431806),
LIMB(0x3DFBD7A7), LIMB(0x2B4D0099), LIMB(0x4FC1DF0B), LIMB(0x2B832480)
};
limb_t y[NUM_LIMBS_256BIT];
// Algorithm from:
// https://tools.ietf.org/id/draft-josefsson-eddsa-ed25519-02.txt
// Compute a candidate root: result = x^((p + 3) / 8) mod p.
// (p + 3) / 8 = (2^252 - 2) which is 251 one bits followed by a zero:
// 0FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
pow250(result, x);
square(result, result);
mul(result, result, x);
square(result, result);
// Did we get the square root immediately?
square(y, result);
if (memcmp(x, y, sizeof(y)) == 0) {
clean(y);
return true;
}
// Multiply the result by sqrt(-1) and check again.
mul_P(result, result, numSqrtM1);
square(y, result);
if (memcmp(x, y, sizeof(y)) == 0) {
clean(y);
return true;
}
// The number does not have a square root.
clean(y);
return false;
} }

View File

@ -25,6 +25,8 @@
#include "BigNumberUtil.h" #include "BigNumberUtil.h"
class Ed25519;
class Curve25519 class Curve25519
{ {
public: public:
@ -43,6 +45,8 @@ private:
static void reduce(limb_t *result, limb_t *x, uint8_t size); static void reduce(limb_t *result, limb_t *x, uint8_t size);
static limb_t reduceQuick(limb_t *x); static limb_t reduceQuick(limb_t *x);
static void mulNoReduce(limb_t *result, const limb_t *x, const limb_t *y);
static void mul(limb_t *result, const limb_t *x, const limb_t *y); static void mul(limb_t *result, const limb_t *x, const limb_t *y);
static void square(limb_t *result, const limb_t *x) static void square(limb_t *result, const limb_t *x)
{ {
@ -51,16 +55,23 @@ private:
static void mulA24(limb_t *result, const limb_t *x); static void mulA24(limb_t *result, const limb_t *x);
static void mul_P(limb_t *result, const limb_t *x, const limb_t *y);
static void add(limb_t *result, const limb_t *x, const limb_t *y); static void add(limb_t *result, const limb_t *x, const limb_t *y);
static void sub(limb_t *result, const limb_t *x, const limb_t *y); static void sub(limb_t *result, const limb_t *x, const limb_t *y);
static void cswap(uint8_t select, limb_t *x, limb_t *y); static void cswap(limb_t select, limb_t *x, limb_t *y);
static void cmove(limb_t select, limb_t *x, const limb_t *y);
static void pow250(limb_t *result, const limb_t *x);
static void recip(limb_t *result, const limb_t *x); static void recip(limb_t *result, const limb_t *x);
static bool sqrt(limb_t *result, const limb_t *x);
// Constructor and destructor are private - cannot instantiate this class. // Constructor and destructor are private - cannot instantiate this class.
Curve25519() {} Curve25519() {}
~Curve25519() {} ~Curve25519() {}
friend class Ed25519;
}; };
#endif #endif

View File

@ -0,0 +1,643 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "Ed25519.h"
#include "Curve25519.h"
#include "Crypto.h"
#include "RNG.h"
#include "utility/LimbUtil.h"
#include <string.h>
/**
* \class Ed25519 Ed25519.h <Ed25519.h>
* \brief Digital signatures based on the elliptic curve modulo 2^255 - 19.
*
* The first step in creating a digital signature with Ed25519 is to
* generate a key pair:
*
* \code
* uint8_t privateKey[32];
* uint8_t publicKey[32];
*
* Ed25519::generatePrivateKey(privateKey);
* Ed25519::derivePublicKey(publicKey, privateKey);
* \endcode
*
* The application can store both the private and public key for later
* signing operations. Or it can store just the private key and then
* derive the public key at the point where signing is to occur.
*
* Message signing produces a 64-byte signature as follows:
*
* \code
* uint8_t message[N];
* uint8_t signature[64];
*
* Ed25519::sign(signature, privateKey, publicKey, message, N);
* \endcode
*
* And then to verify the signature:
*
* \code
* if (!Ed25519::verify(signature, publicKey, message, N)) {
* // The signature is invalid.
* ...
* }
* \endcode
*
* \note The public functions in this class need a substantial amount of
* stack space to store intermediate results while the curve function is
* being evaluated. About 1.5k of free stack space is recommended for safety.
*
* References: https://tools.ietf.org/id/draft-josefsson-eddsa-ed25519-02.txt
*
* \sa Curve25519
*/
/** @cond */
// 37095705934669439343138083508754565189542113879843219016388785533085940283555
static limb_t const numD[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0x135978A3), LIMB(0x75EB4DCA), LIMB(0x4141D8AB), LIMB(0x00700A4D),
LIMB(0x7779E898), LIMB(0x8CC74079), LIMB(0x2B6FFE73), LIMB(0x52036CEE)
};
// d * 2
static limb_t const numDx2[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0x26B2F159), LIMB(0xEBD69B94), LIMB(0x8283B156), LIMB(0x00E0149A),
LIMB(0xEEF3D130), LIMB(0x198E80F2), LIMB(0x56DFFCE7), LIMB(0x2406D9DC)
};
// Extended homogenous co-ordinates for the base point.
static limb_t const numBx[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0x8F25D51A), LIMB(0xC9562D60), LIMB(0x9525A7B2), LIMB(0x692CC760),
LIMB(0xFDD6DC5C), LIMB(0xC0A4E231), LIMB(0xCD6E53FE), LIMB(0x216936D3)
};
static limb_t const numBy[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0x66666658), LIMB(0x66666666), LIMB(0x66666666), LIMB(0x66666666),
LIMB(0x66666666), LIMB(0x66666666), LIMB(0x66666666), LIMB(0x66666666)
};
static limb_t const numBz[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0x00000001), LIMB(0x00000000), LIMB(0x00000000), LIMB(0x00000000),
LIMB(0x00000000), LIMB(0x00000000), LIMB(0x00000000), LIMB(0x00000000)
};
static limb_t const numBt[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0xA5B7DDA3), LIMB(0x6DDE8AB3), LIMB(0x775152F5), LIMB(0x20F09F80),
LIMB(0x64ABE37D), LIMB(0x66EA4E8E), LIMB(0xD78B7665), LIMB(0x67875F0F)
};
// 2^252 + 27742317777372353535851937790883648493
static limb_t const numQ[NUM_LIMBS_256BIT] PROGMEM = {
LIMB(0x5CF5D3ED), LIMB(0x5812631A), LIMB(0xA2F79CD6), LIMB(0x14DEF9DE),
LIMB(0x00000000), LIMB(0x00000000), LIMB(0x00000000), LIMB(0x10000000)
};
/** @endcond */
/**
* \brief Signs a message using a specific Ed25519 private key.
*
* \param signature The signature value.
* \param privateKey The private key to use to sign the message.
* \param publicKey The public key corresponding to \a privateKey.
* \param message Points to the message to be signed.
* \param len The length of the \a message to be signed.
*
* \sa verify(), derivePublicKey()
*/
void Ed25519::sign(uint8_t signature[64], const uint8_t privateKey[32],
const uint8_t publicKey[32], const void *message, size_t len)
{
SHA512 hash;
uint8_t *buf = (uint8_t *)(hash.state.w); // Reuse hash buffer to save memory.
limb_t a[NUM_LIMBS_256BIT];
limb_t r[NUM_LIMBS_256BIT];
limb_t k[NUM_LIMBS_256BIT];
limb_t t[NUM_LIMBS_512BIT + 1];
Point rB;
// Derive the secret scalar a and the message prefix from the private key.
deriveKeys(&hash, a, privateKey);
// Hash the prefix and the message to derive r.
hash.reset();
hash.update(buf + 32, 32);
hash.update(message, len);
hash.finalize(buf, 0);
reduceQFromBuffer(r, buf, t);
// Encode rB into the first half of the signature buffer as R.
mul(rB, r);
encodePoint(signature, rB);
// Hash R, A, and the message to get k.
hash.reset();
hash.update(signature, 32); // R
hash.update(publicKey, 32); // A
hash.update(message, len);
hash.finalize(buf, 0);
reduceQFromBuffer(k, buf, t);
// Compute s = (r + k * a) mod q.
Curve25519::mulNoReduce(t, k, a);
t[NUM_LIMBS_512BIT] = 0;
reduceQ(t, t);
BigNumberUtil::add(t, t, r, NUM_LIMBS_256BIT);
BigNumberUtil::reduceQuick_P(t, t, numQ, NUM_LIMBS_256BIT);
BigNumberUtil::packLE(signature + 32, 32, t, NUM_LIMBS_256BIT);
// Clean up.
clean(a);
clean(r);
clean(k);
clean(t);
clean(rB);
}
/**
* \brief Verifies a signature using a specific Ed25519 public key.
*
* \param signature The signature value to be verified.
* \param publicKey The public key to use to verify the signature.
* \param message The message whose signature is to be verified.
* \param len The length of the \a message to be verified.
*
* \return Returns true if the \a signature is valid for \a message;
* or false if the \a signature is not valid.
*
* \sa sign()
*/
bool Ed25519::verify(const uint8_t signature[64], const uint8_t publicKey[32],
const void *message, size_t len)
{
SHA512 hash;
Point A;
Point R;
Point sB;
Point kA;
uint8_t *k = (uint8_t *)(hash.state.w); // Reuse hash buffer to save memory.
bool result = false;
// Decode the public key and the R component of the signature.
if (decodePoint(A, publicKey) && decodePoint(R, signature)) {
// Reconstruct the k value from the signing step.
hash.reset();
hash.update(signature, 32);
hash.update(publicKey, 32);
hash.update(message, len);
hash.finalize(k, 0);
// Calculate s * B. The s value is stored temporarily in kA.t.
BigNumberUtil::unpackLE(kA.t, NUM_LIMBS_256BIT, signature + 32, 32);
mul(sB, kA.t, false);
// Calculate R + k * A. We don't need sB.t in equal() below,
// so we reuse that as a temporary buffer when reducing k.
reduceQFromBuffer(sB.t, k, kA.x);
mul(kA, sB.t, A, false);
add(R, kA);
// Compare s * B and R + k * A for equality.
result = equal(sB, R);
}
// Clean up and exit.
clean(A);
clean(R);
clean(sB);
clean(kA);
return result;
}
/**
* \brief Generates a private key for Ed25519 signing operations.
*
* \param privateKey The resulting private key.
*
* The private key is generated with \link RNGClass::rand() RNG.rand()\endlink.
* It is the caller's responsibility to ensure that the global random number
* pool has sufficient entropy to generate the 32 bytes of the key safely
* before calling this function.
*
* \sa derivePublicKey()
*/
void Ed25519::generatePrivateKey(uint8_t privateKey[32])
{
RNG.rand(privateKey, 32);
}
/**
* \brief Derives the public key from a private key.
*
* \param publicKey The public key.
* \param privateKey The private key.
*
* \sa generatePrivateKey()
*/
void Ed25519::derivePublicKey(uint8_t publicKey[32], const uint8_t privateKey[32])
{
SHA512 hash;
uint8_t *buf = (uint8_t *)(hash.state.w);
limb_t a[NUM_LIMBS_256BIT];
Point ptA;
// Derive the secret scalar a from the private key.
deriveKeys(&hash, a, privateKey);
// Compute the point A = aB and encode it.
mul(ptA, a);
encodePoint(publicKey, ptA);
// Clean up and exit.
clean(a);
clean(ptA);
}
/**
* \brief Reduces a number modulo q that was specified in a 512 bit buffer.
*
* \param result The result array, which must be NUM_LIMBS_256BIT limbs in size.
* \param buf The buffer containing the value to reduce in little-endian order.
* \param temp A temporary buffer of at least NUM_LIMBS_512BIT + 1 in size.
*
* \sa reduceQ()
*/
void Ed25519::reduceQFromBuffer(limb_t *result, const uint8_t buf[64], limb_t *temp)
{
BigNumberUtil::unpackLE(temp, NUM_LIMBS_512BIT, buf, 64);
temp[NUM_LIMBS_512BIT] = 0;
reduceQ(result, temp);
}
/**
* \brief Reduces a number modulo q.
*
* \param result The result array, which must be NUM_LIMBS_256BIT limbs in size.
* \param r The value to reduce, which must be NUM_LIMBS_512BIT + 1
* limbs in size.
*
* The \a r array will be modified by this function as a side effect of
* the division. It is allowed for \a result to be the same as \a r.
*
* \sa reduceQFromBuffer()
*/
void Ed25519::reduceQ(limb_t *result, limb_t *r)
{
// Algorithm from: http://en.wikipedia.org/wiki/Barrett_reduction
//
// We assume that r is less than or equal to (q - 1)^2.
//
// We want to compute result = r mod q. Find the smallest k such
// that 2^k > q. In our case, k = 253. Then set m = floor(4^k / q)
// and let r = r - q * floor(m * r / 4^k). This will be the result
// or it will be at most one subtraction of q away from the result.
//
// Note: 4^k = 4^253 = 2^506 = 2^512/2^6. We can more easily compute
// the result we want if we set m = floor(4^k * 2^6 / q) instead and
// then r = r - q * floor(m * r / 2^512). Because the slight extra
// precision in m, r is at most two subtractions of q away from the
// final result.
static limb_t const numM[NUM_LIMBS_256BIT + 1] PROGMEM = {
LIMB(0x0A2C131B), LIMB(0xED9CE5A3), LIMB(0x086329A7), LIMB(0x2106215D),
LIMB(0xFFFFFFEB), LIMB(0xFFFFFFFF), LIMB(0xFFFFFFFF), LIMB(0xFFFFFFFF),
0x0F
};
limb_t temp[NUM_LIMBS_512BIT + NUM_LIMBS_256BIT + 1];
// Multiply r by m.
BigNumberUtil::mul_P(temp, r, NUM_LIMBS_512BIT, numM, NUM_LIMBS_256BIT + 1);
// Multiply (m * r) / 2^512 by q and subtract it from r.
// We can ignore the high words of the subtraction result
// because they will all turn into zero after the subtraction.
BigNumberUtil::mul_P(temp, temp + NUM_LIMBS_512BIT, NUM_LIMBS_256BIT + 1,
numQ, NUM_LIMBS_256BIT);
BigNumberUtil::sub(r, r, temp, NUM_LIMBS_256BIT);
// Perform two subtractions of q from the result to reduce it.
BigNumberUtil::reduceQuick_P(result, r, numQ, NUM_LIMBS_256BIT);
BigNumberUtil::reduceQuick_P(result, result, numQ, NUM_LIMBS_256BIT);
// Clean up and exit.
clean(temp);
}
/**
* \brief Multiplies a value by a curve point.
*
* \param result The result of the multiplication.
* \param s The value, which must be NUM_LIMBS_256BIT limbs in size.
* \param p The curve point, which will be modified by this function.
* \param constTime Set to true if the evaluation must be constant-time
* because \a s is a secret value.
*/
void Ed25519::mul(Point &result, const limb_t *s, Point &p, bool constTime)
{
Point q;
limb_t A[NUM_LIMBS_256BIT];
limb_t B[NUM_LIMBS_256BIT];
limb_t C[NUM_LIMBS_256BIT];
limb_t D[NUM_LIMBS_256BIT];
limb_t mask, select;
uint8_t sposn, t;
// Initialize the result to (0, 1, 1, 0).
memset(&result, 0, sizeof(Point));
result.y[0] = 1;
result.z[0] = 1;
// Iterate over the 255 bits of "s" to calculate "s * p".
mask = 1;
sposn = 0;
for (t = 255; t > 0; --t) {
// Add p to the result to produce q. The specification refers
// to temporary variables A to H. We can dispense with E to H
// by using B, D, q.z, and q.t to hold those values temporarily.
select = s[sposn] & mask;
if (constTime || select) {
Curve25519::sub(A, result.y, result.x);
Curve25519::sub(C, p.y, p.x);
Curve25519::mul(A, A, C);
Curve25519::add(B, result.y, result.x);
Curve25519::add(C, p.y, p.x);
Curve25519::mul(B, B, C);
Curve25519::mul(C, result.t, p.t);
Curve25519::mul_P(C, C, numDx2);
Curve25519::mul(D, result.z, p.z);
Curve25519::add(D, D, D);
Curve25519::sub(q.t, B, A); // E = B - A
Curve25519::sub(q.z, D, C); // F = D - C
Curve25519::add(D, D, C); // G = D + C
Curve25519::add(B, B, A); // H = B + A
if (constTime) {
// Put the intermediate value into q.
Curve25519::mul(q.x, q.t, q.z); // q.x = E * F
Curve25519::mul(q.y, D, B); // q.y = G * H
Curve25519::mul(q.z, q.z, D); // q.z = F * G
Curve25519::mul(q.t, q.t, B); // q.t = E * H
// Copy q into the result if the current bit of s is 1.
Curve25519::cmove(select, result.x, q.x);
Curve25519::cmove(select, result.y, q.y);
Curve25519::cmove(select, result.z, q.z);
Curve25519::cmove(select, result.t, q.t);
} else {
// Put the intermediate value directly into the result.
Curve25519::mul(result.x, q.t, q.z); // q.x = E * F
Curve25519::mul(result.y, D, B); // q.y = G * H
Curve25519::mul(result.z, q.z, D); // q.z = F * G
Curve25519::mul(result.t, q.t, B); // q.t = E * H
}
}
// Double p for the next iteration.
Curve25519::sub(A, p.y, p.x);
Curve25519::square(A, A);
Curve25519::add(B, p.y, p.x);
Curve25519::square(B, B);
Curve25519::square(C, p.t);
Curve25519::mul_P(C, C, numDx2);
Curve25519::square(D, p.z);
Curve25519::add(D, D, D);
Curve25519::sub(p.t, B, A); // E = B - A
Curve25519::sub(p.z, D, C); // F = D - C
Curve25519::add(D, D, C); // G = D + C
Curve25519::add(B, B, A); // H = B + A
Curve25519::mul(p.x, p.t, p.z); // p.x = E * F
Curve25519::mul(p.y, D, B); // p.y = G * H
Curve25519::mul(p.z, p.z, D); // p.z = F * G
Curve25519::mul(p.t, p.t, B); // p.t = E * H
// Move onto the next bit of s from lowest to highest.
if (mask != (((limb_t)1) << (LIMB_BITS - 1))) {
mask <<= 1;
} else {
++sposn;
mask = 1;
}
}
// Clean up.
clean(q);
clean(A);
clean(B);
clean(C);
clean(D);
}
/**
* \brief Multiplies a value by the base point of the curve.
*
* \param result The result of the multiplication.
* \param s The value, which must be NUM_LIMBS_256BIT limbs in size.
* \param constTime Set to true if the evaluation must be constant-time
* because \a s is a secret values.
*/
void Ed25519::mul(Point &result, const limb_t *s, bool constTime)
{
Point P;
memcpy_P(P.x, numBx, sizeof(P.x));
memcpy_P(P.y, numBy, sizeof(P.y));
memcpy_P(P.z, numBz, sizeof(P.z));
memcpy_P(P.t, numBt, sizeof(P.t));
mul(result, s, P, constTime);
clean(P);
}
/**
* \brief Adds two curve points.
*
* \param p The first point and the result.
* \param q The second point.
*/
void Ed25519::add(Point &p, const Point &q)
{
limb_t A[NUM_LIMBS_256BIT];
limb_t B[NUM_LIMBS_256BIT];
limb_t C[NUM_LIMBS_256BIT];
limb_t D[NUM_LIMBS_256BIT];
Curve25519::sub(A, p.y, p.x);
Curve25519::sub(C, q.y, q.x);
Curve25519::mul(A, A, C);
Curve25519::add(B, p.y, p.x);
Curve25519::add(C, q.y, q.x);
Curve25519::mul(B, B, C);
Curve25519::mul(C, p.t, q.t);
Curve25519::mul_P(C, C, numDx2);
Curve25519::mul(D, p.z, q.z);
Curve25519::add(D, D, D);
Curve25519::sub(p.t, B, A); // E = B - A
Curve25519::sub(p.z, D, C); // F = D - C
Curve25519::add(D, D, C); // G = D + C
Curve25519::add(B, B, A); // H = B + A
Curve25519::mul(p.x, p.t, p.z); // p.x = E * F
Curve25519::mul(p.y, D, B); // p.y = G * H
Curve25519::mul(p.z, p.z, D); // p.z = F * G
Curve25519::mul(p.t, p.t, B); // p.t = E * H
clean(A);
clean(B);
clean(C);
clean(D);
}
/**
* \brief Determine if two curve points are equal.
*
* \param p The first curve point.
* \param q The second curve point.
*
* \return Returns true if \a p and \a q are equal; false otherwise.
*/
bool Ed25519::equal(const Point &p, const Point &q)
{
limb_t a[NUM_LIMBS_256BIT];
limb_t b[NUM_LIMBS_256BIT];
bool result = true;
Curve25519::mul(a, p.x, q.z);
Curve25519::mul(b, q.x, p.z);
result &= secure_compare(a, b, sizeof(a));
Curve25519::mul(a, p.y, q.z);
Curve25519::mul(b, q.y, p.z);
result &= secure_compare(a, b, sizeof(a));
clean(a);
clean(b);
return result;
}
/**
* \brief Encodes a curve point into a 32-byte buffer.
*
* \param buf The buffer to encode into.
* \param point The curve point to encode. This value will be modified
* the function and effectively destroyed.
*
* \sa decodePoint()
*/
void Ed25519::encodePoint(uint8_t *buf, Point &point)
{
// Convert the homogeneous coordinates into plain (x, y) coordinates:
// zinv = z^(-1) mod p
// x = x * zinv mod p
// y = y * zinv mod p
// We don't need the t coordinate, so use that to store zinv temporarily.
Curve25519::recip(point.t, point.z);
Curve25519::mul(point.x, point.x, point.t);
Curve25519::mul(point.y, point.y, point.t);
// Copy the lowest bit of x to the highest bit of y.
point.y[NUM_LIMBS_256BIT - 1] |= (point.x[0] << (LIMB_BITS - 1));
// Convert y into little-endian in the return buffer.
BigNumberUtil::packLE(buf, 32, point.y, NUM_LIMBS_256BIT);
}
/**
* \brief Decodes a curve point from a 32-byte buffer.
*
* \param point The curve point that was decoded from the buffer.
* \param buf The buffer to decode.
*
* \return Returns true if the point was decoded or false if the contents
* of the buffer do not correspond to a legitimate curve point.
*
* \note This function is not constant time so it should only be used
* on publicly-known values.
*/
bool Ed25519::decodePoint(Point &point, const uint8_t *buf)
{
limb_t temp[NUM_LIMBS_256BIT];
// Convert the input buffer from little-endian into the limbs of y.
BigNumberUtil::unpackLE(point.y, NUM_LIMBS_256BIT, buf, 32);
// The high bit of y is the sign bit for x.
limb_t sign = point.y[NUM_LIMBS_256BIT - 1] >> (LIMB_BITS - 1);
point.y[NUM_LIMBS_256BIT - 1] &= ~(((limb_t)1) << (LIMB_BITS - 1));
// Set z to 1.
memcpy_P(point.z, numBz, sizeof(point.z));
// Compute t = (y * y - 1) * modinv(d * y * y + 1).
Curve25519::square(point.t, point.y);
Curve25519::sub(point.x, point.t, point.z);
Curve25519::mul_P(point.t, point.t, numD);
Curve25519::add(point.t, point.t, point.z);
Curve25519::recip(temp, point.t);
Curve25519::mul(point.t, point.x, temp);
clean(temp);
// Check for t = 0.
limb_t check = point.t[0];
for (uint8_t posn = 1; posn < NUM_LIMBS_256BIT; ++posn)
check |= point.t[posn];
if (!check) {
// If the sign bit is set, then decoding has failed.
// Otherwise x is zero and we're done.
if (sign)
return false;
memset(point.x, 0, sizeof(point.x));
return true;
}
// Recover x by taking the sqrt of t and flipping the sign if necessary.
if (!Curve25519::sqrt(point.x, point.t))
return false;
if (sign != (point.x[0] & ((limb_t)1))) {
// The signs are different so we want the other square root.
memset(point.t, 0, sizeof(point.t));
Curve25519::sub(point.x, point.t, point.x);
}
// Finally, t = x * y.
Curve25519::mul(point.t, point.x, point.y);
return true;
}
/**
* \brief Derive key material from a 32-byte private key.
*
* \param hash SHA512 hash object from the caller for use in this function.
* The 64-byte output buffer within this hash object will contain the
* hash prefix on exit.
* \param a The secret scalar derived from \a privateKey. This must be
* NUM_LIMBS_256BIT limbs in size.
* \param privateKey The 32-byte private key to derive all other values from.
*/
void Ed25519::deriveKeys(SHA512 *hash, limb_t *a, const uint8_t privateKey[32])
{
// Hash the private key to get the "a" scalar and the message prefix.
uint8_t *buf = (uint8_t *)(hash->state.w); // Reuse hash buffer to save memory.
hash->reset();
hash->update(privateKey, 32);
hash->finalize(buf, 0);
buf[0] &= 0xF8;
buf[31] &= 0x7F;
buf[31] |= 0x40;
// Unpack the first half of the hash value into "a".
BigNumberUtil::unpackLE(a, NUM_LIMBS_256BIT, buf, 32);
}

View File

@ -0,0 +1,71 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef CRYPTO_ED25519_h
#define CRYPTO_ED25519_h
#include "BigNumberUtil.h"
#include "SHA512.h"
class Ed25519
{
public:
static void sign(uint8_t signature[64], const uint8_t privateKey[32],
const uint8_t publicKey[32], const void *message,
size_t len);
static bool verify(const uint8_t signature[64], const uint8_t publicKey[32],
const void *message, size_t len);
static void generatePrivateKey(uint8_t privateKey[32]);
static void derivePublicKey(uint8_t publicKey[32], const uint8_t privateKey[32]);
private:
// Constructor and destructor are private - cannot instantiate this class.
Ed25519();
~Ed25519();
// Curve point represented in extended homogeneous coordinates.
struct Point
{
limb_t x[32 / sizeof(limb_t)];
limb_t y[32 / sizeof(limb_t)];
limb_t z[32 / sizeof(limb_t)];
limb_t t[32 / sizeof(limb_t)];
};
static void reduceQFromBuffer(limb_t *result, const uint8_t buf[64], limb_t *temp);
static void reduceQ(limb_t *result, limb_t *r);
static void mul(Point &result, const limb_t *s, Point &p, bool constTime = true);
static void mul(Point &result, const limb_t *s, bool constTime = true);
static void add(Point &p, const Point &q);
static bool equal(const Point &p, const Point &q);
static void encodePoint(uint8_t *buf, Point &point);
static bool decodePoint(Point &point, const uint8_t *buf);
static void deriveKeys(SHA512 *hash, limb_t *a, const uint8_t privateKey[32]);
};
#endif

View File

@ -23,6 +23,7 @@
#include "Poly1305.h" #include "Poly1305.h"
#include "Crypto.h" #include "Crypto.h"
#include "utility/EndianUtil.h" #include "utility/EndianUtil.h"
#include "utility/LimbUtil.h"
#include <string.h> #include <string.h>
/** /**
@ -58,10 +59,8 @@
* http://cr.yp.to/mac.html * http://cr.yp.to/mac.html
*/ */
// Useful sizes for limb array and word manipulation. // Limb array with enough space for 130 bits.
#define NUM_LIMBS_128BIT (16 / sizeof(limb_t)) #define NUM_LIMBS_130BIT (NUM_LIMBS_128BIT + 1)
#define NUM_LIMBS_130BIT ((16 / sizeof(limb_t)) + 1)
#define LIMB_BITS (sizeof(limb_t) * 8)
// Endian helper macros for limbs and arrays of limbs. // Endian helper macros for limbs and arrays of limbs.
#if BIGNUMBER_LIMB_8BIT #if BIGNUMBER_LIMB_8BIT

View File

@ -25,6 +25,8 @@
#include "Hash.h" #include "Hash.h"
class Ed25519;
class SHA512 : public Hash class SHA512 : public Hash
{ {
public: public:
@ -53,6 +55,8 @@ private:
} state; } state;
void processChunk(); void processChunk();
friend class Ed25519;
}; };
#endif #endif

View File

@ -99,10 +99,10 @@ void printNumber(const char *name, const limb_t *x)
static const char hexchars[] = "0123456789ABCDEF"; static const char hexchars[] = "0123456789ABCDEF";
Serial.print(name); Serial.print(name);
Serial.print(" = "); Serial.print(" = ");
for (uint8_t posn = 0; posn < NUM_LIMBS; ++posn) { for (uint8_t posn = NUM_LIMBS; posn > 0; --posn) {
for (uint8_t bit = LIMB_BITS; bit > 0; ) { for (uint8_t bit = LIMB_BITS; bit > 0; ) {
bit -= 4; bit -= 4;
Serial.print(hexchars[(x[posn] >> bit) & 0x0F]); Serial.print(hexchars[(x[posn - 1] >> bit) & 0x0F]);
} }
Serial.print(' '); Serial.print(' ');
} }
@ -603,6 +603,68 @@ void testRecip()
Serial.println(); Serial.println();
} }
void testSqrt(const char *x)
{
Serial.print("sqrt(");
printProgMem(x);
Serial.print("^2): ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
Curve25519::square(arg2, arg1);
bool ok = Curve25519::sqrt(result, arg2);
if (ok) {
ok = (compare(result, arg1) == 0);
if (!ok) {
// Check the negation of arg1 as well because we could
// have ended up with the inverse of the original value.
memset(temp, 0, sizeof(temp));
Curve25519::sub(temp, temp, arg1);
ok = (compare(result, temp) == 0);
}
} else {
Serial.println("no sqrt ... ");
}
if (ok) {
Serial.println("ok");
} else {
Serial.println("failed");
printNumber("actual", result);
printNumber("expected", arg1);
}
}
void testNoSqrt(const char *x)
{
Serial.print("no sqrt(");
printProgMem(x);
Serial.print("): ");
Serial.flush();
fromString(arg1, NUM_LIMBS, x);
bool ok = !Curve25519::sqrt(result, arg1);
if (ok) {
Serial.println("ok");
} else {
Serial.println("failed");
printNumber("actual", result);
}
}
void testSqrt()
{
Serial.println("Square root:");
foreach_number (x) {
testSqrt(x);
}
testNoSqrt(num_128);
testNoSqrt(num_pi);
Serial.println();
}
void setup() void setup()
{ {
Serial.begin(9600); Serial.begin(9600);
@ -613,6 +675,7 @@ void setup()
testMulA24(); testMulA24();
testSwap(); testSwap();
testRecip(); testRecip();
testSqrt();
} }
void loop() void loop()

View File

@ -0,0 +1,241 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the Ed25519 algorithm.
*/
#include <Crypto.h>
#include <Ed25519.h>
#include <RNG.h>
#include <utility/ProgMemUtil.h>
#include <string.h>
struct TestVector
{
const char *name;
uint8_t privateKey[32];
uint8_t publicKey[32];
uint8_t message[2];
size_t len;
uint8_t signature[64];
};
// Test vectors for Ed25519 from:
// https://tools.ietf.org/id/draft-josefsson-eddsa-ed25519-02.txt
static TestVector const testVectorEd25519_1 PROGMEM = {
.name = "Ed25519 #1",
.privateKey = {0x9d, 0x61, 0xb1, 0x9d, 0xef, 0xfd, 0x5a, 0x60,
0xba, 0x84, 0x4a, 0xf4, 0x92, 0xec, 0x2c, 0xc4,
0x44, 0x49, 0xc5, 0x69, 0x7b, 0x32, 0x69, 0x19,
0x70, 0x3b, 0xac, 0x03, 0x1c, 0xae, 0x7f, 0x60},
.publicKey = {0xd7, 0x5a, 0x98, 0x01, 0x82, 0xb1, 0x0a, 0xb7,
0xd5, 0x4b, 0xfe, 0xd3, 0xc9, 0x64, 0x07, 0x3a,
0x0e, 0xe1, 0x72, 0xf3, 0xda, 0xa6, 0x23, 0x25,
0xaf, 0x02, 0x1a, 0x68, 0xf7, 0x07, 0x51, 0x1a},
.message = {0x00, 0x00},
.len = 0,
.signature = {0xe5, 0x56, 0x43, 0x00, 0xc3, 0x60, 0xac, 0x72,
0x90, 0x86, 0xe2, 0xcc, 0x80, 0x6e, 0x82, 0x8a,
0x84, 0x87, 0x7f, 0x1e, 0xb8, 0xe5, 0xd9, 0x74,
0xd8, 0x73, 0xe0, 0x65, 0x22, 0x49, 0x01, 0x55,
0x5f, 0xb8, 0x82, 0x15, 0x90, 0xa3, 0x3b, 0xac,
0xc6, 0x1e, 0x39, 0x70, 0x1c, 0xf9, 0xb4, 0x6b,
0xd2, 0x5b, 0xf5, 0xf0, 0x59, 0x5b, 0xbe, 0x24,
0x65, 0x51, 0x41, 0x43, 0x8e, 0x7a, 0x10, 0x0b}
};
static TestVector const testVectorEd25519_2 PROGMEM = {
.name = "Ed25519 #2",
.privateKey = {0x4c, 0xcd, 0x08, 0x9b, 0x28, 0xff, 0x96, 0xda,
0x9d, 0xb6, 0xc3, 0x46, 0xec, 0x11, 0x4e, 0x0f,
0x5b, 0x8a, 0x31, 0x9f, 0x35, 0xab, 0xa6, 0x24,
0xda, 0x8c, 0xf6, 0xed, 0x4f, 0xb8, 0xa6, 0xfb},
.publicKey = {0x3d, 0x40, 0x17, 0xc3, 0xe8, 0x43, 0x89, 0x5a,
0x92, 0xb7, 0x0a, 0xa7, 0x4d, 0x1b, 0x7e, 0xbc,
0x9c, 0x98, 0x2c, 0xcf, 0x2e, 0xc4, 0x96, 0x8c,
0xc0, 0xcd, 0x55, 0xf1, 0x2a, 0xf4, 0x66, 0x0c},
.message = {0x72, 0x00},
.len = 1,
.signature = {0x92, 0xa0, 0x09, 0xa9, 0xf0, 0xd4, 0xca, 0xb8,
0x72, 0x0e, 0x82, 0x0b, 0x5f, 0x64, 0x25, 0x40,
0xa2, 0xb2, 0x7b, 0x54, 0x16, 0x50, 0x3f, 0x8f,
0xb3, 0x76, 0x22, 0x23, 0xeb, 0xdb, 0x69, 0xda,
0x08, 0x5a, 0xc1, 0xe4, 0x3e, 0x15, 0x99, 0x6e,
0x45, 0x8f, 0x36, 0x13, 0xd0, 0xf1, 0x1d, 0x8c,
0x38, 0x7b, 0x2e, 0xae, 0xb4, 0x30, 0x2a, 0xee,
0xb0, 0x0d, 0x29, 0x16, 0x12, 0xbb, 0x0c, 0x00}
};
static TestVector testVector;
void printNumber(const char *name, const uint8_t *x, uint8_t len)
{
static const char hexchars[] = "0123456789ABCDEF";
Serial.print(name);
Serial.print(" = ");
for (uint8_t posn = 0; posn < len; ++posn) {
Serial.print(hexchars[(x[posn] >> 4) & 0x0F]);
Serial.print(hexchars[x[posn] & 0x0F]);
}
Serial.println();
}
void testFixedVectors(const struct TestVector *test)
{
// Copy the test vector out of program memory.
memcpy_P(&testVector, test, sizeof(TestVector));
test = &testVector;
// Sign using the test vector.
uint8_t signature[64];
Serial.print(test->name);
Serial.print(" sign ... ");
Serial.flush();
unsigned long start = micros();
Ed25519::sign(signature, test->privateKey, test->publicKey,
test->message, test->len);
unsigned long elapsed = micros() - start;
if (memcmp(signature, test->signature, 64) == 0) {
Serial.print("ok");
} else {
Serial.println("failed");
printNumber("actual ", signature, 64);
printNumber("expected", test->signature, 64);
}
Serial.print(" (elapsed ");
Serial.print(elapsed);
Serial.println(" us)");
// Verify using the test vector.
Serial.print(test->name);
Serial.print(" verify ... ");
Serial.flush();
start = micros();
bool verified = Ed25519::verify(signature, test->publicKey, test->message, test->len);
elapsed = micros() - start;
if (verified) {
Serial.print("ok");
} else {
Serial.println("failed");
}
Serial.print(" (elapsed ");
Serial.print(elapsed);
Serial.println(" us)");
// Check derivation of the public key from the private key.
Serial.print(test->name);
Serial.print(" derive public key ... ");
Serial.flush();
start = micros();
Ed25519::derivePublicKey(signature, test->privateKey);
elapsed = micros() - start;
if (memcmp(signature, test->publicKey, 32) == 0) {
Serial.print("ok");
} else {
Serial.println("failed");
printNumber("actual ", signature, 32);
printNumber("expected", test->publicKey, 32);
}
Serial.print(" (elapsed ");
Serial.print(elapsed);
Serial.println(" us)");
}
void testFixedVectors()
{
//Serial.println("Fixed test vectors:");
testFixedVectors(&testVectorEd25519_1);
testFixedVectors(&testVectorEd25519_2);
}
/*
void testDH()
{
static uint8_t alice_k[32];
static uint8_t alice_f[32];
static uint8_t bob_k[32];
static uint8_t bob_f[32];
Serial.println("Diffie-Hellman key exchange:");
Serial.print("Generate random k/f for Alice ... ");
Serial.flush();
unsigned long start = micros();
Curve25519::dh1(alice_k, alice_f);
unsigned long elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Generate random k/f for Bob ... ");
Serial.flush();
start = micros();
Curve25519::dh1(bob_k, bob_f);
elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Generate shared secret for Alice ... ");
Serial.flush();
start = micros();
Curve25519::dh2(bob_k, alice_f);
elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Generate shared secret for Bob ... ");
Serial.flush();
start = micros();
Curve25519::dh2(alice_k, bob_f);
elapsed = micros() - start;
Serial.print("elapsed ");
Serial.print(elapsed);
Serial.println(" us");
Serial.print("Check that the shared secrets match ... ");
if (memcmp(alice_k, bob_k, 32) == 0)
Serial.println("ok");
else
Serial.println("failed");
}
*/
void setup()
{
Serial.begin(9600);
// Start the random number generator. We don't initialise a noise
// source here because we don't need one for testing purposes.
// Real applications should of course use a proper noise source.
RNG.begin("TestEd25519 1.0", 500);
// Perform the tests.
testFixedVectors();
Serial.println();
//testDH();
//Serial.println();
}
void loop()
{
}

View File

@ -0,0 +1,59 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef CRYPTO_LIMBUTIL_H
#define CRYPTO_LIMBUTIL_H
#include "ProgMemUtil.h"
// Number of limbs in a big number value of various sizes.
#define NUM_LIMBS_128BIT (16 / sizeof(limb_t))
#define NUM_LIMBS_256BIT (32 / sizeof(limb_t))
#define NUM_LIMBS_512BIT (64 / sizeof(limb_t))
// The number of bits in a limb.
#define LIMB_BITS (8 * sizeof(limb_t))
// Read a limb-sized quantity from program memory.
#if BIGNUMBER_LIMB_8BIT
#define pgm_read_limb(x) (pgm_read_byte((x)))
#elif BIGNUMBER_LIMB_16BIT
#define pgm_read_limb(x) (pgm_read_word((x)))
#elif BIGNUMBER_LIMB_32BIT
#define pgm_read_limb(x) (pgm_read_dword((x)))
#endif
// Expand a 32-bit value into a set of limbs depending upon the limb size.
// This is used when initializing constant big number values in the code.
#if BIGNUMBER_LIMB_8BIT
#define LIMB(value) ((uint8_t)(value)), \
((uint8_t)((value) >> 8)), \
((uint8_t)((value) >> 16)), \
((uint8_t)((value) >> 24))
#elif BIGNUMBER_LIMB_16BIT
#define LIMB(value) ((uint16_t)(value)), \
((uint16_t)((value) >> 16))
#elif BIGNUMBER_LIMB_32BIT
#define LIMB(value) (value)
#endif
#endif