mirror of
https://github.com/taigrr/arduinolibs
synced 2025-01-18 04:33:12 -08:00
ACORN-128 AEAD cipher
This commit is contained in:
parent
5ca5f805d2
commit
91bffb9d1f
@ -656,6 +656,7 @@ WARN_LOGFILE =
|
||||
# with spaces.
|
||||
|
||||
INPUT = ../libraries/Crypto \
|
||||
../libraries/CryptoLW/src \
|
||||
../libraries/NewHope \
|
||||
../libraries/RingOscillatorNoiseSource \
|
||||
../libraries/TransistorNoiseSource \
|
||||
|
@ -29,7 +29,7 @@
|
||||
\li Block ciphers: AES128, AES192, AES256, Speck
|
||||
\li Block cipher modes: CTR, CFB, CBC, OFB, EAX, GCM, XTS
|
||||
\li Stream ciphers: ChaCha
|
||||
\li Authenticated encryption with associated data (AEAD): ChaChaPoly, EAX, GCM
|
||||
\li Authenticated encryption with associated data (AEAD): ChaChaPoly, EAX, GCM, Acorn128
|
||||
\li Hash algorithms: SHA256, SHA512, SHA3_256, SHA3_512, BLAKE2s, BLAKE2b (regular and HMAC modes)
|
||||
\li Extendable output functions (XOF's): SHAKE128, SHAKE256
|
||||
\li Message authenticators: Poly1305, GHASH, OMAC
|
||||
@ -206,6 +206,7 @@ All figures are for the Arduino Due running at 84 MHz:
|
||||
<tr><td>EAX<AES256></td><td align="right">16.99us</td><td align="right">16.99us</td><td align="right">322.92us</td><td align="right">344</td></tr>
|
||||
<tr><td>EAX<Speck> (256-bit key)</td><td align="right">2.80us</td><td align="right">2.80us</td><td align="right">81.63us</td><td align="right">384</td></tr>
|
||||
<tr><td>EAX<SpeckTiny> (256-bit key)</td><td align="right">6.69us</td><td align="right">6.69us</td><td align="right">110.91us</td><td align="right">144</td></tr>
|
||||
<tr><td>Acorn128</td><td align="right">0.75us</td><td align="right">0.75us</td><td align="right">175.70us</td><td align="right">64</td></tr>
|
||||
<tr><td colspan="5"> </td></tr>
|
||||
<tr><td>Hash Algorithm</td><td align="right">Hashing (per byte)</td><td align="right">Finalization</td><td> </td><td>State Size (bytes)</td></tr>
|
||||
<tr><td>SHA256</td><td align="right">1.15us</td><td align="right">76.60us</td><td align="right"> </td><td align="right">120</td></tr>
|
||||
|
415
libraries/CryptoLW/examples/TestAcorn/TestAcorn.ino
Normal file
415
libraries/CryptoLW/examples/TestAcorn/TestAcorn.ino
Normal file
@ -0,0 +1,415 @@
|
||||
/*
|
||||
* Copyright (C) 2018 Southern Storm Software, Pty Ltd.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
/*
|
||||
This example runs tests on the Acorn128 implementation to verify
|
||||
correct behaviour.
|
||||
*/
|
||||
|
||||
#include <Crypto.h>
|
||||
#include <CryptoLW.h>
|
||||
#include <Acorn128.h>
|
||||
#include "utility/ProgMemUtil.h"
|
||||
|
||||
#define MAX_PLAINTEXT_LEN 73
|
||||
#define MAX_AUTHDATA_LEN 39
|
||||
|
||||
struct TestVector
|
||||
{
|
||||
const char *name;
|
||||
uint8_t key[16];
|
||||
uint8_t plaintext[MAX_PLAINTEXT_LEN];
|
||||
uint8_t ciphertext[MAX_PLAINTEXT_LEN];
|
||||
uint8_t authdata[MAX_AUTHDATA_LEN];
|
||||
uint8_t iv[16];
|
||||
uint8_t tag[16];
|
||||
size_t authsize;
|
||||
size_t datasize;
|
||||
};
|
||||
|
||||
// Test vectors for Acorn128 from the specification.
|
||||
static TestVector const testVectorAcorn128_1 PROGMEM = {
|
||||
.name = "Acorn128 #1",
|
||||
.key = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
||||
.plaintext = {0},
|
||||
.ciphertext = {0},
|
||||
.authdata = {0},
|
||||
.iv = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
||||
.tag = {0x83, 0x5e, 0x53, 0x17, 0x89, 0x6e, 0x86, 0xb2,
|
||||
0x44, 0x71, 0x43, 0xc7, 0x4f, 0x6f, 0xfc, 0x1e},
|
||||
.authsize = 0,
|
||||
.datasize = 0
|
||||
};
|
||||
static TestVector const testVectorAcorn128_2 PROGMEM = {
|
||||
.name = "Acorn128 #2",
|
||||
.key = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
||||
.plaintext = {0x01},
|
||||
.ciphertext = {0x2b},
|
||||
.authdata = {0},
|
||||
.iv = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
||||
.tag = {0x4b, 0x60, 0x64, 0x0e, 0x26, 0xf0, 0xa9, 0x9d,
|
||||
0xd0, 0x1f, 0x93, 0xbf, 0x63, 0x49, 0x97, 0xcb},
|
||||
.authsize = 0,
|
||||
.datasize = 1
|
||||
};
|
||||
static TestVector const testVectorAcorn128_3 PROGMEM = {
|
||||
.name = "Acorn128 #3",
|
||||
.key = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
||||
.plaintext = {0},
|
||||
.ciphertext = {0},
|
||||
.authdata = {0x01},
|
||||
.iv = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
||||
.tag = {0x98, 0x2e, 0xf7, 0xd1, 0xbb, 0xa7, 0xf8, 0x9a,
|
||||
0x15, 0x75, 0x29, 0x7a, 0x09, 0x5c, 0xd7, 0xf2},
|
||||
.authsize = 1,
|
||||
.datasize = 0
|
||||
};
|
||||
static TestVector const testVectorAcorn128_4 PROGMEM = {
|
||||
.name = "Acorn128 #4",
|
||||
.key = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},
|
||||
.plaintext = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
|
||||
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},
|
||||
.ciphertext = {0x86, 0x80, 0x1f, 0xa8, 0x9e, 0x33, 0xd9, 0x92,
|
||||
0x35, 0xdd, 0x4d, 0x1a, 0x72, 0xce, 0x00, 0x1a},
|
||||
.authdata = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
|
||||
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},
|
||||
.iv = {0x00, 0x03, 0x06, 0x09, 0x0c, 0x0f, 0x12, 0x15,
|
||||
0x18, 0x1b, 0x1e, 0x21, 0x24, 0x27, 0x2a, 0x2d},
|
||||
.tag = {0xd9, 0xc6, 0x6b, 0x4a, 0xdb, 0x3c, 0xde, 0x07,
|
||||
0x3e, 0x63, 0x50, 0xcc, 0x7e, 0x23, 0x7e, 0x01},
|
||||
.authsize = 16,
|
||||
.datasize = 16
|
||||
};
|
||||
static TestVector const testVectorAcorn128_5 PROGMEM = {
|
||||
.name = "Acorn128 #5",
|
||||
.key = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f},
|
||||
.plaintext = {0x00, 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31,
|
||||
0x38, 0x3f, 0x46, 0x4d, 0x54, 0x5b, 0x62, 0x69,
|
||||
0x70, 0x77, 0x7e, 0x85, 0x8c, 0x93, 0x9a, 0xa1,
|
||||
0xa8, 0xaf, 0xb6, 0xbd, 0xc4, 0xcb, 0xd2, 0xd9,
|
||||
0xe0, 0xe7, 0xee, 0xf5, 0xfc, 0x03, 0x0a, 0x11,
|
||||
0x18, 0x1f, 0x26, 0x2d, 0x34, 0x3b, 0x42, 0x49,
|
||||
0x50, 0x57, 0x5e, 0x65, 0x6c, 0x73, 0x7a, 0x81,
|
||||
0x88, 0x8f, 0x96, 0x9d, 0xa4, 0xab, 0xb2, 0xb9,
|
||||
0xc0, 0xc7, 0xce, 0xd5, 0xdc, 0xe3, 0xea, 0xf1,
|
||||
0xf8},
|
||||
.ciphertext = {0xe7, 0xef, 0x31, 0x63, 0x78, 0x44, 0x46, 0x44,
|
||||
0x70, 0x5c, 0x43, 0x81, 0xc8, 0x88, 0x83, 0x3b,
|
||||
0x6d, 0x62, 0xa7, 0x49, 0x00, 0x5a, 0xb8, 0xfa,
|
||||
0x14, 0x6a, 0x85, 0x90, 0x4d, 0x5e, 0x5a, 0xb7,
|
||||
0x7c, 0x57, 0x58, 0x21, 0x58, 0x39, 0x5d, 0x8f,
|
||||
0xe6, 0xb6, 0x66, 0xe6, 0xc8, 0x51, 0x77, 0x64,
|
||||
0x8a, 0xeb, 0x77, 0x84, 0xcf, 0x2e, 0xea, 0xed,
|
||||
0x3c, 0x22, 0xe7, 0xe9, 0x6b, 0xf5, 0x90, 0x09,
|
||||
0xcd, 0x7a, 0xd2, 0x1b, 0xa5, 0xdf, 0x1a, 0x0f,
|
||||
0xc0},
|
||||
.authdata = {0x00, 0x05, 0x0a, 0x0f, 0x14, 0x19, 0x1e, 0x23,
|
||||
0x28, 0x2d, 0x32, 0x37, 0x3c, 0x41, 0x46, 0x4b,
|
||||
0x50, 0x55, 0x5a, 0x5f, 0x64, 0x69, 0x6e, 0x73,
|
||||
0x78, 0x7d, 0x82, 0x87, 0x8c, 0x91, 0x96, 0x9b,
|
||||
0xa0, 0xa5, 0xaa, 0xaf, 0xb4, 0xb9, 0xbe},
|
||||
.iv = {0x00, 0x03, 0x06, 0x09, 0x0c, 0x0f, 0x12, 0x15,
|
||||
0x18, 0x1b, 0x1e, 0x21, 0x24, 0x27, 0x2a, 0x2d},
|
||||
.tag = {0x51, 0xb4, 0xbd, 0x86, 0xc6, 0x8c, 0xcf, 0x06,
|
||||
0x82, 0xf5, 0x69, 0x5d, 0x26, 0x67, 0xd5, 0x35},
|
||||
.authsize = 39,
|
||||
.datasize = 73
|
||||
};
|
||||
|
||||
TestVector testVector;
|
||||
|
||||
Acorn128 acorn;
|
||||
|
||||
byte buffer[MAX_PLAINTEXT_LEN];
|
||||
|
||||
bool testCipher_N(Acorn128 *cipher, const struct TestVector *test, size_t inc)
|
||||
{
|
||||
size_t posn, len;
|
||||
uint8_t tag[16];
|
||||
|
||||
if (!inc)
|
||||
inc = 1;
|
||||
|
||||
cipher->clear();
|
||||
if (!cipher->setKey(test->key, 16)) {
|
||||
Serial.print("setKey ");
|
||||
return false;
|
||||
}
|
||||
if (!cipher->setIV(test->iv, 16)) {
|
||||
Serial.print("setIV ");
|
||||
return false;
|
||||
}
|
||||
|
||||
memset(buffer, 0xBA, sizeof(buffer));
|
||||
|
||||
for (posn = 0; posn < test->authsize; posn += inc) {
|
||||
len = test->authsize - posn;
|
||||
if (len > inc)
|
||||
len = inc;
|
||||
cipher->addAuthData(test->authdata + posn, len);
|
||||
}
|
||||
|
||||
for (posn = 0; posn < test->datasize; posn += inc) {
|
||||
len = test->datasize - posn;
|
||||
if (len > inc)
|
||||
len = inc;
|
||||
cipher->encrypt(buffer + posn, test->plaintext + posn, len);
|
||||
}
|
||||
|
||||
if (memcmp(buffer, test->ciphertext, test->datasize) != 0) {
|
||||
Serial.print(buffer[0], HEX);
|
||||
Serial.print("->");
|
||||
Serial.print(test->ciphertext[0], HEX);
|
||||
return false;
|
||||
}
|
||||
|
||||
cipher->computeTag(tag, sizeof(tag));
|
||||
if (memcmp(tag, test->tag, sizeof(tag)) != 0) {
|
||||
Serial.print("computed wrong tag ... ");
|
||||
return false;
|
||||
}
|
||||
|
||||
cipher->setKey(test->key, 16);
|
||||
cipher->setIV(test->iv, 16);
|
||||
|
||||
for (posn = 0; posn < test->authsize; posn += inc) {
|
||||
len = test->authsize - posn;
|
||||
if (len > inc)
|
||||
len = inc;
|
||||
cipher->addAuthData(test->authdata + posn, len);
|
||||
}
|
||||
|
||||
for (posn = 0; posn < test->datasize; posn += inc) {
|
||||
len = test->datasize - posn;
|
||||
if (len > inc)
|
||||
len = inc;
|
||||
cipher->decrypt(buffer + posn, test->ciphertext + posn, len);
|
||||
}
|
||||
|
||||
if (memcmp(buffer, test->plaintext, test->datasize) != 0)
|
||||
return false;
|
||||
|
||||
if (!cipher->checkTag(tag, sizeof(tag))) {
|
||||
Serial.print("tag did not check ... ");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void testCipher(Acorn128 *cipher, const struct TestVector *test)
|
||||
{
|
||||
bool ok;
|
||||
|
||||
memcpy_P(&testVector, test, sizeof(TestVector));
|
||||
test = &testVector;
|
||||
|
||||
Serial.print(test->name);
|
||||
Serial.print(" ... ");
|
||||
|
||||
ok = testCipher_N(cipher, test, test->datasize);
|
||||
ok &= testCipher_N(cipher, test, 1);
|
||||
ok &= testCipher_N(cipher, test, 2);
|
||||
ok &= testCipher_N(cipher, test, 5);
|
||||
ok &= testCipher_N(cipher, test, 8);
|
||||
ok &= testCipher_N(cipher, test, 13);
|
||||
ok &= testCipher_N(cipher, test, 16);
|
||||
|
||||
if (ok)
|
||||
Serial.println("Passed");
|
||||
else
|
||||
Serial.println("Failed");
|
||||
}
|
||||
|
||||
void perfCipherSetKey(Acorn128 *cipher, const struct TestVector *test)
|
||||
{
|
||||
unsigned long start;
|
||||
unsigned long elapsed;
|
||||
int count;
|
||||
|
||||
memcpy_P(&testVector, test, sizeof(TestVector));
|
||||
test = &testVector;
|
||||
|
||||
Serial.print(test->name);
|
||||
Serial.print(" SetKey ... ");
|
||||
|
||||
start = micros();
|
||||
for (count = 0; count < 1000; ++count) {
|
||||
cipher->setKey(test->key, 16);
|
||||
cipher->setIV(test->iv, 16);
|
||||
}
|
||||
elapsed = micros() - start;
|
||||
|
||||
Serial.print(elapsed / 1000.0);
|
||||
Serial.print("us per operation, ");
|
||||
Serial.print((1000.0 * 1000000.0) / elapsed);
|
||||
Serial.println(" per second");
|
||||
}
|
||||
|
||||
void perfCipherEncrypt(Acorn128 *cipher, const struct TestVector *test)
|
||||
{
|
||||
unsigned long start;
|
||||
unsigned long elapsed;
|
||||
int count;
|
||||
|
||||
memcpy_P(&testVector, test, sizeof(TestVector));
|
||||
test = &testVector;
|
||||
|
||||
Serial.print(test->name);
|
||||
Serial.print(" Encrypt ... ");
|
||||
|
||||
cipher->setKey(test->key, 16);
|
||||
cipher->setIV(test->iv, 16);
|
||||
start = micros();
|
||||
for (count = 0; count < 500; ++count) {
|
||||
cipher->encrypt(buffer, buffer, 128);
|
||||
}
|
||||
elapsed = micros() - start;
|
||||
|
||||
Serial.print(elapsed / (128.0 * 500.0));
|
||||
Serial.print("us per byte, ");
|
||||
Serial.print((128.0 * 500.0 * 1000000.0) / elapsed);
|
||||
Serial.println(" bytes per second");
|
||||
}
|
||||
|
||||
void perfCipherDecrypt(Acorn128 *cipher, const struct TestVector *test)
|
||||
{
|
||||
unsigned long start;
|
||||
unsigned long elapsed;
|
||||
int count;
|
||||
|
||||
memcpy_P(&testVector, test, sizeof(TestVector));
|
||||
test = &testVector;
|
||||
|
||||
Serial.print(test->name);
|
||||
Serial.print(" Decrypt ... ");
|
||||
|
||||
cipher->setKey(test->key, 16);
|
||||
cipher->setIV(test->iv, 16);
|
||||
start = micros();
|
||||
for (count = 0; count < 500; ++count) {
|
||||
cipher->decrypt(buffer, buffer, 128);
|
||||
}
|
||||
elapsed = micros() - start;
|
||||
|
||||
Serial.print(elapsed / (128.0 * 500.0));
|
||||
Serial.print("us per byte, ");
|
||||
Serial.print((128.0 * 500.0 * 1000000.0) / elapsed);
|
||||
Serial.println(" bytes per second");
|
||||
}
|
||||
|
||||
void perfCipherAddAuthData(Acorn128 *cipher, const struct TestVector *test)
|
||||
{
|
||||
unsigned long start;
|
||||
unsigned long elapsed;
|
||||
int count;
|
||||
|
||||
memcpy_P(&testVector, test, sizeof(TestVector));
|
||||
test = &testVector;
|
||||
|
||||
Serial.print(test->name);
|
||||
Serial.print(" AddAuthData ... ");
|
||||
|
||||
cipher->setKey(test->key, 16);
|
||||
cipher->setIV(test->iv, 16);
|
||||
start = micros();
|
||||
memset(buffer, 0xBA, 128);
|
||||
for (count = 0; count < 500; ++count) {
|
||||
cipher->addAuthData(buffer, 128);
|
||||
}
|
||||
elapsed = micros() - start;
|
||||
|
||||
Serial.print(elapsed / (128.0 * 500.0));
|
||||
Serial.print("us per byte, ");
|
||||
Serial.print((128.0 * 500.0 * 1000000.0) / elapsed);
|
||||
Serial.println(" bytes per second");
|
||||
}
|
||||
|
||||
void perfCipherComputeTag(Acorn128 *cipher, const struct TestVector *test)
|
||||
{
|
||||
unsigned long start;
|
||||
unsigned long elapsed;
|
||||
int count;
|
||||
|
||||
memcpy_P(&testVector, test, sizeof(TestVector));
|
||||
test = &testVector;
|
||||
|
||||
Serial.print(test->name);
|
||||
Serial.print(" ComputeTag ... ");
|
||||
|
||||
cipher->setKey(test->key, 16);
|
||||
cipher->setIV(test->iv, 16);
|
||||
start = micros();
|
||||
for (count = 0; count < 1000; ++count) {
|
||||
cipher->computeTag(buffer, 16);
|
||||
}
|
||||
elapsed = micros() - start;
|
||||
|
||||
Serial.print(elapsed / 1000.0);
|
||||
Serial.print("us per operation, ");
|
||||
Serial.print((1000.0 * 1000000.0) / elapsed);
|
||||
Serial.println(" per second");
|
||||
}
|
||||
|
||||
void perfCipher(Acorn128 *cipher, const struct TestVector *test)
|
||||
{
|
||||
perfCipherSetKey(cipher, test);
|
||||
perfCipherEncrypt(cipher, test);
|
||||
perfCipherDecrypt(cipher, test);
|
||||
perfCipherAddAuthData(cipher, test);
|
||||
perfCipherComputeTag(cipher, test);
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
|
||||
Serial.println();
|
||||
|
||||
Serial.print("State Size ... ");
|
||||
Serial.println(sizeof(Acorn128));
|
||||
Serial.println();
|
||||
|
||||
Serial.println("Test Vectors:");
|
||||
testCipher(&acorn, &testVectorAcorn128_1);
|
||||
testCipher(&acorn, &testVectorAcorn128_2);
|
||||
testCipher(&acorn, &testVectorAcorn128_3);
|
||||
testCipher(&acorn, &testVectorAcorn128_4);
|
||||
testCipher(&acorn, &testVectorAcorn128_5);
|
||||
|
||||
Serial.println();
|
||||
|
||||
Serial.println("Performance Tests:");
|
||||
perfCipher(&acorn, &testVectorAcorn128_4);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
}
|
1
libraries/CryptoLW/keywords.txt
Normal file
1
libraries/CryptoLW/keywords.txt
Normal file
@ -0,0 +1 @@
|
||||
Acorn128 KEYWORD1
|
10
libraries/CryptoLW/library.properties
Normal file
10
libraries/CryptoLW/library.properties
Normal file
@ -0,0 +1,10 @@
|
||||
name=CryptoLW
|
||||
version=1.0.0
|
||||
author=Rhys Weatherley <rhys.weatherley@gmail.com>
|
||||
maintainer=Rhys Weatherley <rhys.weatherley@gmail.com>
|
||||
sentence=Light-weight algorithms for the Arduino Cryptography Library
|
||||
paragraph=This library provides implementations of various "light-weight" cryptography algorithms, designed for resource-constrained environments.
|
||||
category=Communication
|
||||
url=https://github.com/rweather/arduinolibs
|
||||
architectures=*
|
||||
includes=CryptoLW.h
|
668
libraries/CryptoLW/src/Acorn128.cpp
Normal file
668
libraries/CryptoLW/src/Acorn128.cpp
Normal file
@ -0,0 +1,668 @@
|
||||
/*
|
||||
* Copyright (C) 2018 Southern Storm Software, Pty Ltd.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "Acorn128.h"
|
||||
#include "Crypto.h"
|
||||
#include "utility/EndianUtil.h"
|
||||
#include <string.h>
|
||||
|
||||
/**
|
||||
* \class Acorn128 Acorn128.h <Acorn128.h>
|
||||
* \brief ACORN-128 authenticated cipher.
|
||||
*
|
||||
* Acorn128 is an authenticated cipher designed for memory-limited
|
||||
* environments with a 128-bit key, a 128-bit initialization vector,
|
||||
* and a 128-bit authentication tag. It was one of the finalists
|
||||
* in the CAESAR AEAD competition.
|
||||
*
|
||||
* References: http://competitions.cr.yp.to/round3/acornv3.pdf,
|
||||
* http://competitions.cr.yp.to/caesar-submissions.html
|
||||
*
|
||||
* \sa AuthenticatedCipher
|
||||
*/
|
||||
|
||||
/**
|
||||
* \brief Constructs a new Acorn128 authenticated cipher.
|
||||
*/
|
||||
Acorn128::Acorn128()
|
||||
{
|
||||
state.authDone = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Destroys this Acorn128 authenticated cipher.
|
||||
*/
|
||||
Acorn128::~Acorn128()
|
||||
{
|
||||
clean(state);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Gets the size of the Acorn128 key in bytes.
|
||||
*
|
||||
* \return Always returns 16, indicating a 128-bit key.
|
||||
*/
|
||||
size_t Acorn128::keySize() const
|
||||
{
|
||||
return 16;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Gets the size of the Acorn128 initialization vector in bytes.
|
||||
*
|
||||
* \return Always returns 16, indicating a 128-bit IV.
|
||||
*
|
||||
* Authentication tags may be truncated to 8 bytes, but the algorithm authors
|
||||
* recommend using a full 16-byte tag.
|
||||
*/
|
||||
size_t Acorn128::ivSize() const
|
||||
{
|
||||
return 16;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Gets the size of the Acorn128 authentication tag in bytes.
|
||||
*
|
||||
* \return Always returns 16, indicating a 128-bit authentication tag.
|
||||
*/
|
||||
size_t Acorn128::tagSize() const
|
||||
{
|
||||
return 16;
|
||||
}
|
||||
|
||||
// Acorn128 constants for ca and cb.
|
||||
#define CA_0 ((uint32_t)0x00000000)
|
||||
#define CA_1 ((uint32_t)0xFFFFFFFF)
|
||||
#define CB_0 ((uint32_t)0x00000000)
|
||||
#define CB_1 ((uint32_t)0xFFFFFFFF)
|
||||
#define CA_0_BYTE ((uint8_t)0x00)
|
||||
#define CA_1_BYTE ((uint8_t)0xFF)
|
||||
#define CB_0_BYTE ((uint8_t)0x00)
|
||||
#define CB_1_BYTE ((uint8_t)0xFF)
|
||||
|
||||
// maj() and ch() functions for mixing the state.
|
||||
#define maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
#define ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
|
||||
|
||||
/**
|
||||
* \brief Encrypts an 8-bit byte using Acorn128.
|
||||
*
|
||||
* \param state The state for the Acorn128 cipher.
|
||||
* \param plaintext The plaintext byte.
|
||||
* \param ca The ca constant.
|
||||
* \param cb The cb constant.
|
||||
*
|
||||
* \return The ciphertext byte.
|
||||
*/
|
||||
static uint8_t acornEncrypt8
|
||||
(Acorn128State *state, uint8_t plaintext, uint8_t ca, uint8_t cb)
|
||||
{
|
||||
// Extract out various sub-parts of the state as 8-bit bytes.
|
||||
#define s_extract_8(name, shift) \
|
||||
((uint8_t)(state->name##_l >> (shift)))
|
||||
uint8_t s244 = s_extract_8(s6, 14);
|
||||
uint8_t s235 = s_extract_8(s6, 5);
|
||||
uint8_t s196 = s_extract_8(s5, 3);
|
||||
uint8_t s160 = s_extract_8(s4, 6);
|
||||
uint8_t s111 = s_extract_8(s3, 4);
|
||||
uint8_t s66 = s_extract_8(s2, 5);
|
||||
uint8_t s23 = s_extract_8(s1, 23);
|
||||
uint8_t s12 = s_extract_8(s1, 12);
|
||||
|
||||
// Update the LFSR's.
|
||||
uint8_t s7_l = state->s7 ^ s235 ^ state->s6_l;
|
||||
state->s6_l ^= s196 ^ ((uint8_t)(state->s5_l));
|
||||
state->s5_l ^= s160 ^ ((uint8_t)(state->s4_l));
|
||||
state->s4_l ^= s111 ^ ((uint8_t)(state->s3_l));
|
||||
state->s3_l ^= s66 ^ ((uint8_t)(state->s2_l));
|
||||
state->s2_l ^= s23 ^ ((uint8_t)(state->s1_l));
|
||||
|
||||
// Generate the next 8 keystream bits.
|
||||
// k = S[12] ^ S[154] ^ maj(S[235], S[61], S[193])
|
||||
// ^ ch(S[230], S[111], S[66])
|
||||
uint8_t ks = s12 ^ state->s4_l ^
|
||||
maj(s235, state->s2_l, state->s5_l) ^
|
||||
ch(state->s6_l, s111, s66);
|
||||
|
||||
// Generate the next 8 non-linear feedback bits.
|
||||
// f = S[0] ^ ~S[107] ^ maj(S[244], S[23], S[160])
|
||||
// ^ (ca & S[196]) ^ (cb & ks)
|
||||
// f ^= plaintext
|
||||
uint8_t f = state->s1_l ^ (~state->s3_l) ^
|
||||
maj(s244, s23, s160) ^ (ca & s196) ^ (cb & ks);
|
||||
f ^= plaintext;
|
||||
|
||||
// Shift the state downwards by 8 bits.
|
||||
#define s_shift_8(name1, name2, shift) \
|
||||
(state->name1##_l = (state->name1##_l >> 8) | \
|
||||
(((uint32_t)(state->name1##_h)) << 24), \
|
||||
state->name1##_h = (state->name1##_h >> 8) | \
|
||||
((state->name2##_l & 0xFF) << ((shift) - 40)))
|
||||
#define s_shift_8_mixed(name1, name2, shift) \
|
||||
(state->name1##_l = (state->name1##_l >> 8) | \
|
||||
(((uint32_t)(state->name1##_h)) << 24) | \
|
||||
(state->name2##_l << ((shift) - 8)), \
|
||||
state->name1##_h = ((state->name2##_l & 0xFF) >> (40 - (shift))))
|
||||
s7_l ^= (f << 4);
|
||||
state->s7 = f >> 4;
|
||||
s_shift_8(s1, s2, 61);
|
||||
s_shift_8(s2, s3, 46);
|
||||
s_shift_8(s3, s4, 47);
|
||||
s_shift_8_mixed(s4, s5, 39);
|
||||
s_shift_8_mixed(s5, s6, 37);
|
||||
state->s6_l = (state->s6_l >> 8) | (state->s6_h << 24);
|
||||
state->s6_h = (state->s6_h >> 8) | (((uint32_t)s7_l) << 19);
|
||||
|
||||
// Return the ciphertext byte to the caller.
|
||||
return plaintext ^ ks;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Encrypts a 32-bit word using Acorn128.
|
||||
*
|
||||
* \param state The state for the Acorn128 cipher.
|
||||
* \param plaintext The plaintext word.
|
||||
* \param ca The ca constant.
|
||||
* \param cb The cb constant.
|
||||
*
|
||||
* \return The ciphertext word.
|
||||
*/
|
||||
static uint32_t acornEncrypt32
|
||||
(Acorn128State *state, uint32_t plaintext, uint32_t ca, uint32_t cb)
|
||||
{
|
||||
// Extract out various sub-parts of the state as 32-bit words.
|
||||
#define s_extract_32(name, shift) \
|
||||
((state->name##_l >> (shift)) | \
|
||||
(((uint32_t)(state->name##_h)) << (32 - (shift))))
|
||||
uint32_t s244 = s_extract_32(s6, 14);
|
||||
uint32_t s235 = s_extract_32(s6, 5);
|
||||
uint32_t s196 = s_extract_32(s5, 3);
|
||||
uint32_t s160 = s_extract_32(s4, 6);
|
||||
uint32_t s111 = s_extract_32(s3, 4);
|
||||
uint32_t s66 = s_extract_32(s2, 5);
|
||||
uint32_t s23 = s_extract_32(s1, 23);
|
||||
uint32_t s12 = s_extract_32(s1, 12);
|
||||
|
||||
// Update the LFSR's.
|
||||
uint32_t s7_l = state->s7 ^ s235 ^ state->s6_l;
|
||||
state->s6_l ^= s196 ^ state->s5_l;
|
||||
state->s5_l ^= s160 ^ state->s4_l;
|
||||
state->s4_l ^= s111 ^ state->s3_l;
|
||||
state->s3_l ^= s66 ^ state->s2_l;
|
||||
state->s2_l ^= s23 ^ state->s1_l;
|
||||
|
||||
// Generate the next 32 keystream bits.
|
||||
// k = S[12] ^ S[154] ^ maj(S[235], S[61], S[193])
|
||||
// ^ ch(S[230], S[111], S[66])
|
||||
uint32_t ks = s12 ^ state->s4_l ^
|
||||
maj(s235, state->s2_l, state->s5_l) ^
|
||||
ch(state->s6_l, s111, s66);
|
||||
|
||||
// Generate the next 32 non-linear feedback bits.
|
||||
// f = S[0] ^ ~S[107] ^ maj(S[244], S[23], S[160])
|
||||
// ^ (ca & S[196]) ^ (cb & ks)
|
||||
// f ^= plaintext
|
||||
uint32_t f = state->s1_l ^ (~state->s3_l) ^
|
||||
maj(s244, s23, s160) ^ (ca & s196) ^ (cb & ks);
|
||||
f ^= plaintext;
|
||||
|
||||
// Shift the state downwards by 32 bits.
|
||||
#define s_shift_32(name1, name2, shift) \
|
||||
(state->name1##_l = state->name1##_h | (state->name2##_l << (shift)), \
|
||||
state->name1##_h = (state->name2##_l >> (32 - (shift))))
|
||||
s7_l ^= (f << 4);
|
||||
state->s7 = (uint8_t)(f >> 28);
|
||||
s_shift_32(s1, s2, 29);
|
||||
s_shift_32(s2, s3, 14);
|
||||
s_shift_32(s3, s4, 15);
|
||||
s_shift_32(s4, s5, 7);
|
||||
s_shift_32(s5, s6, 5);
|
||||
state->s6_l = state->s6_h | (s7_l << 27);
|
||||
state->s6_h = s7_l >> 5;
|
||||
|
||||
// Return the ciphertext word to the caller.
|
||||
return plaintext ^ ks;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Encrypts a 32-bit word using Acorn128.
|
||||
*
|
||||
* \param state The state for the Acorn128 cipher.
|
||||
* \param plaintext The plaintext word.
|
||||
*
|
||||
* \return The ciphertext word.
|
||||
*
|
||||
* This version assumes that ca = 1 and cb = 0.
|
||||
*/
|
||||
static inline uint32_t acornEncrypt32Fast
|
||||
(Acorn128State *state, uint32_t plaintext)
|
||||
{
|
||||
// Extract out various sub-parts of the state as 32-bit words.
|
||||
#define s_extract_32(name, shift) \
|
||||
((state->name##_l >> (shift)) | \
|
||||
(((uint32_t)(state->name##_h)) << (32 - (shift))))
|
||||
uint32_t s244 = s_extract_32(s6, 14);
|
||||
uint32_t s235 = s_extract_32(s6, 5);
|
||||
uint32_t s196 = s_extract_32(s5, 3);
|
||||
uint32_t s160 = s_extract_32(s4, 6);
|
||||
uint32_t s111 = s_extract_32(s3, 4);
|
||||
uint32_t s66 = s_extract_32(s2, 5);
|
||||
uint32_t s23 = s_extract_32(s1, 23);
|
||||
uint32_t s12 = s_extract_32(s1, 12);
|
||||
|
||||
// Update the LFSR's.
|
||||
uint32_t s7_l = state->s7 ^ s235 ^ state->s6_l;
|
||||
state->s6_l ^= s196 ^ state->s5_l;
|
||||
state->s5_l ^= s160 ^ state->s4_l;
|
||||
state->s4_l ^= s111 ^ state->s3_l;
|
||||
state->s3_l ^= s66 ^ state->s2_l;
|
||||
state->s2_l ^= s23 ^ state->s1_l;
|
||||
|
||||
// Generate the next 32 keystream bits.
|
||||
// k = S[12] ^ S[154] ^ maj(S[235], S[61], S[193])
|
||||
// ^ ch(S[230], S[111], S[66])
|
||||
uint32_t ks = s12 ^ state->s4_l ^
|
||||
maj(s235, state->s2_l, state->s5_l) ^
|
||||
ch(state->s6_l, s111, s66);
|
||||
|
||||
// Generate the next 32 non-linear feedback bits.
|
||||
// f = S[0] ^ ~S[107] ^ maj(S[244], S[23], S[160])
|
||||
// ^ (ca & S[196]) ^ (cb & ks)
|
||||
// f ^= plaintext
|
||||
// Note: ca will always be 1 and cb will always be 0.
|
||||
uint32_t f = state->s1_l ^ (~state->s3_l) ^ maj(s244, s23, s160) ^ s196;
|
||||
f ^= plaintext;
|
||||
|
||||
// Shift the state downwards by 32 bits.
|
||||
#define s_shift_32(name1, name2, shift) \
|
||||
(state->name1##_l = state->name1##_h | (state->name2##_l << (shift)), \
|
||||
state->name1##_h = (state->name2##_l >> (32 - (shift))))
|
||||
s7_l ^= (f << 4);
|
||||
state->s7 = (uint8_t)(f >> 28);
|
||||
s_shift_32(s1, s2, 29);
|
||||
s_shift_32(s2, s3, 14);
|
||||
s_shift_32(s3, s4, 15);
|
||||
s_shift_32(s4, s5, 7);
|
||||
s_shift_32(s5, s6, 5);
|
||||
state->s6_l = state->s6_h | (s7_l << 27);
|
||||
state->s6_h = s7_l >> 5;
|
||||
|
||||
// Return the ciphertext word to the caller.
|
||||
return plaintext ^ ks;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Decrypts an 8-bit byte using Acorn128.
|
||||
*
|
||||
* \param state The state for the Acorn128 cipher.
|
||||
* \param ciphertext The ciphertext byte.
|
||||
*
|
||||
* \return The plaintext byte.
|
||||
*/
|
||||
static inline uint8_t acornDecrypt8(Acorn128State *state, uint8_t ciphertext)
|
||||
{
|
||||
// Extract out various sub-parts of the state as 8-bit bytes.
|
||||
#define s_extract_8(name, shift) \
|
||||
((uint8_t)(state->name##_l >> (shift)))
|
||||
uint8_t s244 = s_extract_8(s6, 14);
|
||||
uint8_t s235 = s_extract_8(s6, 5);
|
||||
uint8_t s196 = s_extract_8(s5, 3);
|
||||
uint8_t s160 = s_extract_8(s4, 6);
|
||||
uint8_t s111 = s_extract_8(s3, 4);
|
||||
uint8_t s66 = s_extract_8(s2, 5);
|
||||
uint8_t s23 = s_extract_8(s1, 23);
|
||||
uint8_t s12 = s_extract_8(s1, 12);
|
||||
|
||||
// Update the LFSR's.
|
||||
uint8_t s7_l = state->s7 ^ s235 ^ state->s6_l;
|
||||
state->s6_l ^= s196 ^ ((uint8_t)(state->s5_l));
|
||||
state->s5_l ^= s160 ^ ((uint8_t)(state->s4_l));
|
||||
state->s4_l ^= s111 ^ ((uint8_t)(state->s3_l));
|
||||
state->s3_l ^= s66 ^ ((uint8_t)(state->s2_l));
|
||||
state->s2_l ^= s23 ^ ((uint8_t)(state->s1_l));
|
||||
|
||||
// Generate the next 8 keystream bits and decrypt the ciphertext.
|
||||
// k = S[12] ^ S[154] ^ maj(S[235], S[61], S[193])
|
||||
// ^ ch(S[230], S[111], S[66])
|
||||
uint8_t ks = s12 ^ state->s4_l ^
|
||||
maj(s235, state->s2_l, state->s5_l) ^
|
||||
ch(state->s6_l, s111, s66);
|
||||
uint8_t plaintext = ciphertext ^ ks;
|
||||
|
||||
// Generate the next 8 non-linear feedback bits.
|
||||
// f = S[0] ^ ~S[107] ^ maj(S[244], S[23], S[160])
|
||||
// ^ (ca & S[196]) ^ (cb & ks)
|
||||
// f ^= plaintext
|
||||
// Note: ca will always be 1 and cb will always be 0.
|
||||
uint8_t f = state->s1_l ^ (~state->s3_l) ^ maj(s244, s23, s160) ^ s196;
|
||||
f ^= plaintext;
|
||||
|
||||
// Shift the state downwards by 8 bits.
|
||||
#define s_shift_8(name1, name2, shift) \
|
||||
(state->name1##_l = (state->name1##_l >> 8) | \
|
||||
(((uint32_t)(state->name1##_h)) << 24), \
|
||||
state->name1##_h = (state->name1##_h >> 8) | \
|
||||
((state->name2##_l & 0xFF) << ((shift) - 40)))
|
||||
#define s_shift_8_mixed(name1, name2, shift) \
|
||||
(state->name1##_l = (state->name1##_l >> 8) | \
|
||||
(((uint32_t)(state->name1##_h)) << 24) | \
|
||||
(state->name2##_l << ((shift) - 8)), \
|
||||
state->name1##_h = ((state->name2##_l & 0xFF) >> (40 - (shift))))
|
||||
s7_l ^= (f << 4);
|
||||
state->s7 = f >> 4;
|
||||
s_shift_8(s1, s2, 61);
|
||||
s_shift_8(s2, s3, 46);
|
||||
s_shift_8(s3, s4, 47);
|
||||
s_shift_8_mixed(s4, s5, 39);
|
||||
s_shift_8_mixed(s5, s6, 37);
|
||||
state->s6_l = (state->s6_l >> 8) | (state->s6_h << 24);
|
||||
state->s6_h = (state->s6_h >> 8) | (((uint32_t)s7_l) << 19);
|
||||
|
||||
// Return the plaintext byte to the caller.
|
||||
return plaintext;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Decrypts a 32-bit word using Acorn128.
|
||||
*
|
||||
* \param state The state for the Acorn128 cipher.
|
||||
* \param ciphertext The ciphertext word.
|
||||
*
|
||||
* \return The plaintext word.
|
||||
*/
|
||||
static inline uint32_t acornDecrypt32(Acorn128State *state, uint32_t ciphertext)
|
||||
{
|
||||
// Extract out various sub-parts of the state as 32-bit words.
|
||||
#define s_extract_32(name, shift) \
|
||||
((state->name##_l >> (shift)) | \
|
||||
(((uint32_t)(state->name##_h)) << (32 - (shift))))
|
||||
uint32_t s244 = s_extract_32(s6, 14);
|
||||
uint32_t s235 = s_extract_32(s6, 5);
|
||||
uint32_t s196 = s_extract_32(s5, 3);
|
||||
uint32_t s160 = s_extract_32(s4, 6);
|
||||
uint32_t s111 = s_extract_32(s3, 4);
|
||||
uint32_t s66 = s_extract_32(s2, 5);
|
||||
uint32_t s23 = s_extract_32(s1, 23);
|
||||
uint32_t s12 = s_extract_32(s1, 12);
|
||||
|
||||
// Update the LFSR's.
|
||||
uint32_t s7_l = state->s7 ^ s235 ^ state->s6_l;
|
||||
state->s6_l ^= s196 ^ state->s5_l;
|
||||
state->s5_l ^= s160 ^ state->s4_l;
|
||||
state->s4_l ^= s111 ^ state->s3_l;
|
||||
state->s3_l ^= s66 ^ state->s2_l;
|
||||
state->s2_l ^= s23 ^ state->s1_l;
|
||||
|
||||
// Generate the next 32 keystream bits and decrypt the ciphertext.
|
||||
// k = S[12] ^ S[154] ^ maj(S[235], S[61], S[193])
|
||||
// ^ ch(S[230], S[111], S[66])
|
||||
uint32_t ks = s12 ^ state->s4_l ^
|
||||
maj(s235, state->s2_l, state->s5_l) ^
|
||||
ch(state->s6_l, s111, s66);
|
||||
uint32_t plaintext = ciphertext ^ ks;
|
||||
|
||||
// Generate the next 32 non-linear feedback bits.
|
||||
// f = S[0] ^ ~S[107] ^ maj(S[244], S[23], S[160])
|
||||
// ^ (ca & S[196]) ^ (cb & ks)
|
||||
// f ^= plaintext
|
||||
// Note: ca will always be 1 and cb will always be 0.
|
||||
uint32_t f = state->s1_l ^ (~state->s3_l) ^ maj(s244, s23, s160) ^ s196;
|
||||
f ^= plaintext;
|
||||
|
||||
// Shift the state downwards by 32 bits.
|
||||
#define s_shift_32(name1, name2, shift) \
|
||||
(state->name1##_l = state->name1##_h | (state->name2##_l << (shift)), \
|
||||
state->name1##_h = (state->name2##_l >> (32 - (shift))))
|
||||
s7_l ^= (f << 4);
|
||||
state->s7 = (uint8_t)(f >> 28);
|
||||
s_shift_32(s1, s2, 29);
|
||||
s_shift_32(s2, s3, 14);
|
||||
s_shift_32(s3, s4, 15);
|
||||
s_shift_32(s4, s5, 7);
|
||||
s_shift_32(s5, s6, 5);
|
||||
state->s6_l = state->s6_h | (s7_l << 27);
|
||||
state->s6_h = s7_l >> 5;
|
||||
|
||||
// Return the plaintext word to the caller.
|
||||
return plaintext;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Adds 256 bits of padding to the Acorn128 state.
|
||||
*
|
||||
* \param state The state for the Acorn128 cipher.
|
||||
* \param cb The cb constant for the padding block.
|
||||
*/
|
||||
static void acornPad(Acorn128State *state, uint32_t cb)
|
||||
{
|
||||
acornEncrypt32(state, 1, CA_1, cb);
|
||||
acornEncrypt32(state, 0, CA_1, cb);
|
||||
acornEncrypt32(state, 0, CA_1, cb);
|
||||
acornEncrypt32(state, 0, CA_1, cb);
|
||||
acornEncrypt32(state, 0, CA_0, cb);
|
||||
acornEncrypt32(state, 0, CA_0, cb);
|
||||
acornEncrypt32(state, 0, CA_0, cb);
|
||||
acornEncrypt32(state, 0, CA_0, cb);
|
||||
}
|
||||
|
||||
bool Acorn128::setKey(const uint8_t *key, size_t len)
|
||||
{
|
||||
// We cannot initialize the key block until we also have the IV.
|
||||
// So we simply validate the length and save the key away for later.
|
||||
if (len == 16) {
|
||||
memcpy(state.k, key, 16);
|
||||
#if !defined(CRYPTO_LITTLE_ENDIAN)
|
||||
state.k[0] = le32toh(state.k[0]);
|
||||
state.k[1] = le32toh(state.k[1]);
|
||||
state.k[2] = le32toh(state.k[2]);
|
||||
state.k[3] = le32toh(state.k[3]);
|
||||
#endif
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool Acorn128::setIV(const uint8_t *iv, size_t len)
|
||||
{
|
||||
if (len != 16)
|
||||
return false;
|
||||
|
||||
// Unpack the iv into four 32-bit words.
|
||||
uint32_t ivwords[4];
|
||||
memcpy(ivwords, iv, 16);
|
||||
#if !defined(CRYPTO_LITTLE_ENDIAN)
|
||||
ivwords[0] = le32toh(ivwords[0]);
|
||||
ivwords[1] = le32toh(ivwords[1]);
|
||||
ivwords[2] = le32toh(ivwords[2]);
|
||||
ivwords[3] = le32toh(ivwords[3]);
|
||||
#endif
|
||||
|
||||
// Initialize the state to zero.
|
||||
state.s1_l = 0;
|
||||
state.s1_h = 0;
|
||||
state.s2_l = 0;
|
||||
state.s2_h = 0;
|
||||
state.s3_h = 0;
|
||||
state.s3_l = 0;
|
||||
state.s4_l = 0;
|
||||
state.s4_h = 0;
|
||||
state.s5_h = 0;
|
||||
state.s5_l = 0;
|
||||
state.s6_l = 0;
|
||||
state.s6_h = 0;
|
||||
state.s7 = 0;
|
||||
state.authDone = 0;
|
||||
|
||||
// Run the cipher for 1792 steps, 32 at a time,
|
||||
// which mixes the key and IV into the cipher state.
|
||||
acornEncrypt32(&state, state.k[0], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[1], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[2], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[3], CA_1, CB_1);
|
||||
acornEncrypt32(&state, ivwords[0], CA_1, CB_1);
|
||||
acornEncrypt32(&state, ivwords[1], CA_1, CB_1);
|
||||
acornEncrypt32(&state, ivwords[2], CA_1, CB_1);
|
||||
acornEncrypt32(&state, ivwords[3], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[0] ^ 0x00000001, CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[1], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[2], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[3], CA_1, CB_1);
|
||||
for (uint8_t i = 0; i < 11; ++i) {
|
||||
acornEncrypt32(&state, state.k[0], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[1], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[2], CA_1, CB_1);
|
||||
acornEncrypt32(&state, state.k[3], CA_1, CB_1);
|
||||
}
|
||||
|
||||
// Clean up and exit.
|
||||
clean(ivwords);
|
||||
return true;
|
||||
}
|
||||
|
||||
void Acorn128::encrypt(uint8_t *output, const uint8_t *input, size_t len)
|
||||
{
|
||||
uint32_t temp;
|
||||
if (!state.authDone) {
|
||||
acornPad(&state, CB_1);
|
||||
state.authDone = 1;
|
||||
}
|
||||
while (len >= 4) {
|
||||
uint32_t temp = ((uint32_t)input[0]) |
|
||||
(((uint32_t)input[1]) << 8) |
|
||||
(((uint32_t)input[2]) << 16) |
|
||||
(((uint32_t)input[3]) << 24);
|
||||
temp = acornEncrypt32Fast(&state, temp);
|
||||
output[0] = (uint8_t)temp;
|
||||
output[1] = (uint8_t)(temp >> 8);
|
||||
output[2] = (uint8_t)(temp >> 16);
|
||||
output[3] = (uint8_t)(temp >> 24);
|
||||
input += 4;
|
||||
output += 4;
|
||||
len -= 4;
|
||||
}
|
||||
while (len > 0) {
|
||||
*output++ = acornEncrypt8(&state, *input++, CA_1_BYTE, CB_0_BYTE);
|
||||
--len;
|
||||
}
|
||||
}
|
||||
|
||||
void Acorn128::decrypt(uint8_t *output, const uint8_t *input, size_t len)
|
||||
{
|
||||
uint32_t temp;
|
||||
if (!state.authDone) {
|
||||
acornPad(&state, CB_1);
|
||||
state.authDone = 1;
|
||||
}
|
||||
while (len >= 4) {
|
||||
uint32_t temp = ((uint32_t)input[0]) |
|
||||
(((uint32_t)input[1]) << 8) |
|
||||
(((uint32_t)input[2]) << 16) |
|
||||
(((uint32_t)input[3]) << 24);
|
||||
temp = acornDecrypt32(&state, temp);
|
||||
output[0] = (uint8_t)temp;
|
||||
output[1] = (uint8_t)(temp >> 8);
|
||||
output[2] = (uint8_t)(temp >> 16);
|
||||
output[3] = (uint8_t)(temp >> 24);
|
||||
input += 4;
|
||||
output += 4;
|
||||
len -= 4;
|
||||
}
|
||||
while (len > 0) {
|
||||
*output++ = acornDecrypt8(&state, *input++);
|
||||
--len;
|
||||
}
|
||||
}
|
||||
|
||||
void Acorn128::addAuthData(const void *data, size_t len)
|
||||
{
|
||||
// Cannot add any more auth data if we've started to encrypt or decrypt.
|
||||
if (state.authDone)
|
||||
return;
|
||||
|
||||
// Encrypt the auth data with ca = 1, cb = 1.
|
||||
const uint8_t *input = (const uint8_t *)data;
|
||||
while (len >= 4) {
|
||||
uint32_t temp = ((uint32_t)input[0]) |
|
||||
(((uint32_t)input[1]) << 8) |
|
||||
(((uint32_t)input[2]) << 16) |
|
||||
(((uint32_t)input[3]) << 24);
|
||||
acornEncrypt32(&state, temp, CA_1, CB_1);
|
||||
input += 4;
|
||||
len -= 4;
|
||||
}
|
||||
while (len > 0) {
|
||||
acornEncrypt8(&state, *input++, CA_1_BYTE, CB_1_BYTE);
|
||||
--len;
|
||||
}
|
||||
}
|
||||
|
||||
void Acorn128::computeTag(void *tag, size_t len)
|
||||
{
|
||||
// Finalize the data and apply padding.
|
||||
if (!state.authDone)
|
||||
acornPad(&state, CB_1);
|
||||
acornPad(&state, CB_0);
|
||||
|
||||
// Encrypt 768 zero bits and extract the last 128 for the tag.
|
||||
uint32_t temp[4];
|
||||
for (uint8_t i = 0; i < 20; ++i)
|
||||
acornEncrypt32(&state, 0, CA_1, CB_1);
|
||||
temp[0] = acornEncrypt32(&state, 0, CA_1, CB_1);
|
||||
temp[1] = acornEncrypt32(&state, 0, CA_1, CB_1);
|
||||
temp[2] = acornEncrypt32(&state, 0, CA_1, CB_1);
|
||||
temp[3] = acornEncrypt32(&state, 0, CA_1, CB_1);
|
||||
#if !defined(CRYPTO_LITTLE_ENDIAN)
|
||||
temp[0] = htole32(temp[0]);
|
||||
temp[1] = htole32(temp[1]);
|
||||
temp[2] = htole32(temp[2]);
|
||||
temp[3] = htole32(temp[3]);
|
||||
#endif
|
||||
|
||||
// Truncate to the requested length and return the value.
|
||||
if (len > 16)
|
||||
len = 16;
|
||||
memcpy(tag, temp, len);
|
||||
clean(temp);
|
||||
}
|
||||
|
||||
bool Acorn128::checkTag(const void *tag, size_t len)
|
||||
{
|
||||
// Can never match if the expected tag length is too long.
|
||||
if (len > 16)
|
||||
return false;
|
||||
|
||||
// Compute the authentication tag and check it.
|
||||
uint8_t temp[16];
|
||||
computeTag(temp, len);
|
||||
bool equal = secure_compare(temp, tag, len);
|
||||
clean(temp);
|
||||
return equal;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Clears all security-sensitive state from this cipher object.
|
||||
*/
|
||||
void Acorn128::clear()
|
||||
{
|
||||
clean(state);
|
||||
}
|
87
libraries/CryptoLW/src/Acorn128.h
Normal file
87
libraries/CryptoLW/src/Acorn128.h
Normal file
@ -0,0 +1,87 @@
|
||||
/*
|
||||
* Copyright (C) 2018 Southern Storm Software, Pty Ltd.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef CRYPTO_ACORN128_H
|
||||
#define CRYPTO_ACORN128_H
|
||||
|
||||
#include "AuthenticatedCipher.h"
|
||||
|
||||
/** @cond acorn128_state */
|
||||
|
||||
// The ACORN-128 state consists of 293 bits split across six
|
||||
// Linear Feedback Shift Registers (LFSR's) and 4 bits spare.
|
||||
// In this implementation, each LFSR is represented by a
|
||||
// 48-bit or 64-bit register split into 32/16-bit words.
|
||||
// The optimized reference implementation from the algorithm's
|
||||
// authors uses 7 uint64_t registers, for a total state size
|
||||
// of 448 bits. This version uses 328 bits for same data and
|
||||
// should be efficient on 8-bit and 32-bit microcontrollers.
|
||||
typedef struct
|
||||
{
|
||||
uint32_t k[4]; // Cached copy of the key for multiple requests.
|
||||
uint32_t s1_l; // LFSR1, 61 bits, 0..60, low word
|
||||
uint32_t s1_h; // LFSR1, high word
|
||||
uint32_t s2_l; // LFSR2, 46 bits, 61..106, low word
|
||||
uint16_t s2_h; // LFSR2, high word
|
||||
uint16_t s3_h; // LFSR3, 47 bits, 107..153, high word
|
||||
uint32_t s3_l; // LFSR3, low word
|
||||
uint32_t s4_l; // LFSR4, 39 bits, 154..192, low word
|
||||
uint16_t s4_h; // LFSR4, high word
|
||||
uint16_t s5_h; // LFSR5, 37 bits, 193..229, high word
|
||||
uint32_t s5_l; // LFSR5, low word
|
||||
uint32_t s6_l; // LFSR6, 59 bits, 230..288, low word
|
||||
uint32_t s6_h; // LFSR6, high word
|
||||
uint8_t s7; // Top most 4 bits, 289..292
|
||||
uint8_t authDone; // Non-zero once authentication is done.
|
||||
|
||||
} Acorn128State;
|
||||
|
||||
/** @endcond */
|
||||
|
||||
class Acorn128 : public AuthenticatedCipher
|
||||
{
|
||||
public:
|
||||
Acorn128();
|
||||
virtual ~Acorn128();
|
||||
|
||||
size_t keySize() const;
|
||||
size_t ivSize() const;
|
||||
size_t tagSize() const;
|
||||
|
||||
bool setKey(const uint8_t *key, size_t len);
|
||||
bool setIV(const uint8_t *iv, size_t len);
|
||||
|
||||
void encrypt(uint8_t *output, const uint8_t *input, size_t len);
|
||||
void decrypt(uint8_t *output, const uint8_t *input, size_t len);
|
||||
|
||||
void addAuthData(const void *data, size_t len);
|
||||
|
||||
void computeTag(void *tag, size_t len);
|
||||
bool checkTag(const void *tag, size_t len);
|
||||
|
||||
void clear();
|
||||
|
||||
private:
|
||||
Acorn128State state;
|
||||
};
|
||||
|
||||
#endif
|
29
libraries/CryptoLW/src/CryptoLW.h
Normal file
29
libraries/CryptoLW/src/CryptoLW.h
Normal file
@ -0,0 +1,29 @@
|
||||
/*
|
||||
* Copyright (C) 2018 Southern Storm Software, Pty Ltd.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef CRYPTO_LW_H
|
||||
#define CRYPTO_LW_H
|
||||
|
||||
// This header exists to make the Arudino IDE add the library to the
|
||||
// include and link paths when the sketch includes <CryptoLW.h>.
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user