1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

Low memory version of Speck that combines key schedule with encryption

This commit is contained in:
Rhys Weatherley 2015-12-17 19:06:41 +10:00
parent 32d3d59cfb
commit e046533aff
5 changed files with 644 additions and 23 deletions

View File

@ -50,7 +50,8 @@ is desirable.
If code size is an issue for your application (for example on very low end
Arduino variants), then Speck on AVR is less than half the code size of
ChaCha, at the cost of more data memory for the state and longer key
setup times.
setup times. The SpeckLowMemory class is even smaller at the cost of
some performance when encrypting.
BLAKE2s and BLAKE2b are variations on the ChaCha stream cipher, designed for
hashing, with 256-bit and 512-bit hash outputs respectively. They are
@ -76,9 +77,12 @@ Ardunino Mega 2560 running at 16 MHz are similar:
<tr><td>ChaCha (20 rounds)</td><td align="right">14.87us</td><td align="right">14.88us</td><td align="right">43.74us</td><td align="right">132</td></tr>
<tr><td>ChaCha (12 rounds)</td><td align="right">10.38us</td><td align="right">10.38us</td><td align="right">43.74us</td><td align="right">132</td></tr>
<tr><td>ChaCha (8 rounds)</td><td align="right">8.13us</td><td align="right">8.14us</td><td align="right">43.74us</td><td align="right">132</td></tr>
<tr><td>Speck (128-bit key, ECB mode)</td><td align="right">10.72us</td><td align="right">11.09us</td><td align="right">304.56us</td><td align="right">275</td></tr>
<tr><td>Speck (192-bit key, ECB mode)</td><td align="right">11.03us</td><td align="right">11.42us</td><td align="right">316.32us</td><td align="right">275</td></tr>
<tr><td>Speck (256-bit key, ECB mode)</td><td align="right">11.35us</td><td align="right">11.74us</td><td align="right">328.33us</td><td align="right">275</td></tr>
<tr><td>Speck (128-bit key, ECB mode)</td><td align="right">10.72us</td><td align="right">11.09us</td><td align="right">287.02us</td><td align="right">275</td></tr>
<tr><td>Speck (192-bit key, ECB mode)</td><td align="right">11.03us</td><td align="right">11.42us</td><td align="right">298.21us</td><td align="right">275</td></tr>
<tr><td>Speck (256-bit key, ECB mode)</td><td align="right">11.35us</td><td align="right">11.74us</td><td align="right">309.66us</td><td align="right">275</td></tr>
<tr><td>SpeckLowMemory (128-bit key, ECB mode)</td><td align="right">35.25us</td><td align="right"> </td><td align="right">10.22us</td><td align="right">35</td></tr>
<tr><td>SpeckLowMemory (192-bit key, ECB mode)</td><td align="right">36.56us</td><td align="right"> </td><td align="right">13.62us</td><td align="right">35</td></tr>
<tr><td>SpeckLowMemory (256-bit key, ECB mode)</td><td align="right">37.87us</td><td align="right"> </td><td align="right">16.89us</td><td align="right">35</td></tr>
<tr><td colspan="5"> </td></tr>
<tr><td>AEAD Algorithm</td><td align="right">Encryption (per byte)</td><td align="right">Decryption (per byte)</td><td>Key Setup</td><td>State Size (bytes)</td></tr>
<tr><td>ChaChaPoly</td><td align="right">41.23us</td><td align="right">41.23us</td><td align="right">902.55us</td><td align="right">255</td></tr>
@ -127,9 +131,12 @@ All figures are for the Arduino Due running at 84 MHz:
<tr><td>ChaCha (20 rounds)</td><td align="right">0.87us</td><td align="right">0.88us</td><td align="right">4.96us</td><td align="right">136</td></tr>
<tr><td>ChaCha (12 rounds)</td><td align="right">0.70us</td><td align="right">0.71us</td><td align="right">4.96us</td><td align="right">136</td></tr>
<tr><td>ChaCha (8 rounds)</td><td align="right">0.62us</td><td align="right">0.62us</td><td align="right">4.96us</td><td align="right">136</td></tr>
<tr><td>Speck (128-bit key, ECB mode)</td><td align="right">0.88us</td><td align="right">1.17us</td><td align="right">37.54us</td><td align="right">288</td></tr>
<tr><td>Speck (192-bit key, ECB mode)</td><td align="right">0.90us</td><td align="right">1.20us</td><td align="right">38.92us</td><td align="right">288</td></tr>
<tr><td>Speck (256-bit key, ECB mode)</td><td align="right">0.93us</td><td align="right">1.23us</td><td align="right">40.10us</td><td align="right">288</td></tr>
<tr><td>Speck (128-bit key, ECB mode)</td><td align="right">0.97us</td><td align="right">0.96us</td><td align="right">36.80us</td><td align="right">288</td></tr>
<tr><td>Speck (192-bit key, ECB mode)</td><td align="right">1.00us</td><td align="right">0.98us</td><td align="right">38.14us</td><td align="right">288</td></tr>
<tr><td>Speck (256-bit key, ECB mode)</td><td align="right">1.03us</td><td align="right">1.01us</td><td align="right">39.31us</td><td align="right">288</td></tr>
<tr><td>SpeckLowMemory (128-bit key, ECB mode)</td><td align="right">2.72us</td><td align="right"> </td><td align="right">1.47us</td><td align="right">48</td></tr>
<tr><td>SpeckLowMemory (192-bit key, ECB mode)</td><td align="right">2.81us</td><td align="right"> </td><td align="right">1.54us</td><td align="right">48</td></tr>
<tr><td>SpeckLowMemory (256-bit key, ECB mode)</td><td align="right">2.90us</td><td align="right"> </td><td align="right">1.83us</td><td align="right">48</td></tr>
<tr><td colspan="5"> </td></tr>
<tr><td>AEAD Algorithm</td><td align="right">Encryption (per byte)</td><td align="right">Decryption (per byte)</td><td>Key Setup</td><td>State Size (bytes)</td></tr>
<tr><td>ChaChaPoly</td><td align="right">1.66us</td><td align="right">1.66us</td><td align="right">45.02us</td><td align="right">280</td></tr>

View File

@ -43,8 +43,14 @@
* weaknesses in the full-round version of Speck. But if you are wary of
* ciphers designed by the NSA, then use ChaCha or AES instead.
*
* The SpeckLowMemory class provides an alternative implementation that
* has reduced RAM and flash size requirements at the cost of some encryption
* performance.
*
* References: https://en.wikipedia.org/wiki/Speck_%28cipher%29,
* http://eprint.iacr.org/2013/404
*
* \sa SpeckLowMemory
*/
// The "avr-gcc" compiler doesn't do a very good job of compiling
@ -142,24 +148,14 @@ bool Speck::setKey(const uint8_t *key, size_t len)
// l[li_out] = (k[i] + rightRotate8_64(l[li_in])) ^ i;
"add %A1,%2\n" // X = &(l[li_in])
"adc %B1,__zero_reg__\n"
"ld r8,X+\n" // x = l[li_in]
"ld r15,X+\n" // x = rightRotate8_64(l[li_in])
"ld r8,X+\n"
"ld r9,X+\n"
"ld r10,X+\n"
"ld r11,X+\n"
"ld r12,X+\n"
"ld r13,X+\n"
"ld r14,X+\n"
"ld r15,X+\n"
"mov __tmp_reg__,r8\n" // x = rightRotate8_64(l[li_in])
"mov r8,r9\n"
"mov r9,r10\n"
"mov r10,r11\n"
"mov r11,r12\n"
"mov r12,r13\n"
"mov r13,r14\n"
"mov r14,r15\n"
"mov r15,__tmp_reg__\n"
"ld r16,Z+\n" // y = k[i]
"ld r17,Z+\n"

View File

@ -0,0 +1,545 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "SpeckLowMemory.h"
#include "Crypto.h"
#include "utility/RotateUtil.h"
#include "utility/EndianUtil.h"
#include <string.h>
/**
* \class SpeckLowMemory SpeckLowMemory.h <SpeckLowMemory.h>
* \brief Speck block cipher with a 128-bit block size (low-memory version).
*
* This class differs from the Speck class in the following ways:
*
* \li RAM requirements are vastly reduced. The key (up to 256 bits) is
* stored directly and then expanded to the full key schedule round by round.
* The setKey() method is very fast because of this.
* \li Performance of encryptBlock() is slower than for Speck due to
* expanding the key on the fly rather than ahead of time.
* \li The decryptBlock() function is not supported, which means that CBC
* mode cannot be used but the CTR, CFB, OFB, and GCM modes can be used.
*
* This class is useful when RAM is at a premium, CBC mode is not required,
* and reduced encryption performance is not a hindrance to the application.
* Even though the performance of encryptBlock() is reduced, this class is
* still faster than AES with equivalent key sizes.
*
* See the documentation for the Speck class for more information on the
* Speck family of block ciphers.
*
* References: https://en.wikipedia.org/wiki/Speck_%28cipher%29,
* http://eprint.iacr.org/2013/404
*
* \sa Speck
*/
// The "avr-gcc" compiler doesn't do a very good job of compiling
// code involving 64-bit values. So we have to use inline assembly.
// It also helps to break the state up into 32-bit quantities
// because "asm" supports register names like %A0, %B0, %C0, %D0
// for the bytes in a 32-bit quantity, but it does not support
// %E0, %F0, %G0, %H0 for the high bytes of a 64-bit quantity.
#if defined(__AVR__)
#define USE_AVR_INLINE_ASM 1
#endif
/**
* \brief Constructs a low-memory Speck block cipher with no initial key.
*
* This constructor must be followed by a call to setKey() before the
* block cipher can be used for encryption.
*/
SpeckLowMemory::SpeckLowMemory()
: rounds(32)
{
}
SpeckLowMemory::~SpeckLowMemory()
{
clean(k);
}
size_t SpeckLowMemory::blockSize() const
{
return 16;
}
size_t SpeckLowMemory::keySize() const
{
// Also supports 128-bit and 192-bit, but we only report 256-bit.
return 32;
}
// Pack/unpack byte-aligned big-endian 64-bit quantities.
#define pack64(data, value) \
do { \
uint64_t v = htobe64((value)); \
memcpy((data), &v, sizeof(uint64_t)); \
} while (0)
#define unpack64(value, data) \
do { \
memcpy(&(value), (data), sizeof(uint64_t)); \
(value) = be64toh((value)); \
} while (0)
bool SpeckLowMemory::setKey(const uint8_t *key, size_t len)
{
#if USE_AVR_INLINE_ASM
// Determine the number of rounds to use and validate the key length.
if (len == 32) {
rounds = 34;
} else if (len == 24) {
rounds = 33;
} else if (len == 16) {
rounds = 32;
} else {
return false;
}
// Copy the bytes of the key into the "k" array in reverse order to
// convert big endian into little-endian.
__asm__ __volatile__ (
"1:\n"
"ld __tmp_reg__,-Z\n"
"st X+,__tmp_reg__\n"
"dec %2\n"
"brne 1b\n"
: : "x"(k), "z"(key + len), "r"(len)
);
#else
if (len == 32) {
rounds = 34;
unpack64(k[3], key);
unpack64(k[2], key + 8);
unpack64(k[1], key + 16);
unpack64(k[0], key + 24);
} else if (len == 24) {
rounds = 33;
unpack64(k[2], key);
unpack64(k[1], key + 8);
unpack64(k[0], key + 16);
} else if (len == 16) {
rounds = 32;
unpack64(k[1], key);
unpack64(k[0], key + 8);
} else {
return false;
}
#endif
return true;
}
void SpeckLowMemory::encryptBlock(uint8_t *output, const uint8_t *input)
{
#if USE_AVR_INLINE_ASM
uint64_t l[4];
uint32_t xlow, xhigh, ylow, yhigh;
uint32_t slow, shigh;
uint8_t li_in = 0;
uint8_t li_out = (rounds - 31) * 8;
// Copy the "k" array into "s" and the "l" array.
__asm__ __volatile__ (
"ldd r25,%4\n" // r25 = li_out
"ld __tmp_reg__,Z+\n"
"std %A0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"std %B0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"std %C0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"std %D0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"std %A1,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"std %B1,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"std %C1,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"std %D1,__tmp_reg__\n"
"1:\n" // l[0..] = k[1..]
"ld __tmp_reg__,Z+\n"
"st X+,__tmp_reg__\n"
"dec r25\n"
"brne 1b\n"
: "=Q"(slow), "=Q"(shigh)
: "z"(k), "x"(l), "Q"(li_out)
: "r25"
);
// Unpack the input into the x and y variables, converting
// from big-endian into little-endian in the process.
__asm__ __volatile__ (
"ld %D1,Z\n"
"ldd %C1,Z+1\n"
"ldd %B1,Z+2\n"
"ldd %A1,Z+3\n"
"ldd %D0,Z+4\n"
"ldd %C0,Z+5\n"
"ldd %B0,Z+6\n"
"ldd %A0,Z+7\n"
"ldd %D3,Z+8\n"
"ldd %C3,Z+9\n"
"ldd %B3,Z+10\n"
"ldd %A3,Z+11\n"
"ldd %D2,Z+12\n"
"ldd %C2,Z+13\n"
"ldd %B2,Z+14\n"
"ldd %A2,Z+15\n"
: "=r"(xlow), "=r"(xhigh), "=r"(ylow), "=r"(yhigh)
: "z"(input)
);
// Perform all encryption rounds while expanding the key schedule in-place.
__asm__ __volatile__ (
"mov r23,__zero_reg__\n" // i = 0
"1:\n"
// Adjust x and y for this round using the key schedule word s.
// x = (rightRotate8_64(x) + y) ^ s;
"mov __tmp_reg__,%A0\n" // x = rightRotate8_64(x)
"mov %A0,%B0\n"
"mov %B0,%C0\n"
"mov %C0,%D0\n"
"mov %D0,%A1\n"
"mov %A1,%B1\n"
"mov %B1,%C1\n"
"mov %C1,%D1\n"
"mov %D1,__tmp_reg__\n"
"add %A0,%A2\n" // x += y
"adc %B0,%B2\n"
"adc %C0,%C2\n"
"adc %D0,%D2\n"
"adc %A1,%A3\n"
"adc %B1,%B3\n"
"adc %C1,%C3\n"
"adc %D1,%D3\n"
"ldd __tmp_reg__,%A4\n" // x ^= s
"eor %A0,__tmp_reg__\n"
"ldd __tmp_reg__,%B4\n"
"eor %B0,__tmp_reg__\n"
"ldd __tmp_reg__,%C4\n"
"eor %C0,__tmp_reg__\n"
"ldd __tmp_reg__,%D4\n"
"eor %D0,__tmp_reg__\n"
"ldd __tmp_reg__,%A5\n"
"eor %A1,__tmp_reg__\n"
"ldd __tmp_reg__,%B5\n"
"eor %B1,__tmp_reg__\n"
"ldd __tmp_reg__,%C5\n"
"eor %C1,__tmp_reg__\n"
"ldd __tmp_reg__,%D5\n"
"eor %D1,__tmp_reg__\n"
// y = leftRotate3_64(y) ^ x;
"lsl %A2\n" // y = leftRotate1_64(y)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"lsl %A2\n" // y = leftRotate1_64(y)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"lsl %A2\n" // y = leftRotate1_64(y)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"eor %A2,%A0\n" // y ^= x
"eor %B2,%B0\n"
"eor %C2,%C0\n"
"eor %D2,%D0\n"
"eor %A3,%A1\n"
"eor %B3,%B1\n"
"eor %C3,%C1\n"
"eor %D3,%D1\n"
// On the last round we don't need to compute s so we
// can exit early here if (i + 1) == rounds.
"mov __tmp_reg__,r23\n" // temp = i + 1
"inc __tmp_reg__\n"
"cp __tmp_reg__,%9\n" // if (temp == rounds) ...
"brne 2f\n"
"rjmp 3f\n"
"2:\n"
// Save x and y on the stack so we can reuse registers for t and s.
"push %A0\n"
"push %B0\n"
"push %C0\n"
"push %D0\n"
"push %A1\n"
"push %B1\n"
"push %C1\n"
"push %D1\n"
"push %A2\n"
"push %B2\n"
"push %C2\n"
"push %D2\n"
"push %A3\n"
"push %B3\n"
"push %C3\n"
"push %D3\n"
// Compute the key schedule word s for the next round.
// l[li_out] = (s + rightRotate8_64(l[li_in])) ^ i;
"ldd r24,%6\n" // Z = &(l[li_in])
"add %A8,r24\n"
"adc %B8,__zero_reg__\n"
"ld %D1,Z+\n" // t = rightRotate8_64(l[li_in])
"ld %A0,Z+\n"
"ld %B0,Z+\n"
"ld %C0,Z+\n"
"ld %D0,Z+\n"
"ld %A1,Z+\n"
"ld %B1,Z+\n"
"ld %C1,Z+\n"
"ldd %A2,%A4\n" // load s
"ldd %B2,%B4\n"
"ldd %C2,%C4\n"
"ldd %D2,%D4\n"
"ldd %A3,%A5\n"
"ldd %B3,%B5\n"
"ldd %C3,%C5\n"
"ldd %D3,%D5\n"
"add %A0,%A2\n" // t += s
"adc %B0,%B2\n"
"adc %C0,%C2\n"
"adc %D0,%D2\n"
"adc %A1,%A3\n"
"adc %B1,%B3\n"
"adc %C1,%C3\n"
"adc %D1,%D3\n"
"eor %A0,r23\n" // t ^= i
// Z = Z - li_in + li_out
"ldi r25,8\n" // li_in = li_in + 1
"add r24,r25\n"
"sub %A8,r24\n" // return Z to its initial value
"sbc %B8,__zero_reg__\n"
"andi r24,0x1f\n" // li_in = li_in % 4
"std %6,r24\n"
"ldd r24,%7\n" // Z = &(l[li_out])
"add %A8,r24\n"
"adc %B8,__zero_reg__\n"
"st Z+,%A0\n" // l[li_out] = t
"st Z+,%B0\n"
"st Z+,%C0\n"
"st Z+,%D0\n"
"st Z+,%A1\n"
"st Z+,%B1\n"
"st Z+,%C1\n"
"st Z+,%D1\n"
"add r24,r25\n" // li_out = li_out + 1
"sub %A8,r24\n" // return Z to its initial value
"sbc %B8,__zero_reg__\n"
"andi r24,0x1f\n" // li_out = li_out % 4
"std %7,r24\n"
// s = leftRotate3_64(s) ^ l[li_out];
"lsl %A2\n" // s = leftRotate1_64(s)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"lsl %A2\n" // s = leftRotate1_64(s)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"lsl %A2\n" // s = leftRotate1_64(s)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"eor %A2,%A0\n" // s ^= l[li_out]
"eor %B2,%B0\n"
"eor %C2,%C0\n"
"eor %D2,%D0\n"
"eor %A3,%A1\n"
"eor %B3,%B1\n"
"eor %C3,%C1\n"
"eor %D3,%D1\n"
"std %A4,%A2\n" // store s
"std %B4,%B2\n"
"std %C4,%C2\n"
"std %D4,%D2\n"
"std %A5,%A3\n"
"std %B5,%B3\n"
"std %C5,%C3\n"
"std %D5,%D3\n"
// Pop registers from the stack to recover the x and y values.
"pop %D3\n"
"pop %C3\n"
"pop %B3\n"
"pop %A3\n"
"pop %D2\n"
"pop %C2\n"
"pop %B2\n"
"pop %A2\n"
"pop %D1\n"
"pop %C1\n"
"pop %B1\n"
"pop %A1\n"
"pop %D0\n"
"pop %C0\n"
"pop %B0\n"
"pop %A0\n"
// Bottom of the loop.
"inc r23\n"
"rjmp 1b\n"
"3:\n"
: "+r"(xlow), "+r"(xhigh), "+r"(ylow), "+r"(yhigh),
"+Q"(slow), "+Q"(shigh), "+Q"(li_in), "+Q"(li_out)
: "z"(l), "r"(rounds)
: "r23", "r24", "r25"
);
// Pack the results into the output and convert back to big-endian.
__asm__ __volatile__ (
"st Z,%D1\n"
"std Z+1,%C1\n"
"std Z+2,%B1\n"
"std Z+3,%A1\n"
"std Z+4,%D0\n"
"std Z+5,%C0\n"
"std Z+6,%B0\n"
"std Z+7,%A0\n"
"std Z+8,%D3\n"
"std Z+9,%C3\n"
"std Z+10,%B3\n"
"std Z+11,%A3\n"
"std Z+12,%D2\n"
"std Z+13,%C2\n"
"std Z+14,%B2\n"
"std Z+15,%A2\n"
: : "r"(xlow), "r"(xhigh), "r"(ylow), "r"(yhigh), "z"(output)
);
#else
uint64_t l[4];
uint64_t x, y, s;
uint8_t round;
uint8_t li_in = 0;
uint8_t li_out = rounds - 31;
uint8_t i = 0;
// Copy the input block into the work registers.
unpack64(x, input);
unpack64(y, input + 8);
// Prepare the key schedule.
memcpy(l, k + 1, li_out * sizeof(uint64_t));
s = k[0];
// Perform all encryption rounds except the last.
for (round = rounds - 1; round > 0; --round, ++i) {
// Perform the round with the current key schedule word.
x = (rightRotate8_64(x) + y) ^ s;
y = leftRotate3_64(y) ^ x;
// Calculate the next key schedule word.
l[li_out] = (s + rightRotate8_64(l[li_in])) ^ i;
s = leftRotate3_64(s) ^ l[li_out];
li_in = (li_in + 1) & 0x03;
li_out = (li_out + 1) & 0x03;
}
// Perform the final round and copy to the output.
x = (rightRotate8_64(x) + y) ^ s;
y = leftRotate3_64(y) ^ x;
pack64(output, x);
pack64(output + 8, y);
#endif
}
/**
* \brief Decrypts a single block using this cipher.
*
* \param output The output buffer to put the plaintext into.
* Must be at least blockSize() bytes in length.
* \param input The input buffer to read the ciphertext from which is
* allowed to overlap with \a output. Must be at least blockSize()
* bytes in length.
*
* \note This function is not supported for SpeckLowMemory, which means
* that CBC mode cannot be used but that the CTR, CFB, OFB, and GCM modes
* can be used.
*/
void SpeckLowMemory::decryptBlock(uint8_t *output, const uint8_t *input)
{
// Decryption is not supported.
}
void SpeckLowMemory::clear()
{
clean(k);
}

View File

@ -0,0 +1,49 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef CRYPTO_SPECK_LOW_MEMORY_H
#define CRYPTO_SPECK_LOW_MEMORY_H
#include "BlockCipher.h"
class SpeckLowMemory : public BlockCipher
{
public:
SpeckLowMemory();
virtual ~SpeckLowMemory();
size_t blockSize() const;
size_t keySize() const;
bool setKey(const uint8_t *key, size_t len);
void encryptBlock(uint8_t *output, const uint8_t *input);
void decryptBlock(uint8_t *output, const uint8_t *input);
void clear();
private:
uint64_t k[4];
uint8_t rounds;
};
#endif

View File

@ -26,6 +26,7 @@ This example runs tests on the Speck implementation to verify correct behaviour.
#include <Crypto.h>
#include <Speck.h>
#include <SpeckLowMemory.h>
#include <string.h>
struct TestVector
@ -69,10 +70,11 @@ static TestVector const testVectorSpeck256 = {
};
Speck speck;
SpeckLowMemory speckLowMemory;
byte buffer[16];
void testCipher(BlockCipher *cipher, const struct TestVector *test, size_t keySize)
void testCipher(BlockCipher *cipher, const struct TestVector *test, size_t keySize, bool decryption = true)
{
Serial.print(test->name);
Serial.print(" Encryption ... ");
@ -83,6 +85,9 @@ void testCipher(BlockCipher *cipher, const struct TestVector *test, size_t keySi
else
Serial.println("Failed");
if (!decryption)
return;
Serial.print(test->name);
Serial.print(" Decryption ... ");
cipher->decryptBlock(buffer, test->ciphertext);
@ -92,7 +97,7 @@ void testCipher(BlockCipher *cipher, const struct TestVector *test, size_t keySi
Serial.println("Failed");
}
void perfCipher(BlockCipher *cipher, const struct TestVector *test, size_t keySize)
void perfCipher(BlockCipher *cipher, const struct TestVector *test, size_t keySize, bool decryption = true)
{
unsigned long start;
unsigned long elapsed;
@ -122,6 +127,11 @@ void perfCipher(BlockCipher *cipher, const struct TestVector *test, size_t keySi
Serial.print((16.0 * 5000.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
if (!decryption) {
Serial.println();
return;
}
Serial.print(test->name);
Serial.print(" Decrypt ... ");
start = micros();
@ -146,19 +156,33 @@ void setup()
Serial.println("State Sizes:");
Serial.print("Speck ... ");
Serial.println(sizeof(Speck));
Serial.print("SpeckLowMemory ... ");
Serial.println(sizeof(SpeckLowMemory));
Serial.println();
Serial.println("Test Vectors:");
Serial.println("Speck Test Vectors:");
testCipher(&speck, &testVectorSpeck128, 16);
testCipher(&speck, &testVectorSpeck192, 24);
testCipher(&speck, &testVectorSpeck256, 32);
Serial.println();
Serial.println("Performance Tests:");
Serial.println("SpeckLowMemory Test Vectors:");
testCipher(&speckLowMemory, &testVectorSpeck128, 16, false);
testCipher(&speckLowMemory, &testVectorSpeck192, 24, false);
testCipher(&speckLowMemory, &testVectorSpeck256, 32, false);
Serial.println();
Serial.println("Speck Performance Tests:");
perfCipher(&speck, &testVectorSpeck128, 16);
perfCipher(&speck, &testVectorSpeck192, 24);
perfCipher(&speck, &testVectorSpeck256, 32);
Serial.println("SpeckLowMemory Performance Tests:");
perfCipher(&speckLowMemory, &testVectorSpeck128, 16, false);
perfCipher(&speckLowMemory, &testVectorSpeck192, 24, false);
perfCipher(&speckLowMemory, &testVectorSpeck256, 32, false);
}
void loop()