1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

Continue the clock implementation

This commit is contained in:
Rhys Weatherley 2012-05-15 16:40:18 +10:00
parent 8953b10a17
commit f9e77a9cf3
2 changed files with 185 additions and 112 deletions

View File

@ -24,9 +24,17 @@
#include <FreetronicsLCD.h>
#include <Form.h>
#include <Field.h>
#include <DS1307RTC.h>
// Initialize the LCD
FreetronicsLCD lcd;
// I/O pins that are used by this sketch.
#define BUZZER 12
#define SENSE_BATTERY A1
#define RTC_DATA A3
#define RTC_CLOCK A4
#define RTC_ONE_HZ A5
// Value to adjust for the voltage drop on D2.
#define VOLTAGE_DROP_ADJUST 70 // 0.7 volts
// Special characters for indicators.
#define IND_BATTERY_EMPTY 0
@ -35,6 +43,17 @@ FreetronicsLCD lcd;
#define IND_BATTERY_60PCT 3
#define IND_BATTERY_80PCT 4
#define IND_BATTERY_FULL 5
#define IND_ALARM_ACTIVE1 6
#define IND_ALARM_ACTIVE2 7
// Initialize the LCD
FreetronicsLCD lcd;
// Activate the realtime clock chip.
BitBangI2C bus(RTC_DATA, RTC_CLOCK);
DS1307RTC rtc(bus, RTC_ONE_HZ);
bool isAlarmOn = false;
// Specialized time/date display field for the front screen of the clock.
class FrontScreenField : public Field
@ -45,35 +64,45 @@ public:
void enterField(bool reverse);
int day() const { return _day; }
int month() const { return _month; }
int year() const { return _year; }
void setDate(int day, int month, int year);
RTCDate date() const { return _date; }
void setDate(const RTCDate &date);
unsigned long time() const { return _time; }
void setTime(unsigned long time);
RTCTime time() const { return _time; }
void setTime(const RTCTime &time);
int batteryStatus() const { return _batteryStatus; }
void setBatteryStatus(int batteryStatus);
int voltage() const { return _voltage; }
void setVoltage(int voltage);
bool isAlarmActive() const { return _alarmActive; }
void setAlarmActive(bool active);
private:
int _day, _month, _year;
unsigned long _time;
int _batteryStatus;
RTCDate _date;
RTCTime _time;
int _voltage;
int _voltageTrunc;
int _batteryBars;
bool _alarmActive;
void updateDate();
void updateTime();
void updateBatteryStatus();
void updateVoltage();
void updateAlarm();
};
FrontScreenField::FrontScreenField(Form &form)
: Field(form, "")
, _day(1), _month(1), _year(2012)
, _time(9 * 60 * 60)
, _batteryStatus(100)
, _voltage(360)
, _voltageTrunc(36)
, _batteryBars(IND_BATTERY_FULL)
, _alarmActive(false)
{
_date.day = 1;
_date.month = 1;
_date.year = 2012;
_time.hour = 9;
_time.minute = 0;
_time.second = 0;
}
FrontScreenField::~FrontScreenField()
@ -83,140 +112,133 @@ FrontScreenField::~FrontScreenField()
void FrontScreenField::enterField(bool reverse)
{
updateDate();
updateBatteryStatus();
updateVoltage();
updateTime();
updateAlarm();
}
const char *months[] = {
" Jan ", " Feb ", " Mar ", " Apr ", " May ", " Jun ",
" Jul ", " Aug ", " Sep ", " Oct ", " Nov ", " Dec "
};
uint8_t monthLengths[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
inline bool isLeapYear(int year)
{
if ((year % 100) == 0)
return (year % 400) == 0;
else
return (year % 4) == 0;
}
uint8_t prevHour = 24;
void FrontScreenField::setDate(int day, int month, int year)
void FrontScreenField::setDate(const RTCDate &date)
{
if (day != _day || month != _month || year != _year) {
if (day < 1) {
// Rolled back into the previous month.
if (month == 1)
month = 12;
else
--month;
if (month == 2 && isLeapYear(year))
day = 29 + day;
else
day = monthLengths[month - 1] + day;
} if (month == 2 && isLeapYear(year)) {
if (day > 29) {
// Rolled forward from Feb into Mar in a leap year.
month = 3;
day -= 29;
}
} else if (day > monthLengths[month - 1]) {
// Rolled forward into the next month.
day -= monthLengths[month - 1];
if (month == 12)
month = 1;
else
++month;
}
_day = day;
_month = month;
_year = year;
if (date.day != _date.day || date.month != _date.month ||
date.year != _date.year) {
_date = date;
if (isCurrent())
updateDate();
}
}
void FrontScreenField::setTime(unsigned long time)
void FrontScreenField::setTime(const RTCTime &time)
{
if (time != _time) {
if (time.hour != _time.hour || time.minute != _time.minute ||
time.second != _time.second) {
_time = time;
if (isCurrent())
updateTime();
}
}
void FrontScreenField::setBatteryStatus(int batteryStatus)
void FrontScreenField::setVoltage(int voltage)
{
_batteryStatus = batteryStatus;
// Normal voltage ranges between 2.7 and 3.6. The power supply
// for the clock will no longer function below 2.7 volts.
if (_voltage == voltage)
return;
_voltage = voltage;
int ind;
if (batteryStatus >= 85)
if (voltage > 355)
ind = IND_BATTERY_FULL;
else if (batteryStatus >= 75)
else if (voltage > 345)
ind = IND_BATTERY_80PCT;
else if (batteryStatus >= 55)
else if (voltage > 325)
ind = IND_BATTERY_60PCT;
else if (batteryStatus >= 35)
else if (voltage > 305)
ind = IND_BATTERY_40PCT;
else if (batteryStatus >= 15)
else if (voltage > 285)
ind = IND_BATTERY_20PCT;
else
ind = IND_BATTERY_EMPTY;
if (ind != _batteryBars) {
int trunc = voltage / 10;
if (ind != _batteryBars || trunc != _voltageTrunc) {
_batteryBars = ind;
updateBatteryStatus();
_voltageTrunc = trunc;
updateVoltage();
}
}
void FrontScreenField::setAlarmActive(bool active)
{
if (_alarmActive != active) {
_alarmActive = active;
if (isCurrent())
updateAlarm();
}
}
void FrontScreenField::updateDate()
{
lcd()->setCursor(0, 0);
if (_day < 10) {
lcd()->write('0' + _day);
if (_date.day < 10) {
lcd()->write('0' + _date.day);
} else {
lcd()->write('0' + _day / 10);
lcd()->write('0' + _day % 10);
lcd()->write('0' + _date.day / 10);
lcd()->write('0' + _date.day % 10);
}
lcd()->print(months[_month - 1]);
lcd()->print(_year);
lcd()->print(months[_date.month - 1]);
lcd()->print(_date.year);
lcd()->write(' ');
}
void FrontScreenField::updateTime()
{
lcd()->setCursor(0, 1);
int hour = (int)(_time / (60 * 60));
int minute = ((int)(_time / 60)) % 60;
int second = (int)(_time % 60);
bool pm;
if (hour == 0 || hour == 12) {
if (_time.hour == 0 || _time.hour == 12) {
lcd()->write('1');
lcd()->write('2');
pm = (hour == 12);
} else if (hour < 12) {
lcd()->write('0' + hour / 10);
lcd()->write('0' + hour % 10);
pm = (_time.hour == 12);
} else if (_time.hour < 12) {
lcd()->write('0' + _time.hour / 10);
lcd()->write('0' + _time.hour % 10);
pm = false;
} else {
hour -= 12;
int hour = _time.hour - 12;
lcd()->write('0' + hour / 10);
lcd()->write('0' + hour % 10);
pm = true;
}
lcd()->write(':');
lcd()->write('0' + minute / 10);
lcd()->write('0' + minute % 10);
lcd()->write('0' + _time.minute / 10);
lcd()->write('0' + _time.minute % 10);
lcd()->write(':');
lcd()->write('0' + second / 10);
lcd()->write('0' + second % 10);
lcd()->print(pm ? " PM" : " AM");
lcd()->write('0' + _time.second / 10);
lcd()->write('0' + _time.second % 10);
lcd()->print(pm ? "pm" : "am");
}
void FrontScreenField::updateBatteryStatus()
void FrontScreenField::updateVoltage()
{
lcd()->setCursor(15, 0);
lcd()->write(_batteryBars);
lcd()->setCursor(12, 1);
lcd()->write('0' + _voltageTrunc / 10);
lcd()->write('.');
lcd()->write('0' + _voltageTrunc % 10);
lcd()->write('v');
}
void FrontScreenField::updateAlarm()
{
lcd()->setCursor(13, 0);
lcd()->write(_alarmActive ? IND_ALARM_ACTIVE1 : ' ');
lcd()->write(_alarmActive ? IND_ALARM_ACTIVE2 : ' ');
}
// Create the main form and its fields.
@ -225,12 +247,6 @@ FrontScreenField frontScreen(mainForm);
#define STATUS_LED 13
#define MILLIS_PER_DAY 86400000UL
#define MILLIS_PER_SECOND 1000UL
#define MILLIS_PER_HOUR 3600000UL
unsigned long midnightTime;
byte batteryEmpty[8] = {
B01110,
B10001,
@ -291,6 +307,26 @@ byte batteryFull[8] = {
B11111,
B00000
};
byte alarmActive1[8] = {
B00100,
B01001,
B10010,
B00000,
B10010,
B01001,
B00100,
B00000
};
byte alarmActive2[8] = {
B11000,
B10100,
B10011,
B10011,
B10011,
B10100,
B11000,
B00000
};
void setup() {
// Turn off the status LED. Don't need it.
@ -304,34 +340,46 @@ void setup() {
lcd.createChar(IND_BATTERY_60PCT, battery60Pct);
lcd.createChar(IND_BATTERY_80PCT, battery80Pct);
lcd.createChar(IND_BATTERY_FULL, batteryFull);
lcd.createChar(IND_ALARM_ACTIVE1, alarmActive1);
lcd.createChar(IND_ALARM_ACTIVE2, alarmActive2);
//lcd.enableScreenSaver();
// At startup, make "now" be 9am. TODO: Read from an RTC chip instead.
midnightTime = millis() - MILLIS_PER_HOUR * 9;
// Show the main form for the first time.
mainForm.show();
}
void loop() {
// Update the number of seconds since the last midnight event.
unsigned long sinceMidnight = millis() - midnightTime;
if (sinceMidnight >= MILLIS_PER_DAY) {
// We have overflowed into the next day. Readjust midnight.
midnightTime += MILLIS_PER_DAY;
sinceMidnight -= MILLIS_PER_DAY;
// Update the time and date every second based on the 1 Hz RTC output.
if (rtc.hasUpdates() || prevHour >= 24) {
RTCTime time;
rtc.readTime(&time);
frontScreen.setTime(time);
if (time.hour < prevHour) {
// Time has wrapped around, or date update has been forced.
RTCDate date;
rtc.readDate(&date);
frontScreen.setDate(date);
}
prevHour = time.hour;
// Increment the date using the rollover logic.
frontScreen.setDate(frontScreen.day() + 1,
frontScreen.month(),
frontScreen.year());
// Update the battery status once a second also.
int status = analogRead(SENSE_BATTERY);
int voltage = (int)((status * 500L) / 1024L); // e.g. 2.81V = 281
voltage += VOLTAGE_DROP_ADJUST;
if (voltage > 500)
voltage = 500;
frontScreen.setVoltage(voltage);
}
frontScreen.setTime(sinceMidnight / MILLIS_PER_SECOND);
// Dispatch button events to the main form.
int event = lcd.getButton();
if (mainForm.dispatch(event) == FORM_CHANGED) {
prevHour = 24; // Force an update of the main screen.
}
// If the alarm is on and a button was pressed, then turn off the alarm.
if (event != LC_BUTTON_NONE && isAlarmOn) {
// TODO
}
}

View File

@ -269,6 +269,26 @@ Single
6 9855 3555 9945 3645
1 3 0 1 0 -1 0 0 20 0.000 1 0.0000 9900 3600 30 30 9900 3600 9900 3630
-6
6 990 4995 1530 5220
1 3 0 1 0 -1 0 0 -1 0.000 1 0.0000 1125 5175 38 38 1125 5175 1163 5175
1 3 0 1 0 -1 0 0 -1 0.000 1 0.0000 1395 5175 38 38 1395 5175 1433 5175
2 1 0 1 0 -1 0 0 -1 0.000 0 0 -1 0 0 2
1080 5175 990 5175
2 1 0 1 0 -1 0 0 -1 0.000 0 0 -1 0 0 2
1440 5175 1530 5175
2 1 0 1 0 -1 0 0 -1 0.000 0 0 -1 0 0 2
1260 5085 1260 4995
2 1 0 1 0 -1 0 0 -1 0.000 0 1 -1 0 0 2
1125 5085 1395 5085
2 1 0 1 0 -1 0 0 -1 0.000 0 1 -1 0 0 2
1215 4995 1305 4995
-6
6 630 5130 720 5220
1 3 0 1 0 -1 0 0 20 0.000 1 0.0000 675 5175 30 30 675 5175 675 5205
-6
6 1755 5130 1845 5220
1 3 0 1 0 -1 0 0 20 0.000 1 0.0000 1800 5175 30 30 1800 5175 1800 5205
-6
2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
3825 2250 6750 2250 6750 6300 3825 6300 3825 2250
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 3
@ -354,17 +374,21 @@ Single
2250 6750 2025 6750 2025 7200
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
9900 3600 9900 3150
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
1800 5175 1485 5175
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
1035 5175 675 5175
4 0 0 50 -1 0 12 0.0000 4 135 675 4950 4230 Arduino\001
4 0 0 50 -1 0 12 0.0000 4 135 450 3915 2610 Reset\001
4 0 0 50 -1 0 12 0.0000 4 135 240 1710 3060 5V\001
4 0 0 50 -1 0 12 0.0000 4 135 240 3915 3870 A0\001
4 0 0 50 -1 0 12 0.0000 4 135 345 1980 5400 2K3\001
4 0 0 50 -1 0 12 0.0000 4 135 345 1980 5400 3K3\001
4 0 0 50 -1 0 12 0.0000 4 135 240 1980 4995 1K\001
4 0 0 50 -1 0 12 0.0000 4 135 450 1980 4545 620R\001
4 0 0 50 -1 0 12 0.0000 4 135 450 1980 4050 330R\001
4 0 0 50 -1 0 12 0.0000 4 135 240 1980 3600 2K\001
4 0 0 50 -1 0 12 0.0000 4 180 240 225 4320 Up\001
4 0 0 50 -1 0 12 0.0000 4 135 480 90 3870 Mode\001
4 0 0 50 -1 0 12 0.0000 4 180 465 90 3870 Right\001
4 0 0 50 -1 0 12 0.0000 4 135 480 45 4770 Down\001
4 0 0 50 -1 0 12 0.0000 4 135 495 45 5760 Alarm\001
4 0 0 50 -1 0 12 0.0000 4 180 375 135 5535 Stop\001
@ -387,7 +411,7 @@ Single
4 0 0 50 -1 0 12 4.7124 4 135 240 9630 2835 D4\001
4 0 0 50 -1 0 12 0.0000 4 135 240 11610 2835 5V\001
4 0 0 50 -1 0 12 0.0000 4 135 240 6300 5220 D2\001
4 0 0 50 -1 0 12 0.0000 4 135 660 11025 5130 2N7002\001
4 0 0 50 -1 0 12 0.0000 4 135 660 11025 5130 2N7000\001
4 0 0 50 -1 0 12 0.0000 4 135 450 11025 4680 150R\001
4 0 0 50 -1 0 12 0.0000 4 135 240 3285 1665 5V\001
4 0 0 50 -1 0 12 0.0000 4 135 525 2655 2250 100nF\001
@ -411,3 +435,4 @@ Single
4 0 0 50 -1 0 12 0.0000 4 135 240 3915 5670 A5\001
4 0 0 50 -1 0 12 0.0000 4 135 240 3915 5220 A3\001
4 0 0 50 -1 0 12 4.7124 4 135 375 9855 2745 R/W\001
4 0 0 50 -1 0 12 0.0000 4 135 330 180 5220 Left\001