/* * Copyright (C) 2015 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "SHA512.h" #include "Crypto.h" #include "utility/RotateUtil.h" #include "utility/EndianUtil.h" #include "utility/ProgMemUtil.h" #include /** * \class SHA512 SHA512.h * \brief SHA-512 hash algorithm. * * Reference: http://en.wikipedia.org/wiki/SHA-2 * * \sa SHA256, SHA3_512, BLAKE2b */ /** * \brief Constructs a SHA-512 hash object. */ SHA512::SHA512() { reset(); } /** * \brief Destroys this SHA-512 hash object after clearing * sensitive information. */ SHA512::~SHA512() { clean(state); } size_t SHA512::hashSize() const { return 64; } size_t SHA512::blockSize() const { return 128; } void SHA512::reset() { static uint64_t const hashStart[8] PROGMEM = { 0x6A09E667F3BCC908ULL, 0xBB67AE8584CAA73BULL, 0x3C6EF372FE94F82BULL, 0xA54FF53A5F1D36F1ULL, 0x510E527FADE682D1ULL, 0x9B05688C2B3E6C1FULL, 0x1F83D9ABFB41BD6BULL, 0x5BE0CD19137E2179ULL }; memcpy_P(state.h, hashStart, sizeof(hashStart)); state.chunkSize = 0; state.lengthLow = 0; state.lengthHigh = 0; } void SHA512::update(const void *data, size_t len) { // Update the total length in bits, not bytes. uint64_t temp = state.lengthLow; state.lengthLow += (((uint64_t)len) << 3); state.lengthHigh += (((uint64_t)len) >> 61); if (state.lengthLow < temp) ++state.lengthHigh; // Break the input up into 1024-bit chunks and process each in turn. const uint8_t *d = (const uint8_t *)data; while (len > 0) { uint8_t size = 128 - state.chunkSize; if (size > len) size = len; memcpy(((uint8_t *)state.w) + state.chunkSize, d, size); state.chunkSize += size; len -= size; d += size; if (state.chunkSize == 128) { processChunk(); state.chunkSize = 0; } } } void SHA512::finalize(void *hash, size_t len) { // Pad the last chunk. We may need two padding chunks if there // isn't enough room in the first for the padding and length. uint8_t *wbytes = (uint8_t *)state.w; if (state.chunkSize <= (128 - 17)) { wbytes[state.chunkSize] = 0x80; memset(wbytes + state.chunkSize + 1, 0x00, 128 - 16 - (state.chunkSize + 1)); state.w[14] = htobe64(state.lengthHigh); state.w[15] = htobe64(state.lengthLow); processChunk(); } else { wbytes[state.chunkSize] = 0x80; memset(wbytes + state.chunkSize + 1, 0x00, 128 - (state.chunkSize + 1)); processChunk(); memset(wbytes, 0x00, 128 - 16); state.w[14] = htobe64(state.lengthHigh); state.w[15] = htobe64(state.lengthLow); processChunk(); } // Convert the result into big endian and return it. for (uint8_t posn = 0; posn < 8; ++posn) state.w[posn] = htobe64(state.h[posn]); // Copy the hash to the caller's return buffer. if (len > 64) len = 64; memcpy(hash, state.w, len); } void SHA512::clear() { clean(state); reset(); } void SHA512::resetHMAC(const void *key, size_t keyLen) { formatHMACKey(state.w, key, keyLen, 0x36); state.lengthLow += 128 * 8; processChunk(); } void SHA512::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen) { uint8_t temp[64]; finalize(temp, sizeof(temp)); formatHMACKey(state.w, key, keyLen, 0x5C); state.lengthLow += 128 * 8; processChunk(); update(temp, sizeof(temp)); finalize(hash, hashLen); clean(temp); } /** * \brief Copies the entire hash state from another object. * * \param other The other object to copy the state from. * * This function is intended for scenarios where the application needs to * finalize the state to get an intermediate hash value, but must then * continue hashing new data into the original state. * * In the following example, h1 will be the hash over data1 and h2 will * be the hash over data1 concatenated with data2: * * \code * // Hash the initial data. * SHA512 hash1; * hash1.update(data1, sizeof(data1)); * * // Copy the hash state and finalize to create h1. * SHA512 hash2; * hash2.copyFrom(hash1); * hash2.finalize(h1, sizeof(h1)); * * // Continue adding data to the original unfinalized hash. * hash1.update(data2, sizeof(data2)); * * // Get the final hash value h2. * hash1.finalize(h2, sizeof(h2)); * \endcode */ void SHA512::copyFrom(const SHA512 &other) { state = other.state; } /** * \brief Processes a single 1024-bit chunk with the core SHA-512 algorithm. * * Reference: http://en.wikipedia.org/wiki/SHA-2 */ void SHA512::processChunk() { // Round constants for SHA-512. static uint64_t const k[80] PROGMEM = { 0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL, 0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL, 0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL, 0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL, 0xD807AA98A3030242ULL, 0x12835B0145706FBEULL, 0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL, 0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL, 0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL, 0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL, 0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL, 0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL, 0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL, 0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL, 0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL, 0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL, 0x06CA6351E003826FULL, 0x142929670A0E6E70ULL, 0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL, 0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL, 0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL, 0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL, 0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL, 0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL, 0xD192E819D6EF5218ULL, 0xD69906245565A910ULL, 0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL, 0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL, 0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL, 0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL, 0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL, 0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL, 0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL, 0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL, 0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL, 0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL, 0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL, 0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL, 0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL, 0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL, 0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL, 0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL, 0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL }; // Convert the first 16 words from big endian to host byte order. uint8_t index; for (index = 0; index < 16; ++index) state.w[index] = be64toh(state.w[index]); // Initialise working variables to the current hash value. uint64_t a = state.h[0]; uint64_t b = state.h[1]; uint64_t c = state.h[2]; uint64_t d = state.h[3]; uint64_t e = state.h[4]; uint64_t f = state.h[5]; uint64_t g = state.h[6]; uint64_t h = state.h[7]; // Perform the first 16 rounds of the compression function main loop. uint64_t temp1, temp2; for (index = 0; index < 16; ++index) { temp1 = h + pgm_read_qword(k + index) + state.w[index] + (rightRotate14_64(e) ^ rightRotate18_64(e) ^ rightRotate41_64(e)) + ((e & f) ^ ((~e) & g)); temp2 = (rightRotate28_64(a) ^ rightRotate34_64(a) ^ rightRotate39_64(a)) + ((a & b) ^ (a & c) ^ (b & c)); h = g; g = f; f = e; e = d + temp1; d = c; c = b; b = a; a = temp1 + temp2; } // Perform the 64 remaining rounds. We expand the first 16 words to // 80 in-place in the "w" array. This saves 512 bytes of memory // that would have otherwise need to be allocated to the "w" array. for (; index < 80; ++index) { // Expand the next word. temp1 = state.w[(index - 15) & 0x0F]; temp2 = state.w[(index - 2) & 0x0F]; temp1 = state.w[index & 0x0F] = state.w[(index - 16) & 0x0F] + state.w[(index - 7) & 0x0F] + (rightRotate1_64(temp1) ^ rightRotate8_64(temp1) ^ (temp1 >> 7)) + (rightRotate19_64(temp2) ^ rightRotate61_64(temp2) ^ (temp2 >> 6)); // Perform the round. temp1 = h + pgm_read_qword(k + index) + temp1 + (rightRotate14_64(e) ^ rightRotate18_64(e) ^ rightRotate41_64(e)) + ((e & f) ^ ((~e) & g)); temp2 = (rightRotate28_64(a) ^ rightRotate34_64(a) ^ rightRotate39_64(a)) + ((a & b) ^ (a & c) ^ (b & c)); h = g; g = f; f = e; e = d + temp1; d = c; c = b; b = a; a = temp1 + temp2; } // Add the compressed chunk to the current hash value. state.h[0] += a; state.h[1] += b; state.h[2] += c; state.h[3] += d; state.h[4] += e; state.h[5] += f; state.h[6] += g; state.h[7] += h; // Attempt to clean up the stack. a = b = c = d = e = f = g = h = temp1 = temp2 = 0; }