/* * Copyright (C) 2016 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* This example runs tests on the P521 algorithm. Note: This example is too large to run on the Arduino Uno or other AVR platforms with 32K or less of flash memory. */ #include #include #include #include #include #include #include #if defined(ESP8266) #include #else #include #endif void printNumber(const char *name, const uint8_t *x, size_t len) { static const char hexchars[] = "0123456789ABCDEF"; Serial.print(name); Serial.print(" = "); for (size_t posn = 0; posn < len; ++posn) { Serial.print(hexchars[(x[posn] >> 4) & 0x0F]); Serial.print(hexchars[x[posn] & 0x0F]); } Serial.println(); } static int P521_memcmp_P(const void *s1, const void *s2, size_t len) { const uint8_t *u1 = (const uint8_t *)s1; const uint8_t *u2 = (const uint8_t *)s2; while (len > 0) { int ch1 = *u1++; int ch2 = pgm_read_byte(u2++); if (ch1 != ch2) return ch1 - ch2; --len; } return 0; } static uint8_t alice_k[132]; static uint8_t alice_f[66]; static uint8_t bob_k[132]; static uint8_t bob_f[66]; // Check the eval() function using the test vectors from RFC 5903. void testEval() { static uint8_t const alice_private[66] PROGMEM = { 0x00, 0x37, 0xAD, 0xE9, 0x31, 0x9A, 0x89, 0xF4, 0xDA, 0xBD, 0xB3, 0xEF, 0x41, 0x1A, 0xAC, 0xCC, 0xA5, 0x12, 0x3C, 0x61, 0xAC, 0xAB, 0x57, 0xB5, 0x39, 0x3D, 0xCE, 0x47, 0x60, 0x81, 0x72, 0xA0, 0x95, 0xAA, 0x85, 0xA3, 0x0F, 0xE1, 0xC2, 0x95, 0x2C, 0x67, 0x71, 0xD9, 0x37, 0xBA, 0x97, 0x77, 0xF5, 0x95, 0x7B, 0x26, 0x39, 0xBA, 0xB0, 0x72, 0x46, 0x2F, 0x68, 0xC2, 0x7A, 0x57, 0x38, 0x2D, 0x4A, 0x52 }; static uint8_t const alice_public[132] PROGMEM = { 0x00, 0x15, 0x41, 0x7E, 0x84, 0xDB, 0xF2, 0x8C, 0x0A, 0xD3, 0xC2, 0x78, 0x71, 0x33, 0x49, 0xDC, 0x7D, 0xF1, 0x53, 0xC8, 0x97, 0xA1, 0x89, 0x1B, 0xD9, 0x8B, 0xAB, 0x43, 0x57, 0xC9, 0xEC, 0xBE, 0xE1, 0xE3, 0xBF, 0x42, 0xE0, 0x0B, 0x8E, 0x38, 0x0A, 0xEA, 0xE5, 0x7C, 0x2D, 0x10, 0x75, 0x64, 0x94, 0x18, 0x85, 0x94, 0x2A, 0xF5, 0xA7, 0xF4, 0x60, 0x17, 0x23, 0xC4, 0x19, 0x5D, 0x17, 0x6C, 0xED, 0x3E, 0x01, 0x7C, 0xAE, 0x20, 0xB6, 0x64, 0x1D, 0x2E, 0xEB, 0x69, 0x57, 0x86, 0xD8, 0xC9, 0x46, 0x14, 0x62, 0x39, 0xD0, 0x99, 0xE1, 0x8E, 0x1D, 0x5A, 0x51, 0x4C, 0x73, 0x9D, 0x7C, 0xB4, 0xA1, 0x0A, 0xD8, 0xA7, 0x88, 0x01, 0x5A, 0xC4, 0x05, 0xD7, 0x79, 0x9D, 0xC7, 0x5E, 0x7B, 0x7D, 0x5B, 0x6C, 0xF2, 0x26, 0x1A, 0x6A, 0x7F, 0x15, 0x07, 0x43, 0x8B, 0xF0, 0x1B, 0xEB, 0x6C, 0xA3, 0x92, 0x6F, 0x95, 0x82 }; static uint8_t const bob_private[66] PROGMEM = { 0x01, 0x45, 0xBA, 0x99, 0xA8, 0x47, 0xAF, 0x43, 0x79, 0x3F, 0xDD, 0x0E, 0x87, 0x2E, 0x7C, 0xDF, 0xA1, 0x6B, 0xE3, 0x0F, 0xDC, 0x78, 0x0F, 0x97, 0xBC, 0xCC, 0x3F, 0x07, 0x83, 0x80, 0x20, 0x1E, 0x9C, 0x67, 0x7D, 0x60, 0x0B, 0x34, 0x37, 0x57, 0xA3, 0xBD, 0xBF, 0x2A, 0x31, 0x63, 0xE4, 0xC2, 0xF8, 0x69, 0xCC, 0xA7, 0x45, 0x8A, 0xA4, 0xA4, 0xEF, 0xFC, 0x31, 0x1F, 0x5C, 0xB1, 0x51, 0x68, 0x5E, 0xB9 }; static uint8_t const bob_public[132] PROGMEM = { 0x00, 0xD0, 0xB3, 0x97, 0x5A, 0xC4, 0xB7, 0x99, 0xF5, 0xBE, 0xA1, 0x6D, 0x5E, 0x13, 0xE9, 0xAF, 0x97, 0x1D, 0x5E, 0x9B, 0x98, 0x4C, 0x9F, 0x39, 0x72, 0x8B, 0x5E, 0x57, 0x39, 0x73, 0x5A, 0x21, 0x9B, 0x97, 0xC3, 0x56, 0x43, 0x6A, 0xDC, 0x6E, 0x95, 0xBB, 0x03, 0x52, 0xF6, 0xBE, 0x64, 0xA6, 0xC2, 0x91, 0x2D, 0x4E, 0xF2, 0xD0, 0x43, 0x3C, 0xED, 0x2B, 0x61, 0x71, 0x64, 0x00, 0x12, 0xD9, 0x46, 0x0F, 0x01, 0x5C, 0x68, 0x22, 0x63, 0x83, 0x95, 0x6E, 0x3B, 0xD0, 0x66, 0xE7, 0x97, 0xB6, 0x23, 0xC2, 0x7C, 0xE0, 0xEA, 0xC2, 0xF5, 0x51, 0xA1, 0x0C, 0x2C, 0x72, 0x4D, 0x98, 0x52, 0x07, 0x7B, 0x87, 0x22, 0x0B, 0x65, 0x36, 0xC5, 0xC4, 0x08, 0xA1, 0xD2, 0xAE, 0xBB, 0x8E, 0x86, 0xD6, 0x78, 0xAE, 0x49, 0xCB, 0x57, 0x09, 0x1F, 0x47, 0x32, 0x29, 0x65, 0x79, 0xAB, 0x44, 0xFC, 0xD1, 0x7F, 0x0F, 0xC5, 0x6A }; static uint8_t const shared_secret[66] PROGMEM = { 0x01, 0x14, 0x4C, 0x7D, 0x79, 0xAE, 0x69, 0x56, 0xBC, 0x8E, 0xDB, 0x8E, 0x7C, 0x78, 0x7C, 0x45, 0x21, 0xCB, 0x08, 0x6F, 0xA6, 0x44, 0x07, 0xF9, 0x78, 0x94, 0xE5, 0xE6, 0xB2, 0xD7, 0x9B, 0x04, 0xD1, 0x42, 0x7E, 0x73, 0xCA, 0x4B, 0xAA, 0x24, 0x0A, 0x34, 0x78, 0x68, 0x59, 0x81, 0x0C, 0x06, 0xB3, 0xC7, 0x15, 0xA3, 0xA8, 0xCC, 0x31, 0x51, 0xF2, 0xBE, 0xE4, 0x17, 0x99, 0x6D, 0x19, 0xF3, 0xDD, 0xEA }; // Evaluate the curve function and check the public keys. uint8_t result[132]; Serial.println("Fixed test vectors:"); Serial.print("Computing Alice's public key ... "); Serial.flush(); memcpy_P(alice_f, alice_private, 66); unsigned long start = micros(); P521::eval(result, alice_f, 0); unsigned long elapsed = micros() - start; if (P521_memcmp_P(result, alice_public, 132) == 0) { Serial.print("ok"); } else { Serial.println("failed"); printNumber("actual ", result, 132); printNumber("expected", alice_f, 132); } Serial.print(" (elapsed "); Serial.print(elapsed); Serial.println(" us)"); Serial.print("Computing Bob's public key ... "); Serial.flush(); memcpy_P(bob_f, bob_private, 66); start = micros(); P521::eval(result, bob_f, 0); elapsed = micros() - start; if (P521_memcmp_P(result, bob_public, 132) == 0) { Serial.print("ok"); } else { Serial.println("failed"); printNumber("actual ", result, 132); printNumber("expected", bob_f, 132); } Serial.print(" (elapsed "); Serial.print(elapsed); Serial.println(" us)"); // Compute the shared secret from each side. Serial.print("Computing Alice's shared secret ... "); Serial.flush(); memcpy_P(alice_f, alice_private, 66); memcpy_P(bob_k, bob_public, 132); memcpy_P(bob_f, shared_secret, 66); start = micros(); P521::eval(result, alice_f, bob_k); elapsed = micros() - start; if (P521_memcmp_P(result, shared_secret, 66) == 0) { Serial.print("ok"); } else { Serial.println("failed"); printNumber("actual ", result, 66); printNumber("expected", bob_f, 66); } Serial.print(" (elapsed "); Serial.print(elapsed); Serial.println(" us)"); Serial.print("Computing Bob's shared secret ... "); Serial.flush(); memcpy_P(bob_f, bob_private, 66); memcpy_P(alice_k, alice_public, 132); memcpy_P(alice_f, shared_secret, 66); start = micros(); P521::eval(result, bob_f, alice_k); elapsed = micros() - start; if (P521_memcmp_P(result, shared_secret, 66) == 0) { Serial.print("ok"); } else { Serial.println("failed"); printNumber("actual ", result, 66); printNumber("expected", alice_f, 66); } Serial.print(" (elapsed "); Serial.print(elapsed); Serial.println(" us)"); } void testDH() { Serial.println("Diffie-Hellman key exchange:"); Serial.print("Generate random k/f for Alice ... "); Serial.flush(); unsigned long start = micros(); P521::dh1(alice_k, alice_f); unsigned long elapsed = micros() - start; Serial.print("elapsed "); Serial.print(elapsed); Serial.println(" us"); Serial.print("Generate random k/f for Bob ... "); Serial.flush(); start = micros(); P521::dh1(bob_k, bob_f); elapsed = micros() - start; Serial.print("elapsed "); Serial.print(elapsed); Serial.println(" us"); Serial.print("Generate shared secret for Alice ... "); Serial.flush(); start = micros(); P521::dh2(bob_k, alice_f); elapsed = micros() - start; Serial.print("elapsed "); Serial.print(elapsed); Serial.println(" us"); Serial.print("Generate shared secret for Bob ... "); Serial.flush(); start = micros(); P521::dh2(alice_k, bob_f); elapsed = micros() - start; Serial.print("elapsed "); Serial.print(elapsed); Serial.println(" us"); Serial.print("Check that the shared secrets match ... "); if (memcmp(alice_f, bob_f, 66) == 0) { Serial.println("ok"); } else { Serial.println("failed"); printNumber("actual ", alice_f, 66); printNumber("expected", bob_f, 66); } } struct TestSignKey { uint8_t privateKey[66]; uint8_t publicKey[132]; }; // Test key from RFC 6979, Appendix A.2.7. static TestSignKey const testKeyP521 PROGMEM = { {0x00, 0xFA, 0xD0, 0x6D, 0xAA, 0x62, 0xBA, 0x3B, // x 0x25, 0xD2, 0xFB, 0x40, 0x13, 0x3D, 0xA7, 0x57, 0x20, 0x5D, 0xE6, 0x7F, 0x5B, 0xB0, 0x01, 0x8F, 0xEE, 0x8C, 0x86, 0xE1, 0xB6, 0x8C, 0x7E, 0x75, 0xCA, 0xA8, 0x96, 0xEB, 0x32, 0xF1, 0xF4, 0x7C, 0x70, 0x85, 0x58, 0x36, 0xA6, 0xD1, 0x6F, 0xCC, 0x14, 0x66, 0xF6, 0xD8, 0xFB, 0xEC, 0x67, 0xDB, 0x89, 0xEC, 0x0C, 0x08, 0xB0, 0xE9, 0x96, 0xB8, 0x35, 0x38}, {0x01, 0x89, 0x45, 0x50, 0xD0, 0x78, 0x59, 0x32, // Ux 0xE0, 0x0E, 0xAA, 0x23, 0xB6, 0x94, 0xF2, 0x13, 0xF8, 0xC3, 0x12, 0x1F, 0x86, 0xDC, 0x97, 0xA0, 0x4E, 0x5A, 0x71, 0x67, 0xDB, 0x4E, 0x5B, 0xCD, 0x37, 0x11, 0x23, 0xD4, 0x6E, 0x45, 0xDB, 0x6B, 0x5D, 0x53, 0x70, 0xA7, 0xF2, 0x0F, 0xB6, 0x33, 0x15, 0x5D, 0x38, 0xFF, 0xA1, 0x6D, 0x2B, 0xD7, 0x61, 0xDC, 0xAC, 0x47, 0x4B, 0x9A, 0x2F, 0x50, 0x23, 0xA4, 0x00, 0x49, 0x31, 0x01, 0xC9, 0x62, 0xCD, 0x4D, // Uy 0x2F, 0xDD, 0xF7, 0x82, 0x28, 0x5E, 0x64, 0x58, 0x41, 0x39, 0xC2, 0xF9, 0x1B, 0x47, 0xF8, 0x7F, 0xF8, 0x23, 0x54, 0xD6, 0x63, 0x0F, 0x74, 0x6A, 0x28, 0xA0, 0xDB, 0x25, 0x74, 0x1B, 0x5B, 0x34, 0xA8, 0x28, 0x00, 0x8B, 0x22, 0xAC, 0xC2, 0x3F, 0x92, 0x4F, 0xAA, 0xFB, 0xD4, 0xD3, 0x3F, 0x81, 0xEA, 0x66, 0x95, 0x6D, 0xFE, 0xAA, 0x2B, 0xFD, 0xFC, 0xF5} }; struct TestSignVector { const char *name; const char *data; uint8_t signature[132]; }; // Test vectors from RFC 6979, Appendix A.2.7. static TestSignVector const testVectorP521_1 PROGMEM = { // P-521 test case with SHA-256 and message "sample". "P-521 #1", "sample", {0x01, 0x51, 0x1B, 0xB4, 0xD6, 0x75, 0x11, 0x4F, // r 0xE2, 0x66, 0xFC, 0x43, 0x72, 0xB8, 0x76, 0x82, 0xBA, 0xEC, 0xC0, 0x1D, 0x3C, 0xC6, 0x2C, 0xF2, 0x30, 0x3C, 0x92, 0xB3, 0x52, 0x60, 0x12, 0x65, 0x9D, 0x16, 0x87, 0x6E, 0x25, 0xC7, 0xC1, 0xE5, 0x76, 0x48, 0xF2, 0x3B, 0x73, 0x56, 0x4D, 0x67, 0xF6, 0x1C, 0x6F, 0x14, 0xD5, 0x27, 0xD5, 0x49, 0x72, 0x81, 0x04, 0x21, 0xE7, 0xD8, 0x75, 0x89, 0xE1, 0xA7, 0x00, 0x4A, 0x17, 0x11, 0x43, 0xA8, 0x31, 0x63, // s 0xD6, 0xDF, 0x46, 0x0A, 0xAF, 0x61, 0x52, 0x26, 0x95, 0xF2, 0x07, 0xA5, 0x8B, 0x95, 0xC0, 0x64, 0x4D, 0x87, 0xE5, 0x2A, 0xA1, 0xA3, 0x47, 0x91, 0x6E, 0x4F, 0x7A, 0x72, 0x93, 0x0B, 0x1B, 0xC0, 0x6D, 0xBE, 0x22, 0xCE, 0x3F, 0x58, 0x26, 0x4A, 0xFD, 0x23, 0x70, 0x4C, 0xBB, 0x63, 0xB2, 0x9B, 0x93, 0x1F, 0x7D, 0xE6, 0xC9, 0xD9, 0x49, 0xA7, 0xEC, 0xFC} }; static TestSignVector const testVectorP521_2 PROGMEM = { // P-521 test case with SHA-512 and message "sample". "P-521 #2", "sample", {0x00, 0xC3, 0x28, 0xFA, 0xFC, 0xBD, 0x79, 0xDD, // r 0x77, 0x85, 0x03, 0x70, 0xC4, 0x63, 0x25, 0xD9, 0x87, 0xCB, 0x52, 0x55, 0x69, 0xFB, 0x63, 0xC5, 0xD3, 0xBC, 0x53, 0x95, 0x0E, 0x6D, 0x4C, 0x5F, 0x17, 0x4E, 0x25, 0xA1, 0xEE, 0x90, 0x17, 0xB5, 0xD4, 0x50, 0x60, 0x6A, 0xDD, 0x15, 0x2B, 0x53, 0x49, 0x31, 0xD7, 0xD4, 0xE8, 0x45, 0x5C, 0xC9, 0x1F, 0x9B, 0x15, 0xBF, 0x05, 0xEC, 0x36, 0xE3, 0x77, 0xFA, 0x00, 0x61, 0x7C, 0xCE, 0x7C, 0xF5, 0x06, 0x48, // s 0x06, 0xC4, 0x67, 0xF6, 0x78, 0xD3, 0xB4, 0x08, 0x0D, 0x6F, 0x1C, 0xC5, 0x0A, 0xF2, 0x6C, 0xA2, 0x09, 0x41, 0x73, 0x08, 0x28, 0x1B, 0x68, 0xAF, 0x28, 0x26, 0x23, 0xEA, 0xA6, 0x3E, 0x5B, 0x5C, 0x07, 0x23, 0xD8, 0xB8, 0xC3, 0x7F, 0xF0, 0x77, 0x7B, 0x1A, 0x20, 0xF8, 0xCC, 0xB1, 0xDC, 0xCC, 0x43, 0x99, 0x7F, 0x1E, 0xE0, 0xE4, 0x4D, 0xA4, 0xA6, 0x7A} }; static TestSignVector const testVectorP521_3 PROGMEM = { // P-521 test case with SHA-256 and message "test". "P-521 #3", "test", {0x00, 0x0E, 0x87, 0x1C, 0x4A, 0x14, 0xF9, 0x93, // r 0xC6, 0xC7, 0x36, 0x95, 0x01, 0x90, 0x0C, 0x4B, 0xC1, 0xE9, 0xC7, 0xB0, 0xB4, 0xBA, 0x44, 0xE0, 0x48, 0x68, 0xB3, 0x0B, 0x41, 0xD8, 0x07, 0x10, 0x42, 0xEB, 0x28, 0xC4, 0xC2, 0x50, 0x41, 0x1D, 0x0C, 0xE0, 0x8C, 0xD1, 0x97, 0xE4, 0x18, 0x8E, 0xA4, 0x87, 0x6F, 0x27, 0x9F, 0x90, 0xB3, 0xD8, 0xD7, 0x4A, 0x3C, 0x76, 0xE6, 0xF1, 0xE4, 0x65, 0x6A, 0xA8, 0x00, 0xCD, 0x52, 0xDB, 0xAA, 0x33, 0xB0, 0x63, // s 0xC3, 0xA6, 0xCD, 0x80, 0x58, 0xA1, 0xFB, 0x0A, 0x46, 0xA4, 0x75, 0x4B, 0x03, 0x4F, 0xCC, 0x64, 0x47, 0x66, 0xCA, 0x14, 0xDA, 0x8C, 0xA5, 0xCA, 0x9F, 0xDE, 0x00, 0xE8, 0x8C, 0x1A, 0xD6, 0x0C, 0xCB, 0xA7, 0x59, 0x02, 0x52, 0x99, 0x07, 0x9D, 0x7A, 0x42, 0x7E, 0xC3, 0xCC, 0x5B, 0x61, 0x9B, 0xFB, 0xC8, 0x28, 0xE7, 0x76, 0x9B, 0xCD, 0x69, 0x4E, 0x86} }; static TestSignVector const testVectorP521_4 PROGMEM = { // P-521 test case with SHA-512 and message "test". "P-521 #4", "test", {0x01, 0x3E, 0x99, 0x02, 0x0A, 0xBF, 0x5C, 0xEE, // r 0x75, 0x25, 0xD1, 0x6B, 0x69, 0xB2, 0x29, 0x65, 0x2A, 0xB6, 0xBD, 0xF2, 0xAF, 0xFC, 0xAE, 0xF3, 0x87, 0x73, 0xB4, 0xB7, 0xD0, 0x87, 0x25, 0xF1, 0x0C, 0xDB, 0x93, 0x48, 0x2F, 0xDC, 0xC5, 0x4E, 0xDC, 0xEE, 0x91, 0xEC, 0xA4, 0x16, 0x6B, 0x2A, 0x7C, 0x62, 0x65, 0xEF, 0x0C, 0xE2, 0xBD, 0x70, 0x51, 0xB7, 0xCE, 0xF9, 0x45, 0xBA, 0xBD, 0x47, 0xEE, 0x6D, 0x01, 0xFB, 0xD0, 0x01, 0x3C, 0x67, 0x4A, 0xA7, // s 0x9C, 0xB3, 0x98, 0x49, 0x52, 0x79, 0x16, 0xCE, 0x30, 0x1C, 0x66, 0xEA, 0x7C, 0xE8, 0xB8, 0x06, 0x82, 0x78, 0x6A, 0xD6, 0x0F, 0x98, 0xF7, 0xE7, 0x8A, 0x19, 0xCA, 0x69, 0xEF, 0xF5, 0xC5, 0x74, 0x00, 0xE3, 0xB3, 0xA0, 0xAD, 0x66, 0xCE, 0x09, 0x78, 0x21, 0x4D, 0x13, 0xBA, 0xF4, 0xE9, 0xAC, 0x60, 0x75, 0x2F, 0x7B, 0x15, 0x5E, 0x2D, 0xE4, 0xDC, 0xE3} }; void testSignCommon(const struct TestSignVector *_test, Hash *hash) { uint8_t *privateKey = alice_f; uint8_t *publicKey = alice_k; uint8_t *sig = bob_k; static TestSignVector test; memcpy_P(&test, _test, sizeof(test)); Serial.print(test.name); Serial.print(" Sign ... "); Serial.flush(); memcpy_P(privateKey, testKeyP521.privateKey, 66); unsigned long start = micros(); P521::sign(sig, privateKey, test.data, strlen(test.data), hash); unsigned long elapsed = micros() - start; Serial.print(elapsed); Serial.print(" us ... "); bool ok = !memcmp(sig, test.signature, 132); if (ok) { Serial.println("ok"); } else { Serial.println("failed"); printNumber("actual ", sig, 132); printNumber("expected", test.signature, 132); } Serial.print(test.name); Serial.print(" Verify ... "); Serial.flush(); memcpy_P(publicKey, testKeyP521.publicKey, 132); start = micros(); bool verified = P521::verify (test.signature, publicKey, test.data, strlen(test.data), hash); elapsed = micros() - start; Serial.print(elapsed); Serial.print(" us ... "); if (verified) Serial.println("ok"); else Serial.println("failed"); Serial.print(test.name); Serial.print(" Derive Public Key ... "); Serial.flush(); memcpy_P(privateKey, testKeyP521.privateKey, 66); start = micros(); P521::derivePublicKey(publicKey, privateKey); elapsed = micros() - start; Serial.print(elapsed); Serial.print(" us ... "); ok = !P521_memcmp_P(publicKey, testKeyP521.publicKey, 132); if (ok) { Serial.println("ok"); } else { Serial.println("failed"); printNumber("actual ", publicKey, 132); memcpy_P(publicKey, testKeyP521.publicKey, 132); printNumber("expected", publicKey, 132); } } void testSignSHA256(const struct TestSignVector *test) { SHA256 hash; testSignCommon(test, &hash); } void testSignSHA512(const struct TestSignVector *test) { SHA512 hash; testSignCommon(test, &hash); } void testSign() { Serial.println("Digital signatures:"); testSignSHA256(&testVectorP521_1); testSignSHA512(&testVectorP521_2); testSignSHA256(&testVectorP521_3); testSignSHA512(&testVectorP521_4); } void setup() { Serial.begin(9600); // Start the random number generator. We don't initialise a noise // source here because we don't need one for testing purposes. // Real DH applications should of course use a proper noise source. RNG.begin("TestP521 1.0"); // Perform the tests. testEval(); Serial.println(); testDH(); Serial.println(); testSign(); Serial.println(); } void loop() { }