/* * Copyright (C) 2015 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* This example runs tests on the SHA3_256 implementation to verify correct behaviour. */ #include #include #include #define DATA_SIZE 136 #define HASH_SIZE 32 #define BLOCK_SIZE 136 struct TestHashVector { const char *name; uint8_t data[DATA_SIZE]; uint8_t dataSize; uint8_t hash[HASH_SIZE]; }; // Some test vectors from https://github.com/gvanas/KeccakCodePackage static TestHashVector const testVectorSHA3_256_1 = { "SHA3-256 #1", {0}, 0, {0xA7, 0xFF, 0xC6, 0xF8, 0xBF, 0x1E, 0xD7, 0x66, 0x51, 0xC1, 0x47, 0x56, 0xA0, 0x61, 0xD6, 0x62, 0xF5, 0x80, 0xFF, 0x4D, 0xE4, 0x3B, 0x49, 0xFA, 0x82, 0xD8, 0x0A, 0x4B, 0x80, 0xF8, 0x43, 0x4A} }; static TestHashVector const testVectorSHA3_256_2 = { "SHA3-256 #2", {0x1F, 0x87, 0x7C}, 3, {0xBC, 0x22, 0x34, 0x5E, 0x4B, 0xD3, 0xF7, 0x92, 0xA3, 0x41, 0xCF, 0x18, 0xAC, 0x07, 0x89, 0xF1, 0xC9, 0xC9, 0x66, 0x71, 0x2A, 0x50, 0x1B, 0x19, 0xD1, 0xB6, 0x63, 0x2C, 0xCD, 0x40, 0x8E, 0xC5} }; static TestHashVector const testVectorSHA3_256_3 = { "SHA3-256 #3", {0xE2, 0x61, 0x93, 0x98, 0x9D, 0x06, 0x56, 0x8F, 0xE6, 0x88, 0xE7, 0x55, 0x40, 0xAE, 0xA0, 0x67, 0x47, 0xD9, 0xF8, 0x51}, 20, {0x2C, 0x1E, 0x61, 0xE5, 0xD4, 0x52, 0x03, 0xF2, 0x7B, 0x86, 0xF1, 0x29, 0x3A, 0x80, 0xBA, 0xB3, 0x41, 0x92, 0xDA, 0xF4, 0x2B, 0x86, 0x23, 0xB1, 0x20, 0x05, 0xB2, 0xFB, 0x1C, 0x18, 0xAC, 0xB1} }; static TestHashVector const testVectorSHA3_256_4 = { "SHA3-256 #4", {0xB7, 0x71, 0xD5, 0xCE, 0xF5, 0xD1, 0xA4, 0x1A, 0x93, 0xD1, 0x56, 0x43, 0xD7, 0x18, 0x1D, 0x2A, 0x2E, 0xF0, 0xA8, 0xE8, 0x4D, 0x91, 0x81, 0x2F, 0x20, 0xED, 0x21, 0xF1, 0x47, 0xBE, 0xF7, 0x32, 0xBF, 0x3A, 0x60, 0xEF, 0x40, 0x67, 0xC3, 0x73, 0x4B, 0x85, 0xBC, 0x8C, 0xD4, 0x71, 0x78, 0x0F, 0x10, 0xDC, 0x9E, 0x82, 0x91, 0xB5, 0x83, 0x39, 0xA6, 0x77, 0xB9, 0x60, 0x21, 0x8F, 0x71, 0xE7, 0x93, 0xF2, 0x79, 0x7A, 0xEA, 0x34, 0x94, 0x06, 0x51, 0x28, 0x29, 0x06, 0x5D, 0x37, 0xBB, 0x55, 0xEA, 0x79, 0x6F, 0xA4, 0xF5, 0x6F, 0xD8, 0x89, 0x6B, 0x49, 0xB2, 0xCD, 0x19, 0xB4, 0x32, 0x15, 0xAD, 0x96, 0x7C, 0x71, 0x2B, 0x24, 0xE5, 0x03, 0x2D, 0x06, 0x52, 0x32, 0xE0, 0x2C, 0x12, 0x74, 0x09, 0xD2, 0xED, 0x41, 0x46, 0xB9, 0xD7, 0x5D, 0x76, 0x3D, 0x52, 0xDB, 0x98, 0xD9, 0x49, 0xD3, 0xB0, 0xFE, 0xD6, 0xA8, 0x05, 0x2F, 0xBB}, 135, {0xA1, 0x9E, 0xEE, 0x92, 0xBB, 0x20, 0x97, 0xB6, 0x4E, 0x82, 0x3D, 0x59, 0x77, 0x98, 0xAA, 0x18, 0xBE, 0x9B, 0x7C, 0x73, 0x6B, 0x80, 0x59, 0xAB, 0xFD, 0x67, 0x79, 0xAC, 0x35, 0xAC, 0x81, 0xB5} }; static TestHashVector testVectorSHA3_256_5 = { "SHA3-256 #5", {0xB3, 0x2D, 0x95, 0xB0, 0xB9, 0xAA, 0xD2, 0xA8, 0x81, 0x6D, 0xE6, 0xD0, 0x6D, 0x1F, 0x86, 0x00, 0x85, 0x05, 0xBD, 0x8C, 0x14, 0x12, 0x4F, 0x6E, 0x9A, 0x16, 0x3B, 0x5A, 0x2A, 0xDE, 0x55, 0xF8, 0x35, 0xD0, 0xEC, 0x38, 0x80, 0xEF, 0x50, 0x70, 0x0D, 0x3B, 0x25, 0xE4, 0x2C, 0xC0, 0xAF, 0x05, 0x0C, 0xCD, 0x1B, 0xE5, 0xE5, 0x55, 0xB2, 0x30, 0x87, 0xE0, 0x4D, 0x7B, 0xF9, 0x81, 0x36, 0x22, 0x78, 0x0C, 0x73, 0x13, 0xA1, 0x95, 0x4F, 0x87, 0x40, 0xB6, 0xEE, 0x2D, 0x3F, 0x71, 0xF7, 0x68, 0xDD, 0x41, 0x7F, 0x52, 0x04, 0x82, 0xBD, 0x3A, 0x08, 0xD4, 0xF2, 0x22, 0xB4, 0xEE, 0x9D, 0xBD, 0x01, 0x54, 0x47, 0xB3, 0x35, 0x07, 0xDD, 0x50, 0xF3, 0xAB, 0x42, 0x47, 0xC5, 0xDE, 0x9A, 0x8A, 0xBD, 0x62, 0xA8, 0xDE, 0xCE, 0xA0, 0x1E, 0x3B, 0x87, 0xC8, 0xB9, 0x27, 0xF5, 0xB0, 0x8B, 0xEB, 0x37, 0x67, 0x4C, 0x6F, 0x8E, 0x38, 0x0C, 0x04}, 136, {0xDF, 0x67, 0x3F, 0x41, 0x05, 0x37, 0x9F, 0xF6, 0xB7, 0x55, 0xEE, 0xAB, 0x20, 0xCE, 0xB0, 0xDC, 0x77, 0xB5, 0x28, 0x63, 0x64, 0xFE, 0x16, 0xC5, 0x9C, 0xC8, 0xA9, 0x07, 0xAF, 0xF0, 0x77, 0x32} }; SHA3_256 sha3_256; bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc) { size_t size = test->dataSize; size_t posn, len; uint8_t value[HASH_SIZE]; hash->reset(); for (posn = 0; posn < size; posn += inc) { len = size - posn; if (len > inc) len = inc; hash->update(test->data + posn, len); } hash->finalize(value, sizeof(value)); if (memcmp(value, test->hash, sizeof(value)) != 0) return false; return true; } void testHash(Hash *hash, const struct TestHashVector *test) { bool ok; Serial.print(test->name); Serial.print(" ... "); ok = testHash_N(hash, test, test->dataSize); ok &= testHash_N(hash, test, 1); ok &= testHash_N(hash, test, 2); ok &= testHash_N(hash, test, 5); ok &= testHash_N(hash, test, 8); ok &= testHash_N(hash, test, 13); ok &= testHash_N(hash, test, 16); ok &= testHash_N(hash, test, 24); ok &= testHash_N(hash, test, 63); ok &= testHash_N(hash, test, 64); if (ok) Serial.println("Passed"); else Serial.println("Failed"); } void perfHash(Hash *hash) { unsigned long start; unsigned long elapsed; int count; // Reuse one of the test vectors as a large temporary buffer. uint8_t *buffer = (uint8_t *)&testVectorSHA3_256_5; Serial.print("Hashing ... "); for (size_t posn = 0; posn < 128; ++posn) buffer[posn] = (uint8_t)posn; hash->reset(); start = micros(); for (count = 0; count < 500; ++count) { hash->update(buffer, 128); } elapsed = micros() - start; Serial.print(elapsed / (128 * 500.0)); Serial.print("us per byte, "); Serial.print((128 * 500.0 * 1000000.0) / elapsed); Serial.println(" bytes per second"); } // Very simple method for hashing a HMAC inner or outer key. void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad) { size_t posn; uint8_t buf; uint8_t result[HASH_SIZE]; if (keyLen <= BLOCK_SIZE) { hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < keyLen) buf = key[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } else { hash->reset(); hash->update(key, keyLen); hash->finalize(result, HASH_SIZE); hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < HASH_SIZE) buf = result[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } } void testHMAC(Hash *hash, size_t keyLen) { uint8_t result[HASH_SIZE]; // Reuse one of the test vectors as a large temporary buffer. uint8_t *buffer = (uint8_t *)&testVectorSHA3_256_5; Serial.print("HMAC-SHA3-256 keysize="); Serial.print(keyLen); Serial.print(" ... "); // Construct the expected result with a simple HMAC implementation. memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x36); memset(buffer, 0xBA, sizeof(testVectorSHA3_256_5)); hash->update(buffer, sizeof(testVectorSHA3_256_5)); hash->finalize(result, HASH_SIZE); memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x5C); hash->update(result, HASH_SIZE); hash->finalize(result, HASH_SIZE); // Now use the library to compute the HMAC. hash->resetHMAC(buffer, keyLen); memset(buffer, 0xBA, sizeof(testVectorSHA3_256_5)); hash->update(buffer, sizeof(testVectorSHA3_256_5)); memset(buffer, (uint8_t)keyLen, keyLen); hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE); // Check the result. if (!memcmp(result, buffer, HASH_SIZE)) Serial.println("Passed"); else Serial.println("Failed"); } void perfFinalize(Hash *hash) { unsigned long start; unsigned long elapsed; int count; // Reuse one of the test vectors as a large temporary buffer. uint8_t *buffer = (uint8_t *)&testVectorSHA3_256_5; Serial.print("Finalizing ... "); hash->reset(); hash->update("abc", 3); start = micros(); for (count = 0; count < 1000; ++count) { hash->finalize(buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void setup() { Serial.begin(9600); Serial.println(); Serial.print("State Size ..."); Serial.println(sizeof(SHA3_256)); Serial.println(); Serial.println("Test Vectors:"); testHash(&sha3_256, &testVectorSHA3_256_1); testHash(&sha3_256, &testVectorSHA3_256_2); testHash(&sha3_256, &testVectorSHA3_256_3); testHash(&sha3_256, &testVectorSHA3_256_4); testHash(&sha3_256, &testVectorSHA3_256_5); testHMAC(&sha3_256, (size_t)0); testHMAC(&sha3_256, 1); testHMAC(&sha3_256, HASH_SIZE); testHMAC(&sha3_256, BLOCK_SIZE); testHMAC(&sha3_256, BLOCK_SIZE + 1); testHMAC(&sha3_256, BLOCK_SIZE + 2); Serial.println(); Serial.println("Performance Tests:"); perfHash(&sha3_256); perfFinalize(&sha3_256); } void loop() { }