/* * Copyright (C) 2015 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "SHA256.h" #include "Crypto.h" #include "utility/RotateUtil.h" #include "utility/EndianUtil.h" #include "utility/ProgMemUtil.h" #include /** * \class SHA256 SHA256.h * \brief SHA-256 hash algorithm. * * Reference: http://en.wikipedia.org/wiki/SHA-2 * * \sa SHA512, SHA3_256, BLAKE2s */ /** * \brief Constructs a SHA-256 hash object. */ SHA256::SHA256() { reset(); } /** * \brief Destroys this SHA-256 hash object after clearing * sensitive information. */ SHA256::~SHA256() { clean(state); } size_t SHA256::hashSize() const { return 32; } size_t SHA256::blockSize() const { return 64; } void SHA256::reset() { state.h[0] = 0x6a09e667; state.h[1] = 0xbb67ae85; state.h[2] = 0x3c6ef372; state.h[3] = 0xa54ff53a, state.h[4] = 0x510e527f; state.h[5] = 0x9b05688c; state.h[6] = 0x1f83d9ab; state.h[7] = 0x5be0cd19; state.chunkSize = 0; state.length = 0; } void SHA256::update(const void *data, size_t len) { // Update the total length (in bits, not bytes). state.length += ((uint64_t)len) << 3; // Break the input up into 512-bit chunks and process each in turn. const uint8_t *d = (const uint8_t *)data; while (len > 0) { uint8_t size = 64 - state.chunkSize; if (size > len) size = len; memcpy(((uint8_t *)state.w) + state.chunkSize, d, size); state.chunkSize += size; len -= size; d += size; if (state.chunkSize == 64) { processChunk(); state.chunkSize = 0; } } } void SHA256::finalize(void *hash, size_t len) { // Pad the last chunk. We may need two padding chunks if there // isn't enough room in the first for the padding and length. uint8_t *wbytes = (uint8_t *)state.w; if (state.chunkSize <= (64 - 9)) { wbytes[state.chunkSize] = 0x80; memset(wbytes + state.chunkSize + 1, 0x00, 64 - 8 - (state.chunkSize + 1)); state.w[14] = htobe32((uint32_t)(state.length >> 32)); state.w[15] = htobe32((uint32_t)state.length); processChunk(); } else { wbytes[state.chunkSize] = 0x80; memset(wbytes + state.chunkSize + 1, 0x00, 64 - (state.chunkSize + 1)); processChunk(); memset(wbytes, 0x00, 64 - 8); state.w[14] = htobe32((uint32_t)(state.length >> 32)); state.w[15] = htobe32((uint32_t)state.length); processChunk(); } // Convert the result into big endian and return it. for (uint8_t posn = 0; posn < 8; ++posn) state.w[posn] = htobe32(state.h[posn]); // Copy the hash to the caller's return buffer. if (len > 32) len = 32; memcpy(hash, state.w, len); } void SHA256::clear() { clean(state); reset(); } void SHA256::resetHMAC(const void *key, size_t keyLen) { formatHMACKey(state.w, key, keyLen, 0x36); state.length += 64 * 8; processChunk(); } void SHA256::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen) { uint8_t temp[32]; finalize(temp, sizeof(temp)); formatHMACKey(state.w, key, keyLen, 0x5C); state.length += 64 * 8; processChunk(); update(temp, sizeof(temp)); finalize(hash, hashLen); clean(temp); } /** * \brief Processes a single 512-bit chunk with the core SHA-256 algorithm. * * Reference: http://en.wikipedia.org/wiki/SHA-2 */ void SHA256::processChunk() { // Round constants for SHA-256. static uint32_t const k[64] PROGMEM = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; // Convert the first 16 words from big endian to host byte order. uint8_t index; for (index = 0; index < 16; ++index) state.w[index] = be32toh(state.w[index]); // Initialise working variables to the current hash value. uint32_t a = state.h[0]; uint32_t b = state.h[1]; uint32_t c = state.h[2]; uint32_t d = state.h[3]; uint32_t e = state.h[4]; uint32_t f = state.h[5]; uint32_t g = state.h[6]; uint32_t h = state.h[7]; // Perform the first 16 rounds of the compression function main loop. uint32_t temp1, temp2; for (index = 0; index < 16; ++index) { temp1 = h + pgm_read_dword(k + index) + state.w[index] + (rightRotate6(e) ^ rightRotate11(e) ^ rightRotate25(e)) + ((e & f) ^ ((~e) & g)); temp2 = (rightRotate2(a) ^ rightRotate13(a) ^ rightRotate22(a)) + ((a & b) ^ (a & c) ^ (b & c)); h = g; g = f; f = e; e = d + temp1; d = c; c = b; b = a; a = temp1 + temp2; } // Perform the 48 remaining rounds. We expand the first 16 words to // 64 in-place in the "w" array. This saves 192 bytes of memory // that would have otherwise need to be allocated to the "w" array. for (; index < 64; ++index) { // Expand the next word. temp1 = state.w[(index - 15) & 0x0F]; temp2 = state.w[(index - 2) & 0x0F]; temp1 = state.w[index & 0x0F] = state.w[(index - 16) & 0x0F] + state.w[(index - 7) & 0x0F] + (rightRotate7(temp1) ^ rightRotate18(temp1) ^ (temp1 >> 3)) + (rightRotate17(temp2) ^ rightRotate19(temp2) ^ (temp2 >> 10)); // Perform the round. temp1 = h + pgm_read_dword(k + index) + temp1 + (rightRotate6(e) ^ rightRotate11(e) ^ rightRotate25(e)) + ((e & f) ^ ((~e) & g)); temp2 = (rightRotate2(a) ^ rightRotate13(a) ^ rightRotate22(a)) + ((a & b) ^ (a & c) ^ (b & c)); h = g; g = f; f = e; e = d + temp1; d = c; c = b; b = a; a = temp1 + temp2; } // Add the compressed chunk to the current hash value. state.h[0] += a; state.h[1] += b; state.h[2] += c; state.h[3] += d; state.h[4] += e; state.h[5] += f; state.h[6] += g; state.h[7] += h; // Attempt to clean up the stack. a = b = c = d = e = f = g = h = temp1 = temp2 = 0; }