/* * Copyright (C) 2016 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "SpeckSmall.h" #include "Crypto.h" #include "utility/RotateUtil.h" #include "utility/EndianUtil.h" #include /** * \class SpeckSmall SpeckSmall.h * \brief Speck block cipher with a 128-bit block size (small-memory version). * * This class differs from the Speck class in that the RAM requirements are * vastly reduced. The key schedule is expanded round by round instead of * being generated and stored by setKey(). The performance of encryption * and decryption is slightly less because of this. * * This class is useful when RAM is at a premium and reduced encryption * performance is not a hindrance to the application. Even though the * performance is reduced, this class is still faster than AES with * equivalent key sizes. * * The companion SpeckTiny class uses even less RAM but only supports the * encryptBlock() operation. Block cipher modes like CTR, EAX, and GCM * do not need the decryptBlock() operation, so SpeckTiny may be a better * option than SpeckSmall for many applications. * * See the documentation for the Speck class for more information on the * Speck family of block ciphers. * * References: https://en.wikipedia.org/wiki/Speck_%28cipher%29, * http://eprint.iacr.org/2013/404 * * \sa Speck, SpeckTiny */ // The "avr-gcc" compiler doesn't do a very good job of compiling // code involving 64-bit values. So we have to use inline assembly. // It also helps to break the state up into 32-bit quantities // because "asm" supports register names like %A0, %B0, %C0, %D0 // for the bytes in a 32-bit quantity, but it does not support // %E0, %F0, %G0, %H0 for the high bytes of a 64-bit quantity. #if defined(__AVR__) #define USE_AVR_INLINE_ASM 1 #endif // Pack/unpack byte-aligned big-endian 64-bit quantities. #define pack64(data, value) \ do { \ uint64_t v = htobe64((value)); \ memcpy((data), &v, sizeof(uint64_t)); \ } while (0) #define unpack64(value, data) \ do { \ memcpy(&(value), (data), sizeof(uint64_t)); \ (value) = be64toh((value)); \ } while (0) /** * \brief Constructs a small-memory Speck block cipher with no initial key. * * This constructor must be followed by a call to setKey() before the * block cipher can be used for encryption or decryption. */ SpeckSmall::SpeckSmall() { } SpeckSmall::~SpeckSmall() { clean(l); } bool SpeckSmall::setKey(const uint8_t *key, size_t len) { // Try setting the key for the forward encryption direction. if (!SpeckTiny::setKey(key, len)) return false; #if USE_AVR_INLINE_ASM // Expand the key schedule to get the l and s values at the end // of the schedule, which will allow us to reverse it later. uint8_t mb = (rounds - 31) * 8; __asm__ __volatile__ ( "ld r16,Z+\n" // s = k[0] "ld r17,Z+\n" "ld r18,Z+\n" "ld r19,Z+\n" "ld r20,Z+\n" "ld r21,Z+\n" "ld r22,Z+\n" "ld r23,Z+\n" "mov r24,%3\n" // memcpy(l, k + 1, mb) "3:\n" "ld __tmp_reg__,Z+\n" "st X+,__tmp_reg__\n" "dec r24\n" "brne 3b\n" "sub %A1,%3\n" // return X to its initial value "sbc %B1,__zero_reg__\n" "1:\n" // l[li_out] = (s + rightRotate8_64(l[li_in])) ^ i; "add %A1,%2\n" // X = &(l[li_in]) "adc %B1,__zero_reg__\n" "ld r15,X+\n" // x = rightRotate8_64(l[li_in]) "ld r8,X+\n" "ld r9,X+\n" "ld r10,X+\n" "ld r11,X+\n" "ld r12,X+\n" "ld r13,X+\n" "ld r14,X+\n" "add r8,r16\n" // x += s "adc r9,r17\n" "adc r10,r18\n" "adc r11,r19\n" "adc r12,r20\n" "adc r13,r21\n" "adc r14,r22\n" "adc r15,r23\n" "eor r8,%4\n" // x ^= i // X = X - li_in + li_out "ldi r24,8\n" // li_in = li_in + 1 "add %2,r24\n" "sub %A1,%2\n" // return X to its initial value "sbc %B1,__zero_reg__\n" "ldi r25,0x1f\n" "and %2,r25\n" // li_in = li_in % 4 "add %A1,%3\n" // X = &(l[li_out]) "adc %B1,__zero_reg__\n" "st X+,r8\n" // l[li_out] = x "st X+,r9\n" "st X+,r10\n" "st X+,r11\n" "st X+,r12\n" "st X+,r13\n" "st X+,r14\n" "st X+,r15\n" "add %3,r24\n" // li_out = li_out + 1 "sub %A1,%3\n" // return X to its initial value "sbc %B1,__zero_reg__\n" "and %3,r25\n" // li_out = li_out % 4 // s = leftRotate3_64(s) ^ l[li_out]; "lsl r16\n" // s = leftRotate1_64(s) "rol r17\n" "rol r18\n" "rol r19\n" "rol r20\n" "rol r21\n" "rol r22\n" "rol r23\n" "adc r16,__zero_reg__\n" "lsl r16\n" // s = leftRotate1_64(s) "rol r17\n" "rol r18\n" "rol r19\n" "rol r20\n" "rol r21\n" "rol r22\n" "rol r23\n" "adc r16,__zero_reg__\n" "lsl r16\n" // s = leftRotate1_64(s) "rol r17\n" "rol r18\n" "rol r19\n" "rol r20\n" "rol r21\n" "rol r22\n" "rol r23\n" "adc r16,__zero_reg__\n" "eor r16,r8\n" // s ^= x "eor r17,r9\n" "eor r18,r10\n" "eor r19,r11\n" "eor r20,r12\n" "eor r21,r13\n" "eor r22,r14\n" "eor r23,r15\n" // Loop "inc %4\n" // ++i "dec %5\n" // --rounds "breq 2f\n" "rjmp 1b\n" "2:\n" "add %A1,%3\n" // X = &(l[li_out]) "adc %B1,__zero_reg__\n" "st X+,r16\n" // l[li_out] = s "st X+,r17\n" "st X+,r18\n" "st X+,r19\n" "st X+,r20\n" "st X+,r21\n" "st X+,r22\n" "st X+,r23\n" : : "z"(k), "x"(l), "r"((uint8_t)0), // initial value of li_in "r"((uint8_t)mb), // initial value of li_out "r"(0), // initial value of i "r"(rounds - 1) : "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25" ); return true; #else // Expand the key schedule to get the l and s values at the end // of the schedule, which will allow us to reverse it later. uint8_t m = rounds - 30; uint8_t li_in = 0; uint8_t li_out = m - 1; uint64_t s = k[0]; memcpy(l, k + 1, (m - 1) * sizeof(uint64_t)); for (uint8_t i = 0; i < (rounds - 1); ++i) { l[li_out] = (s + rightRotate8_64(l[li_in])) ^ i; s = leftRotate3_64(s) ^ l[li_out]; li_in = (li_in + 1) & 0x03; li_out = (li_out + 1) & 0x03; } // Save the final s value in the l array so that we can recover it later. l[li_out] = s; return true; #endif } void SpeckSmall::decryptBlock(uint8_t *output, const uint8_t *input) { #if USE_AVR_INLINE_ASM uint64_t l[4]; uint32_t xlow, xhigh, ylow, yhigh; uint32_t slow, shigh; uint8_t li_in = (rounds + 3) & 0x03; uint8_t li_out = (((rounds - 31) + li_in) & 0x03) * 8; li_in *= 8; // Prepare to expand the key schedule. __asm__ __volatile__ ( "add r30,%4\n" // Z = &(this->l[li_out]) "adc r31,__zero_reg__\n" "ld __tmp_reg__,Z\n" // s = this->l[li_out] "std %A0,__tmp_reg__\n" "ldd __tmp_reg__,Z+1\n" "std %B0,__tmp_reg__\n" "ldd __tmp_reg__,Z+2\n" "std %C0,__tmp_reg__\n" "ldd __tmp_reg__,Z+3\n" "std %D0,__tmp_reg__\n" "ldd __tmp_reg__,Z+4\n" "std %A1,__tmp_reg__\n" "ldd __tmp_reg__,Z+5\n" "std %B1,__tmp_reg__\n" "ldd __tmp_reg__,Z+6\n" "std %C1,__tmp_reg__\n" "ldd __tmp_reg__,Z+7\n" "std %D1,__tmp_reg__\n" "sub r30,%4\n" // Point Z back to the start of this->l. "sbc r31,__zero_reg__\n" "ldi r25,32\n" // Copy the entire this->l array into l. "1:\n" "ld __tmp_reg__,Z+\n" "st X+,__tmp_reg__\n" "dec r25\n" "brne 1b\n" : "=Q"(slow), "=Q"(shigh) : "z"(this->l), "x"(l), "r"(li_out) : "r25" ); // Unpack the input into the x and y variables, converting // from big-endian into little-endian in the process. __asm__ __volatile__ ( "ld %D1,Z\n" "ldd %C1,Z+1\n" "ldd %B1,Z+2\n" "ldd %A1,Z+3\n" "ldd %D0,Z+4\n" "ldd %C0,Z+5\n" "ldd %B0,Z+6\n" "ldd %A0,Z+7\n" "ldd %D3,Z+8\n" "ldd %C3,Z+9\n" "ldd %B3,Z+10\n" "ldd %A3,Z+11\n" "ldd %D2,Z+12\n" "ldd %C2,Z+13\n" "ldd %B2,Z+14\n" "ldd %A2,Z+15\n" : "=r"(xlow), "=r"(xhigh), "=r"(ylow), "=r"(yhigh) : "z"(input) ); // Perform all decryption rounds while expanding the key schedule in-place. __asm__ __volatile__ ( "mov r23,%9\n" // i = rounds - 1 "dec r23\n" "1:\n" // Adjust x and y for this round using the key schedule word s. // y = rightRotate3_64(x ^ y); "eor %A2,%A0\n" // y ^= x "eor %B2,%B0\n" "eor %C2,%C0\n" "eor %D2,%D0\n" "eor %A3,%A1\n" "eor %B3,%B1\n" "eor %C3,%C1\n" "eor %D3,%D1\n" "bst %A2,0\n" // y = rightRotate1_64(y) "ror %D3\n" "ror %C3\n" "ror %B3\n" "ror %A3\n" "ror %D2\n" "ror %C2\n" "ror %B2\n" "ror %A2\n" "bld %D3,7\n" "bst %A2,0\n" // y = rightRotate1_64(y) "ror %D3\n" "ror %C3\n" "ror %B3\n" "ror %A3\n" "ror %D2\n" "ror %C2\n" "ror %B2\n" "ror %A2\n" "bld %D3,7\n" "bst %A2,0\n" // y = rightRotate1_64(y) "ror %D3\n" "ror %C3\n" "ror %B3\n" "ror %A3\n" "ror %D2\n" "ror %C2\n" "ror %B2\n" "ror %A2\n" "bld %D3,7\n" // x = leftRotate8_64((x ^ s) - y); "ldd __tmp_reg__,%A4\n" // x ^= s "eor %A0,__tmp_reg__\n" "ldd __tmp_reg__,%B4\n" "eor %B0,__tmp_reg__\n" "ldd __tmp_reg__,%C4\n" "eor %C0,__tmp_reg__\n" "ldd __tmp_reg__,%D4\n" "eor %D0,__tmp_reg__\n" "ldd __tmp_reg__,%A5\n" "eor %A1,__tmp_reg__\n" "ldd __tmp_reg__,%B5\n" "eor %B1,__tmp_reg__\n" "ldd __tmp_reg__,%C5\n" "eor %C1,__tmp_reg__\n" "ldd __tmp_reg__,%D5\n" "eor %D1,__tmp_reg__\n" "sub %A0,%A2\n" // x -= y "sbc %B0,%B2\n" "sbc %C0,%C2\n" "sbc %D0,%D2\n" "sbc %A1,%A3\n" "sbc %B1,%B3\n" "sbc %C1,%C3\n" "sbc %D1,%D3\n" "mov __tmp_reg__,%D1\n" // x = lefRotate8_64(x) "mov %D1,%C1\n" "mov %C1,%B1\n" "mov %B1,%A1\n" "mov %A1,%D0\n" "mov %D0,%C0\n" "mov %C0,%B0\n" "mov %B0,%A0\n" "mov %A0,__tmp_reg__\n" // On the last round we don't need to compute s so we // can exit early here if i == 0. "or r23,r23\n" // if (i == 0) "brne 2f\n" "rjmp 3f\n" "2:\n" "dec r23\n" // --i // Save x and y on the stack so we can reuse registers for t and s. "push %A0\n" "push %B0\n" "push %C0\n" "push %D0\n" "push %A1\n" "push %B1\n" "push %C1\n" "push %D1\n" "push %A2\n" "push %B2\n" "push %C2\n" "push %D2\n" "push %A3\n" "push %B3\n" "push %C3\n" "push %D3\n" // Compute the key schedule word s for the next round. // li_out = (li_out + 3) & 0x03; "ldd r24,%7\n" "ldi r25,24\n" "add r24,r25\n" "andi r24,0x1f\n" "std %7,r24\n" // s = rightRotate3_64(s ^ l[li_out]); "add %A8,r24\n" // Z = &(l[li_out]) "adc %B8,__zero_reg__\n" "ld %A0,Z\n" // t = l[li_out] "ldd %B0,Z+1\n" "ldd %C0,Z+2\n" "ldd %D0,Z+3\n" "ldd %A1,Z+4\n" "ldd %B1,Z+5\n" "ldd %C1,Z+6\n" "ldd %D1,Z+7\n" "ldd %A2,%A4\n" // load s "ldd %B2,%B4\n" "ldd %C2,%C4\n" "ldd %D2,%D4\n" "ldd %A3,%A5\n" "ldd %B3,%B5\n" "ldd %C3,%C5\n" "ldd %D3,%D5\n" "eor %A2,%A0\n" // s ^= t "eor %B2,%B0\n" "eor %C2,%C0\n" "eor %D2,%D0\n" "eor %A3,%A1\n" "eor %B3,%B1\n" "eor %C3,%C1\n" "eor %D3,%D1\n" "bst %A2,0\n" // s = rightRotate1_64(s) "ror %D3\n" "ror %C3\n" "ror %B3\n" "ror %A3\n" "ror %D2\n" "ror %C2\n" "ror %B2\n" "ror %A2\n" "bld %D3,7\n" "bst %A2,0\n" // s = rightRotate1_64(s) "ror %D3\n" "ror %C3\n" "ror %B3\n" "ror %A3\n" "ror %D2\n" "ror %C2\n" "ror %B2\n" "ror %A2\n" "bld %D3,7\n" "bst %A2,0\n" // s = rightRotate1_64(s) "ror %D3\n" "ror %C3\n" "ror %B3\n" "ror %A3\n" "ror %D2\n" "ror %C2\n" "ror %B2\n" "ror %A2\n" "bld %D3,7\n" "sub %A8,r24\n" // Z -= li_out "sbc %B8,__zero_reg__\n" // li_in = (li_in + 3) & 0x03; "ldd r24,%6\n" "add r24,r25\n" "andi r24,0x1f\n" "std %6,r24\n" // l[li_in] = leftRotate8_64((l[li_out] ^ i) - s); "add %A8,r24\n" // Z = &(l[li_in]) "adc %B8,__zero_reg__\n" "eor %A0,r23\n" // t ^= i "sub %A0,%A2\n" // t -= s "sbc %B0,%B2\n" "sbc %C0,%C2\n" "sbc %D0,%D2\n" "sbc %A1,%A3\n" "sbc %B1,%B3\n" "sbc %C1,%C3\n" "sbc %D1,%D3\n" "st Z,%D1\n" // l[li_in] = leftRotate8_64(t) "std Z+1,%A0\n" "std Z+2,%B0\n" "std Z+3,%C0\n" "std Z+4,%D0\n" "std Z+5,%A1\n" "std Z+6,%B1\n" "std Z+7,%C1\n" "sub %A8,r24\n" // Z -= li_in "sbc %B8,__zero_reg__\n" "std %A4,%A2\n" // store s "std %B4,%B2\n" "std %C4,%C2\n" "std %D4,%D2\n" "std %A5,%A3\n" "std %B5,%B3\n" "std %C5,%C3\n" "std %D5,%D3\n" // Pop registers from the stack to recover the x and y values. "pop %D3\n" "pop %C3\n" "pop %B3\n" "pop %A3\n" "pop %D2\n" "pop %C2\n" "pop %B2\n" "pop %A2\n" "pop %D1\n" "pop %C1\n" "pop %B1\n" "pop %A1\n" "pop %D0\n" "pop %C0\n" "pop %B0\n" "pop %A0\n" // Bottom of the loop. "rjmp 1b\n" "3:\n" : "+r"(xlow), "+r"(xhigh), "+r"(ylow), "+r"(yhigh), "+Q"(slow), "+Q"(shigh), "+Q"(li_in), "+Q"(li_out) : "z"(l), "r"(rounds) : "r23", "r24", "r25" ); // Pack the results into the output and convert back to big-endian. __asm__ __volatile__ ( "st Z,%D1\n" "std Z+1,%C1\n" "std Z+2,%B1\n" "std Z+3,%A1\n" "std Z+4,%D0\n" "std Z+5,%C0\n" "std Z+6,%B0\n" "std Z+7,%A0\n" "std Z+8,%D3\n" "std Z+9,%C3\n" "std Z+10,%B3\n" "std Z+11,%A3\n" "std Z+12,%D2\n" "std Z+13,%C2\n" "std Z+14,%B2\n" "std Z+15,%A2\n" : : "r"(xlow), "r"(xhigh), "r"(ylow), "r"(yhigh), "z"(output) ); #else uint64_t l[4]; uint64_t x, y, s; uint8_t round; uint8_t li_in = (rounds + 3) & 0x03; uint8_t li_out = ((rounds - 31) + li_in) & 0x03; // Prepare the key schedule, starting at the end. for (round = li_in; round != li_out; round = (round + 1) & 0x03) l[round] = this->l[round]; s = this->l[li_out]; // Unpack the input and convert from big-endian. unpack64(x, input); unpack64(y, input + 8); // Perform all decryption rounds except the last while // expanding the decryption schedule on the fly. for (uint8_t round = rounds - 1; round > 0; --round) { // Decrypt using the current round key. y = rightRotate3_64(x ^ y); x = leftRotate8_64((x ^ s) - y); // Generate the round key for the previous round. li_in = (li_in + 3) & 0x03; li_out = (li_out + 3) & 0x03; s = rightRotate3_64(s ^ l[li_out]); l[li_in] = leftRotate8_64((l[li_out] ^ (round - 1)) - s); } // Perform the final decryption round. y = rightRotate3_64(x ^ y); x = leftRotate8_64((x ^ s) - y); // Pack the output and convert to big-endian. pack64(output, x); pack64(output + 8, y); #endif } void SpeckSmall::clear() { SpeckTiny::clear(); clean(l); }