/* * Copyright (C) 2015 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "BLAKE2s.h" #include "Crypto.h" #include "utility/EndianUtil.h" #include "utility/RotateUtil.h" #include "utility/ProgMemUtil.h" #include /** * \class BLAKE2s BLAKE2s.h * \brief BLAKE2s hash algorithm. * * BLAKE2s is a variation on the ChaCha stream cipher, designed for hashing, * with a 256-bit hash output. It is intended as a high performance * replacement for SHA256 for when speed is critical but exact SHA256 * compatibility is not. * * This class supports two types of keyed hash. The BLAKE2 keyed hash and * traditional HMAC. The BLAKE2 keyed hash is recommended unless there is * some higher-level application need to be compatible with the HMAC * construction. The keyed hash is computed as follows: * * \code * BLAKE2s blake; * blake.reset(key, sizeof(key), outputLength); * blake.update(data1, sizeof(data1)); * blake.update(data2, sizeof(data2)); * ... * blake.update(dataN, sizeof(dataN)); * blake.finalize(hash, outputLength); * \endcode * * The HMAC is computed as follows (the output length is always 32): * * \code * BLAKE2s blake; * blake.resetHMAC(key, sizeof(key)); * blake.update(data1, sizeof(data1)); * blake.update(data2, sizeof(data2)); * ... * blake.update(dataN, sizeof(dataN)); * blake.finalizeHMAC(key, sizeof(key), hash, 32); * \endcode * * References: https://blake2.net/, * RFC 7693 * * \sa BLAKE2b, SHA256, SHA3_256 */ /** * \brief Constructs a BLAKE2s hash object. */ BLAKE2s::BLAKE2s() { reset(); } /** * \brief Destroys this BLAKE2s hash object after clearing * sensitive information. */ BLAKE2s::~BLAKE2s() { clean(state); } size_t BLAKE2s::hashSize() const { return 32; } size_t BLAKE2s::blockSize() const { return 64; } // Initialization vectors for BLAKE2s. #define BLAKE2s_IV0 0x6A09E667 #define BLAKE2s_IV1 0xBB67AE85 #define BLAKE2s_IV2 0x3C6EF372 #define BLAKE2s_IV3 0xA54FF53A #define BLAKE2s_IV4 0x510E527F #define BLAKE2s_IV5 0x9B05688C #define BLAKE2s_IV6 0x1F83D9AB #define BLAKE2s_IV7 0x5BE0CD19 void BLAKE2s::reset() { state.h[0] = BLAKE2s_IV0 ^ 0x01010020; // Default output length of 32. state.h[1] = BLAKE2s_IV1; state.h[2] = BLAKE2s_IV2; state.h[3] = BLAKE2s_IV3; state.h[4] = BLAKE2s_IV4; state.h[5] = BLAKE2s_IV5; state.h[6] = BLAKE2s_IV6; state.h[7] = BLAKE2s_IV7; state.chunkSize = 0; state.length = 0; } /** * \brief Resets the hash ready for a new hashing process with a specified * output length. * * \param outputLength The output length to use for the final hash in bytes, * between 1 and 32. */ void BLAKE2s::reset(uint8_t outputLength) { if (outputLength < 1) outputLength = 1; else if (outputLength > 32) outputLength = 32; state.h[0] = BLAKE2s_IV0 ^ 0x01010000 ^ outputLength; state.h[1] = BLAKE2s_IV1; state.h[2] = BLAKE2s_IV2; state.h[3] = BLAKE2s_IV3; state.h[4] = BLAKE2s_IV4; state.h[5] = BLAKE2s_IV5; state.h[6] = BLAKE2s_IV6; state.h[7] = BLAKE2s_IV7; state.chunkSize = 0; state.length = 0; } /** * \brief Resets the hash ready for a new hashing process with a specified * key and output length. * * \param key Points to the key. * \param keyLen The length of the key in bytes, between 0 and 32. * \param outputLength The output length to use for the final hash in bytes, * between 1 and 32. * * If \a keyLen is greater than 32, then the \a key will be truncated to * the first 32 bytes. */ void BLAKE2s::reset(const void *key, size_t keyLen, uint8_t outputLength) { if (keyLen > 32) keyLen = 32; if (outputLength < 1) outputLength = 1; else if (outputLength > 32) outputLength = 32; state.h[0] = BLAKE2s_IV0 ^ 0x01010000 ^ (keyLen << 8) ^ outputLength; state.h[1] = BLAKE2s_IV1; state.h[2] = BLAKE2s_IV2; state.h[3] = BLAKE2s_IV3; state.h[4] = BLAKE2s_IV4; state.h[5] = BLAKE2s_IV5; state.h[6] = BLAKE2s_IV6; state.h[7] = BLAKE2s_IV7; if (keyLen > 0) { // Set the first block to the key and pad with zeroes. memcpy(state.m, key, keyLen); memset(((uint8_t *)state.m) + keyLen, 0, 64 - keyLen); state.chunkSize = 64; state.length = 64; } else { // No key. The first data block is the first hashed block. state.chunkSize = 0; state.length = 0; } } void BLAKE2s::update(const void *data, size_t len) { // Break the input up into 512-bit chunks and process each in turn. const uint8_t *d = (const uint8_t *)data; while (len > 0) { if (state.chunkSize == 64) { // Previous chunk was full and we know that it wasn't the // last chunk, so we can process it now with f0 set to zero. processChunk(0); state.chunkSize = 0; } uint8_t size = 64 - state.chunkSize; if (size > len) size = len; memcpy(((uint8_t *)state.m) + state.chunkSize, d, size); state.chunkSize += size; state.length += size; len -= size; d += size; } } void BLAKE2s::finalize(void *hash, size_t len) { // Pad the last chunk and hash it with f0 set to all-ones. memset(((uint8_t *)state.m) + state.chunkSize, 0, 64 - state.chunkSize); processChunk(0xFFFFFFFF); // Convert the hash into little-endian in the message buffer. for (uint8_t posn = 0; posn < 8; ++posn) state.m[posn] = htole32(state.h[posn]); // Copy the hash to the caller's return buffer. if (len > 32) len = 32; memcpy(hash, state.m, len); } void BLAKE2s::clear() { clean(state); reset(); } void BLAKE2s::resetHMAC(const void *key, size_t keyLen) { formatHMACKey(state.m, key, keyLen, 0x36); state.length += 64; processChunk(0); } void BLAKE2s::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen) { uint8_t temp[32]; finalize(temp, sizeof(temp)); formatHMACKey(state.m, key, keyLen, 0x5C); state.length += 64; processChunk(0); update(temp, sizeof(temp)); finalize(hash, hashLen); clean(temp); } // Permutation on the message input state for BLAKE2s. static const uint8_t sigma[10][16] PROGMEM = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4}, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8}, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13}, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9}, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11}, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10}, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5}, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0} }; // Perform a BLAKE2s quarter round operation. #define quarterRound(a, b, c, d, i) \ do { \ uint32_t _b = (b); \ uint32_t _a = (a) + _b + state.m[pgm_read_byte(&(sigma[index][2 * (i)]))]; \ uint32_t _d = rightRotate16((d) ^ _a); \ uint32_t _c = (c) + _d; \ _b = rightRotate12(_b ^ _c); \ _a += _b + state.m[pgm_read_byte(&(sigma[index][2 * (i) + 1]))]; \ (d) = _d = rightRotate8(_d ^ _a); \ _c += _d; \ (a) = _a; \ (b) = rightRotate7(_b ^ _c); \ (c) = _c; \ } while (0) void BLAKE2s::processChunk(uint32_t f0) { uint8_t index; uint32_t v[16]; // Byte-swap the message buffer into little-endian if necessary. #if !defined(CRYPTO_LITTLE_ENDIAN) for (index = 0; index < 16; ++index) state.m[index] = le32toh(state.m[index]); #endif // Format the block to be hashed. memcpy(v, state.h, sizeof(state.h)); v[8] = BLAKE2s_IV0; v[9] = BLAKE2s_IV1; v[10] = BLAKE2s_IV2; v[11] = BLAKE2s_IV3; v[12] = BLAKE2s_IV4 ^ (uint32_t)(state.length); v[13] = BLAKE2s_IV5 ^ (uint32_t)(state.length >> 32); v[14] = BLAKE2s_IV6 ^ f0; v[15] = BLAKE2s_IV7; // Perform the 10 BLAKE2s rounds. for (index = 0; index < 10; ++index) { // Column round. quarterRound(v[0], v[4], v[8], v[12], 0); quarterRound(v[1], v[5], v[9], v[13], 1); quarterRound(v[2], v[6], v[10], v[14], 2); quarterRound(v[3], v[7], v[11], v[15], 3); // Diagonal round. quarterRound(v[0], v[5], v[10], v[15], 4); quarterRound(v[1], v[6], v[11], v[12], 5); quarterRound(v[2], v[7], v[8], v[13], 6); quarterRound(v[3], v[4], v[9], v[14], 7); } // Combine the new and old hash values. for (index = 0; index < 8; ++index) state.h[index] ^= (v[index] ^ v[index + 8]); }