/* * Copyright (C) 2015 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* This example runs tests on the BLAKE2b implementation to verify correct behaviour. */ #include #include #include #include #define HASH_SIZE 64 #define BLOCK_SIZE 128 struct TestHashVector { const char *name; const char *data; uint8_t hash[HASH_SIZE]; }; // Test vectors generated with the reference implementation of BLAKE2b. static TestHashVector const testVectorBLAKE2b_1 PROGMEM = { "BLAKE2b #1", "", {0x78, 0x6a, 0x02, 0xf7, 0x42, 0x01, 0x59, 0x03, 0xc6, 0xc6, 0xfd, 0x85, 0x25, 0x52, 0xd2, 0x72, 0x91, 0x2f, 0x47, 0x40, 0xe1, 0x58, 0x47, 0x61, 0x8a, 0x86, 0xe2, 0x17, 0xf7, 0x1f, 0x54, 0x19, 0xd2, 0x5e, 0x10, 0x31, 0xaf, 0xee, 0x58, 0x53, 0x13, 0x89, 0x64, 0x44, 0x93, 0x4e, 0xb0, 0x4b, 0x90, 0x3a, 0x68, 0x5b, 0x14, 0x48, 0xb7, 0x55, 0xd5, 0x6f, 0x70, 0x1a, 0xfe, 0x9b, 0xe2, 0xce} }; static TestHashVector const testVectorBLAKE2b_2 PROGMEM = { "BLAKE2b #2", "abc", {0xba, 0x80, 0xa5, 0x3f, 0x98, 0x1c, 0x4d, 0x0d, 0x6a, 0x27, 0x97, 0xb6, 0x9f, 0x12, 0xf6, 0xe9, 0x4c, 0x21, 0x2f, 0x14, 0x68, 0x5a, 0xc4, 0xb7, 0x4b, 0x12, 0xbb, 0x6f, 0xdb, 0xff, 0xa2, 0xd1, 0x7d, 0x87, 0xc5, 0x39, 0x2a, 0xab, 0x79, 0x2d, 0xc2, 0x52, 0xd5, 0xde, 0x45, 0x33, 0xcc, 0x95, 0x18, 0xd3, 0x8a, 0xa8, 0xdb, 0xf1, 0x92, 0x5a, 0xb9, 0x23, 0x86, 0xed, 0xd4, 0x00, 0x99, 0x23} }; static TestHashVector const testVectorBLAKE2b_3 PROGMEM = { "BLAKE2b #3", "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", {0x72, 0x85, 0xff, 0x3e, 0x8b, 0xd7, 0x68, 0xd6, 0x9b, 0xe6, 0x2b, 0x3b, 0xf1, 0x87, 0x65, 0xa3, 0x25, 0x91, 0x7f, 0xa9, 0x74, 0x4a, 0xc2, 0xf5, 0x82, 0xa2, 0x08, 0x50, 0xbc, 0x2b, 0x11, 0x41, 0xed, 0x1b, 0x3e, 0x45, 0x28, 0x59, 0x5a, 0xcc, 0x90, 0x77, 0x2b, 0xdf, 0x2d, 0x37, 0xdc, 0x8a, 0x47, 0x13, 0x0b, 0x44, 0xf3, 0x3a, 0x02, 0xe8, 0x73, 0x0e, 0x5a, 0xd8, 0xe1, 0x66, 0xe8, 0x88} }; static TestHashVector const testVectorBLAKE2b_4 PROGMEM = { "BLAKE2b #4", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", {0xce, 0x74, 0x1a, 0xc5, 0x93, 0x0f, 0xe3, 0x46, 0x81, 0x11, 0x75, 0xc5, 0x22, 0x7b, 0xb7, 0xbf, 0xcd, 0x47, 0xf4, 0x26, 0x12, 0xfa, 0xe4, 0x6c, 0x08, 0x09, 0x51, 0x4f, 0x9e, 0x0e, 0x3a, 0x11, 0xee, 0x17, 0x73, 0x28, 0x71, 0x47, 0xcd, 0xea, 0xee, 0xdf, 0xf5, 0x07, 0x09, 0xaa, 0x71, 0x63, 0x41, 0xfe, 0x65, 0x24, 0x0f, 0x4a, 0xd6, 0x77, 0x7d, 0x6b, 0xfa, 0xf9, 0x72, 0x6e, 0x5e, 0x52} }; BLAKE2b blake2b; byte buffer[BLOCK_SIZE + 2]; bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc) { size_t size = strlen(test->data); size_t posn, len; uint8_t value[HASH_SIZE]; hash->reset(); for (posn = 0; posn < size; posn += inc) { len = size - posn; if (len > inc) len = inc; hash->update(test->data + posn, len); } hash->finalize(value, sizeof(value)); if (memcmp(value, test->hash, sizeof(value)) != 0) return false; return true; } void testHash(Hash *hash, const struct TestHashVector *test) { bool ok; TestHashVector vec; memcpy_P(&vec, test, sizeof(vec)); test = &vec; Serial.print(test->name); Serial.print(" ... "); ok = testHash_N(hash, test, strlen(test->data)); ok &= testHash_N(hash, test, 1); ok &= testHash_N(hash, test, 2); ok &= testHash_N(hash, test, 5); ok &= testHash_N(hash, test, 8); ok &= testHash_N(hash, test, 13); ok &= testHash_N(hash, test, 16); ok &= testHash_N(hash, test, 24); ok &= testHash_N(hash, test, 63); ok &= testHash_N(hash, test, 64); if (ok) Serial.println("Passed"); else Serial.println("Failed"); } void perfHash(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Hashing ... "); for (size_t posn = 0; posn < sizeof(buffer); ++posn) buffer[posn] = (uint8_t)posn; hash->reset(); start = micros(); for (count = 0; count < 1000; ++count) { hash->update(buffer, sizeof(buffer)); } elapsed = micros() - start; Serial.print(elapsed / (sizeof(buffer) * 1000.0)); Serial.print("us per byte, "); Serial.print((sizeof(buffer) * 1000.0 * 1000000.0) / elapsed); Serial.println(" bytes per second"); } // Very simple method for hashing a HMAC inner or outer key. void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad) { size_t posn; uint8_t buf; uint8_t result[HASH_SIZE]; if (keyLen <= BLOCK_SIZE) { hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < keyLen) buf = key[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } else { hash->reset(); hash->update(key, keyLen); hash->finalize(result, HASH_SIZE); hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < HASH_SIZE) buf = result[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } } void testHMAC(Hash *hash, size_t keyLen) { uint8_t result[HASH_SIZE]; Serial.print("HMAC-BLAKE2b keysize="); Serial.print(keyLen); Serial.print(" ... "); // Construct the expected result with a simple HMAC implementation. memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x36); memset(buffer, 0xBA, sizeof(buffer)); hash->update(buffer, sizeof(buffer)); hash->finalize(result, HASH_SIZE); memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x5C); hash->update(result, HASH_SIZE); hash->finalize(result, HASH_SIZE); // Now use the library to compute the HMAC. hash->resetHMAC(buffer, keyLen); memset(buffer, 0xBA, sizeof(buffer)); hash->update(buffer, sizeof(buffer)); memset(buffer, (uint8_t)keyLen, keyLen); hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE); // Check the result. if (!memcmp(result, buffer, HASH_SIZE)) Serial.println("Passed"); else Serial.println("Failed"); } // Deterministic sequences (Fibonacci generator). From RFC 7693. static void selftest_seq(uint8_t *out, size_t len, uint32_t seed) { size_t i; uint32_t t, a , b; a = 0xDEAD4BAD * seed; // prime b = 1; for (i = 0; i < len; i++) { // fill the buf t = a + b; a = b; b = t; out[i] = (t >> 24) & 0xFF; } } // Incremental version of above to save memory. static void selftest_seq_incremental(BLAKE2b *blake, size_t len, uint32_t seed) { size_t i; uint32_t t, a , b; a = 0xDEAD4BAD * seed; // prime b = 1; for (i = 0; i < len; i++) { // fill the buf t = a + b; a = b; b = t; buffer[i % 128] = (t >> 24) & 0xFF; if ((i % 128) == 127) blake->update(buffer, 128); } blake->update(buffer, len % 128); } // Run the self-test from Appendix E of RFC 7693. Most of this code // is from RFC 7693, with modifications to use the Crypto library. void testRFC7693() { // Grand hash of hash results. static const uint8_t blake2b_res[32] PROGMEM = { 0xC2, 0x3A, 0x78, 0x00, 0xD9, 0x81, 0x23, 0xBD, 0x10, 0xF5, 0x06, 0xC6, 0x1E, 0x29, 0xDA, 0x56, 0x03, 0xD7, 0x63, 0xB8, 0xBB, 0xAD, 0x2E, 0x73, 0x7F, 0x5E, 0x76, 0x5A, 0x7B, 0xCC, 0xD4, 0x75 }; // Parameter sets. static const uint8_t b2b_md_len[4] PROGMEM = { 20, 32, 48, 64 }; static const uint16_t b2b_in_len[6] PROGMEM = { 0, 3, 128, 129, 255, 1024 }; size_t i, j, outlen, inlen; uint8_t md[64], key[64]; BLAKE2b inner; Serial.print("BLAKE2b RFC 7693 ... "); // 256-bit hash for testing. blake2b.reset(32); for (i = 0; i < 4; i++) { outlen = pgm_read_byte(&(b2b_md_len[i])); for (j = 0; j < 6; j++) { inlen = pgm_read_word(&(b2b_in_len[j])); inner.reset(outlen); // unkeyed hash selftest_seq_incremental(&inner, inlen, inlen); inner.finalize(md, outlen); blake2b.update(md, outlen); // hash the hash selftest_seq(key, outlen, outlen); // keyed hash inner.reset(key, outlen, outlen); selftest_seq_incremental(&inner, inlen, inlen); inner.finalize(md, outlen); blake2b.update(md, outlen); // hash the hash } } // Compute and compare the hash of hashes. bool ok = true; blake2b.finalize(md, 32); for (i = 0; i < 32; i++) { if (md[i] != pgm_read_byte(&(blake2b_res[i]))) ok = false; } // Report the results. if (ok) Serial.println("Passed"); else Serial.println("Failed"); } void perfKeyed(BLAKE2b *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Keyed Reset ... "); for (size_t posn = 0; posn < sizeof(buffer); ++posn) buffer[posn] = (uint8_t)posn; start = micros(); for (count = 0; count < 1000; ++count) { hash->reset(buffer, hash->hashSize()); hash->update(buffer, 1); // To flush the key chunk. } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void perfFinalize(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Finalizing ... "); hash->reset(); hash->update("abc", 3); start = micros(); for (count = 0; count < 1000; ++count) { hash->finalize(buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void setup() { Serial.begin(9600); Serial.println(); Serial.print("State Size ..."); Serial.println(sizeof(BLAKE2b)); Serial.println(); Serial.println("Test Vectors:"); testHash(&blake2b, &testVectorBLAKE2b_1); testHash(&blake2b, &testVectorBLAKE2b_2); testHash(&blake2b, &testVectorBLAKE2b_3); testHash(&blake2b, &testVectorBLAKE2b_4); testHMAC(&blake2b, (size_t)0); testHMAC(&blake2b, 1); testHMAC(&blake2b, HASH_SIZE); testHMAC(&blake2b, BLOCK_SIZE); testHMAC(&blake2b, BLOCK_SIZE + 1); testHMAC(&blake2b, BLOCK_SIZE + 2); testRFC7693(); Serial.println(); Serial.println("Performance Tests:"); perfHash(&blake2b); perfKeyed(&blake2b); perfFinalize(&blake2b); } void loop() { }