/* * Copyright (C) 2015 Southern Storm Software, Pty Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /* This example runs tests on the BLAKE2s implementation to verify correct behaviour. */ #include #include #include #include #define HASH_SIZE 32 #define BLOCK_SIZE 64 struct TestHashVector { const char *name; const char *data; uint8_t hash[HASH_SIZE]; }; // Test vectors generated with the reference implementation of BLAKE2s. static TestHashVector const testVectorBLAKE2s_1 = { "BLAKE2s #1", "", {0x69, 0x21, 0x7a, 0x30, 0x79, 0x90, 0x80, 0x94, 0xe1, 0x11, 0x21, 0xd0, 0x42, 0x35, 0x4a, 0x7c, 0x1f, 0x55, 0xb6, 0x48, 0x2c, 0xa1, 0xa5, 0x1e, 0x1b, 0x25, 0x0d, 0xfd, 0x1e, 0xd0, 0xee, 0xf9} }; static TestHashVector const testVectorBLAKE2s_2 = { "BLAKE2s #2", "abc", {0x50, 0x8c, 0x5e, 0x8c, 0x32, 0x7c, 0x14, 0xe2, 0xe1, 0xa7, 0x2b, 0xa3, 0x4e, 0xeb, 0x45, 0x2f, 0x37, 0x45, 0x8b, 0x20, 0x9e, 0xd6, 0x3a, 0x29, 0x4d, 0x99, 0x9b, 0x4c, 0x86, 0x67, 0x59, 0x82} }; static TestHashVector const testVectorBLAKE2s_3 = { "BLAKE2s #3", "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", {0x6f, 0x4d, 0xf5, 0x11, 0x6a, 0x6f, 0x33, 0x2e, 0xda, 0xb1, 0xd9, 0xe1, 0x0e, 0xe8, 0x7d, 0xf6, 0x55, 0x7b, 0xea, 0xb6, 0x25, 0x9d, 0x76, 0x63, 0xf3, 0xbc, 0xd5, 0x72, 0x2c, 0x13, 0xf1, 0x89} }; static TestHashVector const testVectorBLAKE2s_4 = { "BLAKE2s #4", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", {0x35, 0x8d, 0xd2, 0xed, 0x07, 0x80, 0xd4, 0x05, 0x4e, 0x76, 0xcb, 0x6f, 0x3a, 0x5b, 0xce, 0x28, 0x41, 0xe8, 0xe2, 0xf5, 0x47, 0x43, 0x1d, 0x4d, 0x09, 0xdb, 0x21, 0xb6, 0x6d, 0x94, 0x1f, 0xc7} }; BLAKE2s blake2s; byte buffer[128]; bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc) { size_t size = strlen(test->data); size_t posn, len; uint8_t value[HASH_SIZE]; hash->reset(); for (posn = 0; posn < size; posn += inc) { len = size - posn; if (len > inc) len = inc; hash->update(test->data + posn, len); } hash->finalize(value, sizeof(value)); if (memcmp(value, test->hash, sizeof(value)) != 0) return false; return true; } void testHash(Hash *hash, const struct TestHashVector *test) { bool ok; Serial.print(test->name); Serial.print(" ... "); ok = testHash_N(hash, test, strlen(test->data)); ok &= testHash_N(hash, test, 1); ok &= testHash_N(hash, test, 2); ok &= testHash_N(hash, test, 5); ok &= testHash_N(hash, test, 8); ok &= testHash_N(hash, test, 13); ok &= testHash_N(hash, test, 16); ok &= testHash_N(hash, test, 24); ok &= testHash_N(hash, test, 63); ok &= testHash_N(hash, test, 64); if (ok) Serial.println("Passed"); else Serial.println("Failed"); } void perfHash(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Hashing ... "); for (size_t posn = 0; posn < sizeof(buffer); ++posn) buffer[posn] = (uint8_t)posn; hash->reset(); start = micros(); for (count = 0; count < 1000; ++count) { hash->update(buffer, sizeof(buffer)); } elapsed = micros() - start; Serial.print(elapsed / (sizeof(buffer) * 1000.0)); Serial.print("us per byte, "); Serial.print((sizeof(buffer) * 1000.0 * 1000000.0) / elapsed); Serial.println(" bytes per second"); } // Very simple method for hashing a HMAC inner or outer key. void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad) { size_t posn; uint8_t buf; uint8_t result[HASH_SIZE]; if (keyLen <= BLOCK_SIZE) { hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < keyLen) buf = key[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } else { hash->reset(); hash->update(key, keyLen); hash->finalize(result, HASH_SIZE); hash->reset(); for (posn = 0; posn < BLOCK_SIZE; ++posn) { if (posn < HASH_SIZE) buf = result[posn] ^ pad; else buf = pad; hash->update(&buf, 1); } } } void testHMAC(Hash *hash, size_t keyLen) { uint8_t result[HASH_SIZE]; Serial.print("HMAC-BLAKE2s keysize="); Serial.print(keyLen); Serial.print(" ... "); // Construct the expected result with a simple HMAC implementation. memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x36); memset(buffer, 0xBA, sizeof(buffer)); hash->update(buffer, sizeof(buffer)); hash->finalize(result, HASH_SIZE); memset(buffer, (uint8_t)keyLen, keyLen); hashKey(hash, buffer, keyLen, 0x5C); hash->update(result, HASH_SIZE); hash->finalize(result, HASH_SIZE); // Now use the library to compute the HMAC. hash->resetHMAC(buffer, keyLen); memset(buffer, 0xBA, sizeof(buffer)); hash->update(buffer, sizeof(buffer)); memset(buffer, (uint8_t)keyLen, keyLen); hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE); // Check the result. if (!memcmp(result, buffer, HASH_SIZE)) Serial.println("Passed"); else Serial.println("Failed"); } // Deterministic sequences (Fibonacci generator). From RFC 7693. static void selftest_seq(uint8_t *out, size_t len, uint32_t seed) { size_t i; uint32_t t, a , b; a = 0xDEAD4BAD * seed; // prime b = 1; for (i = 0; i < len; i++) { // fill the buf t = a + b; a = b; b = t; out[i] = (t >> 24) & 0xFF; } } // Incremental version of above to save memory. static void selftest_seq_incremental(BLAKE2s *blake, size_t len, uint32_t seed) { size_t i; uint32_t t, a , b; a = 0xDEAD4BAD * seed; // prime b = 1; for (i = 0; i < len; i++) { // fill the buf t = a + b; a = b; b = t; buffer[i % 128] = (t >> 24) & 0xFF; if ((i % 128) == 127) blake->update(buffer, sizeof(buffer)); } blake->update(buffer, len % 128); } // Run the self-test from Appendix E of RFC 7693. Most of this code // is from RFC 7693, with modifications to use the Crypto library. void testRFC7693() { // Grand hash of hash results. static const uint8_t blake2s_res[32] PROGMEM = { 0x6A, 0x41, 0x1F, 0x08, 0xCE, 0x25, 0xAD, 0xCD, 0xFB, 0x02, 0xAB, 0xA6, 0x41, 0x45, 0x1C, 0xEC, 0x53, 0xC5, 0x98, 0xB2, 0x4F, 0x4F, 0xC7, 0x87, 0xFB, 0xDC, 0x88, 0x79, 0x7F, 0x4C, 0x1D, 0xFE }; // Parameter sets. static const uint8_t b2s_md_len[4] PROGMEM = { 16, 20, 28, 32 }; static const uint16_t b2s_in_len[6] PROGMEM = { 0, 3, 64, 65, 255, 1024 }; size_t i, j, outlen, inlen; uint8_t md[32], key[32]; BLAKE2s inner; Serial.print("BLAKE2s RFC 7693 ... "); // 256-bit hash for testing. blake2s.reset(32); for (i = 0; i < 4; i++) { outlen = pgm_read_byte(&(b2s_md_len[i])); for (j = 0; j < 6; j++) { inlen = pgm_read_word(&(b2s_in_len[j])); inner.reset(outlen); // unkeyed hash selftest_seq_incremental(&inner, inlen, inlen); inner.finalize(md, outlen); blake2s.update(md, outlen); // hash the hash selftest_seq(key, outlen, outlen); // keyed hash inner.reset(key, outlen, outlen); selftest_seq_incremental(&inner, inlen, inlen); inner.finalize(md, outlen); blake2s.update(md, outlen); // hash the hash } } // Compute and compare the hash of hashes. bool ok = true; blake2s.finalize(md, 32); for (i = 0; i < 32; i++) { if (md[i] != pgm_read_byte(&(blake2s_res[i]))) ok = false; } // Report the results. if (ok) Serial.println("Passed"); else Serial.println("Failed"); } void perfFinalize(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Finalizing ... "); hash->reset(); hash->update("abc", 3); start = micros(); for (count = 0; count < 1000; ++count) { hash->finalize(buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void perfKeyed(BLAKE2s *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("Keyed Reset ... "); for (size_t posn = 0; posn < sizeof(buffer); ++posn) buffer[posn] = (uint8_t)posn; start = micros(); for (count = 0; count < 1000; ++count) { hash->reset(buffer, hash->hashSize()); hash->update(buffer, 1); // To flush the key chunk. } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void perfHMAC(Hash *hash) { unsigned long start; unsigned long elapsed; int count; Serial.print("HMAC Reset ... "); for (size_t posn = 0; posn < sizeof(buffer); ++posn) buffer[posn] = (uint8_t)posn; start = micros(); for (count = 0; count < 1000; ++count) { hash->resetHMAC(buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); Serial.print("HMAC Finalize ... "); hash->resetHMAC(buffer, hash->hashSize()); hash->update("abc", 3); start = micros(); for (count = 0; count < 1000; ++count) { hash->finalizeHMAC(buffer, hash->hashSize(), buffer, hash->hashSize()); } elapsed = micros() - start; Serial.print(elapsed / 1000.0); Serial.print("us per op, "); Serial.print((1000.0 * 1000000.0) / elapsed); Serial.println(" ops per second"); } void setup() { Serial.begin(9600); Serial.println(); Serial.print("State Size ... "); Serial.println(sizeof(BLAKE2s)); Serial.println(); Serial.println("Test Vectors:"); testHash(&blake2s, &testVectorBLAKE2s_1); testHash(&blake2s, &testVectorBLAKE2s_2); testHash(&blake2s, &testVectorBLAKE2s_3); testHash(&blake2s, &testVectorBLAKE2s_4); testHMAC(&blake2s, (size_t)0); testHMAC(&blake2s, 1); testHMAC(&blake2s, HASH_SIZE); testHMAC(&blake2s, BLOCK_SIZE); testHMAC(&blake2s, BLOCK_SIZE + 1); testHMAC(&blake2s, sizeof(buffer)); testRFC7693(); Serial.println(); Serial.println("Performance Tests:"); perfHash(&blake2s); perfFinalize(&blake2s); perfKeyed(&blake2s); perfHMAC(&blake2s); } void loop() { }