mirror of
https://github.com/taigrr/arduinolibs
synced 2025-01-18 04:33:12 -08:00
270 lines
8.3 KiB
C++
270 lines
8.3 KiB
C++
/*
|
|
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "ChaCha.h"
|
|
#include "Crypto.h"
|
|
#include "RotateUtil.h"
|
|
#include "EndianUtil.h"
|
|
#include <string.h>
|
|
|
|
/**
|
|
* \class ChaCha ChaCha.h <ChaCha.h>
|
|
* \brief ChaCha stream cipher.
|
|
*
|
|
* ChaCha is a stream cipher that takes a key, an 8-byte nonce/IV, and a
|
|
* counter and hashes them to generate a keystream to XOR with the plaintext.
|
|
* Variations on the ChaCha cipher use 8, 12, or 20 rounds of hashing
|
|
* operations with either 128-bit or 256-bit keys.
|
|
*
|
|
* Reference: http://cr.yp.to/chacha.html
|
|
*/
|
|
|
|
/**
|
|
* \brief Constructs a new ChaCha stream cipher.
|
|
*
|
|
* \param numRounds Number of encryption rounds to use; usually 8, 12, or 20.
|
|
*/
|
|
ChaCha::ChaCha(uint8_t numRounds)
|
|
: rounds(numRounds)
|
|
, posn(64)
|
|
{
|
|
}
|
|
|
|
ChaCha::~ChaCha()
|
|
{
|
|
clean(block);
|
|
clean(stream);
|
|
}
|
|
|
|
size_t ChaCha::keySize() const
|
|
{
|
|
// Default key size is 128-bit, but any key size is allowed.
|
|
return 16;
|
|
}
|
|
|
|
size_t ChaCha::ivSize() const
|
|
{
|
|
// We return 8 but we also support 12-byte nonces in setIV().
|
|
return 8;
|
|
}
|
|
|
|
/**
|
|
* \fn uint8_t ChaCha::numRounds() const
|
|
* \brief Returns the number of encryption rounds; usually 8, 12, or 20.
|
|
*
|
|
* \sa setNumRounds()
|
|
*/
|
|
|
|
/**
|
|
* \fn void ChaCha::setNumRounds(uint8_t numRounds)
|
|
* \brief Sets the number of encryption rounds.
|
|
*
|
|
* \param numRounds The number of encryption rounds; usually 8, 12, or 20.
|
|
*
|
|
* \sa numRounds()
|
|
*/
|
|
|
|
bool ChaCha::setKey(const uint8_t *key, size_t len)
|
|
{
|
|
static const char tag128[] = "expand 16-byte k";
|
|
static const char tag256[] = "expand 32-byte k";
|
|
if (len <= 16) {
|
|
memcpy(block, tag128, 16);
|
|
memcpy(block + 16, key, len);
|
|
memcpy(block + 32, key, len);
|
|
if (len < 16) {
|
|
memset(block + 16 + len, 0, 16 - len);
|
|
memset(block + 32 + len, 0, 16 - len);
|
|
}
|
|
} else {
|
|
if (len > 32)
|
|
len = 32;
|
|
memcpy(block, tag256, 16);
|
|
memcpy(block + 16, key, len);
|
|
if (len < 32)
|
|
memset(block + 16 + len, 0, 32 - len);
|
|
}
|
|
posn = 64;
|
|
return true;
|
|
}
|
|
|
|
bool ChaCha::setIV(const uint8_t *iv, size_t len)
|
|
{
|
|
// From draft-nir-cfrg-chacha20-poly1305-04.txt, we can use either
|
|
// 64-bit or 96-bit nonces. The 96-bit nonce consists of the high
|
|
// word of the counter prepended to a regular 64-bit nonce for ChaCha.
|
|
if (len == 8) {
|
|
memset(block + 48, 0, 8);
|
|
memcpy(block + 56, iv, len);
|
|
posn = 64;
|
|
return true;
|
|
} else if (len == 12) {
|
|
memset(block + 48, 0, 4);
|
|
memcpy(block + 52, iv, len);
|
|
posn = 64;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Sets the starting counter for encryption.
|
|
*
|
|
* \param counter A 4-byte or 8-byte value to use for the starting counter
|
|
* instead of the default value of zero.
|
|
* \param len The length of the counter, which must be 4 or 8.
|
|
* \return Returns false if \a len is not 4 or 8.
|
|
*
|
|
* This function must be called after setIV() and before the first call
|
|
* to encrypt(). It is used to specify a different starting value than
|
|
* zero for the counter portion of the hash input.
|
|
*
|
|
* \sa setIV()
|
|
*/
|
|
bool ChaCha::setCounter(const uint8_t *counter, size_t len)
|
|
{
|
|
// Normally both the IV and the counter are 8 bytes in length.
|
|
// However, if the IV was 12 bytes, then a 4 byte counter can be used.
|
|
if (len == 4 || len == 8) {
|
|
memcpy(block + 48, counter, len);
|
|
posn = 64;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void ChaCha::encrypt(uint8_t *output, const uint8_t *input, size_t len)
|
|
{
|
|
while (len > 0) {
|
|
if (posn >= 64) {
|
|
// Generate a new encrypted counter block.
|
|
hashCore((uint32_t *)stream, (const uint32_t *)block, rounds);
|
|
posn = 0;
|
|
|
|
// Increment the counter, taking care not to reveal
|
|
// any timing information about the starting value.
|
|
// We iterate through the entire counter region even
|
|
// if we could stop earlier because a byte is non-zero.
|
|
uint16_t temp = 1;
|
|
uint8_t index = 48;
|
|
while (index < 56) {
|
|
temp += block[index];
|
|
block[index] = (uint8_t)temp;
|
|
temp >>= 8;
|
|
++index;
|
|
}
|
|
}
|
|
uint8_t templen = 64 - posn;
|
|
if (templen > len)
|
|
templen = len;
|
|
len -= templen;
|
|
while (templen > 0) {
|
|
*output++ = *input++ ^ stream[posn++];
|
|
--templen;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ChaCha::decrypt(uint8_t *output, const uint8_t *input, size_t len)
|
|
{
|
|
encrypt(output, input, len);
|
|
}
|
|
|
|
void ChaCha::clear()
|
|
{
|
|
clean(block);
|
|
clean(stream);
|
|
posn = 64;
|
|
}
|
|
|
|
// On AVR it is faster to rotate left by 16 bits and then right by 4 bits
|
|
// one at a time than to rotate left by 12 bits in a single step.
|
|
#define leftRotate12(a) \
|
|
(__extension__ ({ \
|
|
uint32_t temp = (a); \
|
|
temp = (temp << 16) | (temp >> 16); \
|
|
temp = rightRotate(temp, 1); \
|
|
temp = rightRotate(temp, 1); \
|
|
temp = rightRotate(temp, 1); \
|
|
rightRotate(temp, 1); \
|
|
}))
|
|
|
|
// Perform a ChaCha quarter round operation.
|
|
#define quarterRound(a, b, c, d) \
|
|
do { \
|
|
uint32_t _b = (b); \
|
|
uint32_t _a = (a) + _b; \
|
|
uint32_t _d = leftRotate((d) ^ _a, 16); \
|
|
uint32_t _c = (c) + _d; \
|
|
_b = leftRotate12(_b ^ _c); \
|
|
_a += _b; \
|
|
(d) = _d = leftRotate(_d ^ _a, 8); \
|
|
_c += _d; \
|
|
(a) = _a; \
|
|
(b) = leftRotate7(_b ^ _c); \
|
|
(c) = _c; \
|
|
} while (0)
|
|
|
|
/**
|
|
* \brief Executes the ChaCha hash core on an input memory block.
|
|
*
|
|
* \param output Output memory block, must be at least 16 words in length
|
|
* and must not overlap with \a input.
|
|
* \param input Input memory block, must be at least 16 words in length.
|
|
* \param rounds Number of ChaCha rounds to perform; usually 8, 12, or 20.
|
|
*
|
|
* This function is provided for the convenience of applications that need
|
|
* access to the ChaCha hash core without the higher-level processing that
|
|
* turns the core into a stream cipher.
|
|
*/
|
|
void ChaCha::hashCore(uint32_t *output, const uint32_t *input, uint8_t rounds)
|
|
{
|
|
uint8_t posn;
|
|
|
|
// Copy the input buffer to the output prior to the first round
|
|
// and convert from little-endian to host byte order.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
output[posn] = le32toh(input[posn]);
|
|
|
|
// Perform the ChaCha rounds in sets of two.
|
|
for (; rounds >= 2; rounds -= 2) {
|
|
// Column round.
|
|
quarterRound(output[0], output[4], output[8], output[12]);
|
|
quarterRound(output[1], output[5], output[9], output[13]);
|
|
quarterRound(output[2], output[6], output[10], output[14]);
|
|
quarterRound(output[3], output[7], output[11], output[15]);
|
|
|
|
// Diagonal round.
|
|
quarterRound(output[0], output[5], output[10], output[15]);
|
|
quarterRound(output[1], output[6], output[11], output[12]);
|
|
quarterRound(output[2], output[7], output[8], output[13]);
|
|
quarterRound(output[3], output[4], output[9], output[14]);
|
|
}
|
|
|
|
// Add the original input to the final output, convert back to
|
|
// little-endian, and return the result.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
output[posn] = htole32(output[posn] + le32toh(input[posn]));
|
|
}
|