mirror of
https://github.com/taigrr/arduinolibs
synced 2025-01-18 04:33:12 -08:00
293 lines
8.8 KiB
C++
293 lines
8.8 KiB
C++
/*
|
|
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "SHA256.h"
|
|
#include "Crypto.h"
|
|
#include "utility/RotateUtil.h"
|
|
#include "utility/EndianUtil.h"
|
|
#include "utility/ProgMemUtil.h"
|
|
#include <string.h>
|
|
|
|
/**
|
|
* \class SHA256 SHA256.h <SHA256.h>
|
|
* \brief SHA-256 hash algorithm.
|
|
*
|
|
* Reference: http://en.wikipedia.org/wiki/SHA-2
|
|
*
|
|
* \sa SHA512, SHA3_256, BLAKE2s
|
|
*/
|
|
|
|
/**
|
|
* \brief Constructs a SHA-256 hash object.
|
|
*/
|
|
SHA256::SHA256()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
/**
|
|
* \brief Destroys this SHA-256 hash object after clearing
|
|
* sensitive information.
|
|
*/
|
|
SHA256::~SHA256()
|
|
{
|
|
clean(state);
|
|
}
|
|
|
|
size_t SHA256::hashSize() const
|
|
{
|
|
return 32;
|
|
}
|
|
|
|
size_t SHA256::blockSize() const
|
|
{
|
|
return 64;
|
|
}
|
|
|
|
void SHA256::reset()
|
|
{
|
|
state.h[0] = 0x6a09e667;
|
|
state.h[1] = 0xbb67ae85;
|
|
state.h[2] = 0x3c6ef372;
|
|
state.h[3] = 0xa54ff53a,
|
|
state.h[4] = 0x510e527f;
|
|
state.h[5] = 0x9b05688c;
|
|
state.h[6] = 0x1f83d9ab;
|
|
state.h[7] = 0x5be0cd19;
|
|
state.chunkSize = 0;
|
|
state.length = 0;
|
|
}
|
|
|
|
void SHA256::update(const void *data, size_t len)
|
|
{
|
|
// Update the total length (in bits, not bytes).
|
|
state.length += ((uint64_t)len) << 3;
|
|
|
|
// Break the input up into 512-bit chunks and process each in turn.
|
|
const uint8_t *d = (const uint8_t *)data;
|
|
while (len > 0) {
|
|
uint8_t size = 64 - state.chunkSize;
|
|
if (size > len)
|
|
size = len;
|
|
memcpy(((uint8_t *)state.w) + state.chunkSize, d, size);
|
|
state.chunkSize += size;
|
|
len -= size;
|
|
d += size;
|
|
if (state.chunkSize == 64) {
|
|
processChunk();
|
|
state.chunkSize = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SHA256::finalize(void *hash, size_t len)
|
|
{
|
|
// Pad the last chunk. We may need two padding chunks if there
|
|
// isn't enough room in the first for the padding and length.
|
|
uint8_t *wbytes = (uint8_t *)state.w;
|
|
if (state.chunkSize <= (64 - 9)) {
|
|
wbytes[state.chunkSize] = 0x80;
|
|
memset(wbytes + state.chunkSize + 1, 0x00, 64 - 8 - (state.chunkSize + 1));
|
|
state.w[14] = htobe32((uint32_t)(state.length >> 32));
|
|
state.w[15] = htobe32((uint32_t)state.length);
|
|
processChunk();
|
|
} else {
|
|
wbytes[state.chunkSize] = 0x80;
|
|
memset(wbytes + state.chunkSize + 1, 0x00, 64 - (state.chunkSize + 1));
|
|
processChunk();
|
|
memset(wbytes, 0x00, 64 - 8);
|
|
state.w[14] = htobe32((uint32_t)(state.length >> 32));
|
|
state.w[15] = htobe32((uint32_t)state.length);
|
|
processChunk();
|
|
}
|
|
|
|
// Convert the result into big endian and return it.
|
|
for (uint8_t posn = 0; posn < 8; ++posn)
|
|
state.w[posn] = htobe32(state.h[posn]);
|
|
|
|
// Copy the hash to the caller's return buffer.
|
|
if (len > 32)
|
|
len = 32;
|
|
memcpy(hash, state.w, len);
|
|
}
|
|
|
|
void SHA256::clear()
|
|
{
|
|
clean(state);
|
|
reset();
|
|
}
|
|
|
|
void SHA256::resetHMAC(const void *key, size_t keyLen)
|
|
{
|
|
formatHMACKey(state.w, key, keyLen, 0x36);
|
|
state.length += 64 * 8;
|
|
processChunk();
|
|
}
|
|
|
|
void SHA256::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen)
|
|
{
|
|
uint8_t temp[32];
|
|
finalize(temp, sizeof(temp));
|
|
formatHMACKey(state.w, key, keyLen, 0x5C);
|
|
state.length += 64 * 8;
|
|
processChunk();
|
|
update(temp, sizeof(temp));
|
|
finalize(hash, hashLen);
|
|
clean(temp);
|
|
}
|
|
|
|
/**
|
|
* \brief Copies the entire hash state from another object.
|
|
*
|
|
* \param other The other object to copy the state from.
|
|
*
|
|
* This function is intended for scenarios where the application needs to
|
|
* finalize the state to get an intermediate hash value, but must then
|
|
* continue hashing new data into the original state.
|
|
*
|
|
* In the following example, h1 will be the hash over data1 and h2 will
|
|
* be the hash over data1 concatenated with data2:
|
|
*
|
|
* \code
|
|
* // Hash the initial data.
|
|
* SHA256 hash1;
|
|
* hash1.update(data1, sizeof(data1));
|
|
*
|
|
* // Copy the hash state and finalize to create h1.
|
|
* SHA256 hash2;
|
|
* hash2.copyFrom(hash1);
|
|
* hash2.finalize(h1, sizeof(h1));
|
|
*
|
|
* // Continue adding data to the original unfinalized hash.
|
|
* hash1.update(data2, sizeof(data2));
|
|
*
|
|
* // Get the final hash value h2.
|
|
* hash1.finalize(h2, sizeof(h2));
|
|
* \endcode
|
|
*/
|
|
void SHA256::copyFrom(const SHA256 &other)
|
|
{
|
|
state = other.state;
|
|
}
|
|
|
|
/**
|
|
* \brief Processes a single 512-bit chunk with the core SHA-256 algorithm.
|
|
*
|
|
* Reference: http://en.wikipedia.org/wiki/SHA-2
|
|
*/
|
|
void SHA256::processChunk()
|
|
{
|
|
// Round constants for SHA-256.
|
|
static uint32_t const k[64] PROGMEM = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
// Convert the first 16 words from big endian to host byte order.
|
|
uint8_t index;
|
|
for (index = 0; index < 16; ++index)
|
|
state.w[index] = be32toh(state.w[index]);
|
|
|
|
// Initialise working variables to the current hash value.
|
|
uint32_t a = state.h[0];
|
|
uint32_t b = state.h[1];
|
|
uint32_t c = state.h[2];
|
|
uint32_t d = state.h[3];
|
|
uint32_t e = state.h[4];
|
|
uint32_t f = state.h[5];
|
|
uint32_t g = state.h[6];
|
|
uint32_t h = state.h[7];
|
|
|
|
// Perform the first 16 rounds of the compression function main loop.
|
|
uint32_t temp1, temp2;
|
|
for (index = 0; index < 16; ++index) {
|
|
temp1 = h + pgm_read_dword(k + index) + state.w[index] +
|
|
(rightRotate6(e) ^ rightRotate11(e) ^ rightRotate25(e)) +
|
|
((e & f) ^ ((~e) & g));
|
|
temp2 = (rightRotate2(a) ^ rightRotate13(a) ^ rightRotate22(a)) +
|
|
((a & b) ^ (a & c) ^ (b & c));
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + temp1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = temp1 + temp2;
|
|
}
|
|
|
|
// Perform the 48 remaining rounds. We expand the first 16 words to
|
|
// 64 in-place in the "w" array. This saves 192 bytes of memory
|
|
// that would have otherwise need to be allocated to the "w" array.
|
|
for (; index < 64; ++index) {
|
|
// Expand the next word.
|
|
temp1 = state.w[(index - 15) & 0x0F];
|
|
temp2 = state.w[(index - 2) & 0x0F];
|
|
temp1 = state.w[index & 0x0F] =
|
|
state.w[(index - 16) & 0x0F] + state.w[(index - 7) & 0x0F] +
|
|
(rightRotate7(temp1) ^ rightRotate18(temp1) ^ (temp1 >> 3)) +
|
|
(rightRotate17(temp2) ^ rightRotate19(temp2) ^ (temp2 >> 10));
|
|
|
|
// Perform the round.
|
|
temp1 = h + pgm_read_dword(k + index) + temp1 +
|
|
(rightRotate6(e) ^ rightRotate11(e) ^ rightRotate25(e)) +
|
|
((e & f) ^ ((~e) & g));
|
|
temp2 = (rightRotate2(a) ^ rightRotate13(a) ^ rightRotate22(a)) +
|
|
((a & b) ^ (a & c) ^ (b & c));
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + temp1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = temp1 + temp2;
|
|
}
|
|
|
|
// Add the compressed chunk to the current hash value.
|
|
state.h[0] += a;
|
|
state.h[1] += b;
|
|
state.h[2] += c;
|
|
state.h[3] += d;
|
|
state.h[4] += e;
|
|
state.h[5] += f;
|
|
state.h[6] += g;
|
|
state.h[7] += h;
|
|
|
|
// Attempt to clean up the stack.
|
|
a = b = c = d = e = f = g = h = temp1 = temp2 = 0;
|
|
}
|