1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

309 lines
10 KiB
C++

/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "SHA512.h"
#include "Crypto.h"
#include "utility/RotateUtil.h"
#include "utility/EndianUtil.h"
#include "utility/ProgMemUtil.h"
#include <string.h>
/**
* \class SHA512 SHA512.h <SHA512.h>
* \brief SHA-512 hash algorithm.
*
* Reference: http://en.wikipedia.org/wiki/SHA-2
*
* \sa SHA256, SHA3_512, BLAKE2b
*/
/**
* \brief Constructs a SHA-512 hash object.
*/
SHA512::SHA512()
{
reset();
}
/**
* \brief Destroys this SHA-512 hash object after clearing
* sensitive information.
*/
SHA512::~SHA512()
{
clean(state);
}
size_t SHA512::hashSize() const
{
return 64;
}
size_t SHA512::blockSize() const
{
return 128;
}
void SHA512::reset()
{
static uint64_t const hashStart[8] PROGMEM = {
0x6A09E667F3BCC908ULL, 0xBB67AE8584CAA73BULL, 0x3C6EF372FE94F82BULL,
0xA54FF53A5F1D36F1ULL, 0x510E527FADE682D1ULL, 0x9B05688C2B3E6C1FULL,
0x1F83D9ABFB41BD6BULL, 0x5BE0CD19137E2179ULL
};
memcpy_P(state.h, hashStart, sizeof(hashStart));
state.chunkSize = 0;
state.lengthLow = 0;
state.lengthHigh = 0;
}
void SHA512::update(const void *data, size_t len)
{
// Update the total length in bits, not bytes.
uint64_t temp = state.lengthLow;
state.lengthLow += (((uint64_t)len) << 3);
state.lengthHigh += (((uint64_t)len) >> 61);
if (state.lengthLow < temp)
++state.lengthHigh;
// Break the input up into 1024-bit chunks and process each in turn.
const uint8_t *d = (const uint8_t *)data;
while (len > 0) {
uint8_t size = 128 - state.chunkSize;
if (size > len)
size = len;
memcpy(((uint8_t *)state.w) + state.chunkSize, d, size);
state.chunkSize += size;
len -= size;
d += size;
if (state.chunkSize == 128) {
processChunk();
state.chunkSize = 0;
}
}
}
void SHA512::finalize(void *hash, size_t len)
{
// Pad the last chunk. We may need two padding chunks if there
// isn't enough room in the first for the padding and length.
uint8_t *wbytes = (uint8_t *)state.w;
if (state.chunkSize <= (128 - 17)) {
wbytes[state.chunkSize] = 0x80;
memset(wbytes + state.chunkSize + 1, 0x00, 128 - 16 - (state.chunkSize + 1));
state.w[14] = htobe64(state.lengthHigh);
state.w[15] = htobe64(state.lengthLow);
processChunk();
} else {
wbytes[state.chunkSize] = 0x80;
memset(wbytes + state.chunkSize + 1, 0x00, 128 - (state.chunkSize + 1));
processChunk();
memset(wbytes, 0x00, 128 - 16);
state.w[14] = htobe64(state.lengthHigh);
state.w[15] = htobe64(state.lengthLow);
processChunk();
}
// Convert the result into big endian and return it.
for (uint8_t posn = 0; posn < 8; ++posn)
state.w[posn] = htobe64(state.h[posn]);
// Copy the hash to the caller's return buffer.
if (len > 64)
len = 64;
memcpy(hash, state.w, len);
}
void SHA512::clear()
{
clean(state);
reset();
}
void SHA512::resetHMAC(const void *key, size_t keyLen)
{
formatHMACKey(state.w, key, keyLen, 0x36);
state.lengthLow += 128 * 8;
processChunk();
}
void SHA512::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen)
{
uint8_t temp[64];
finalize(temp, sizeof(temp));
formatHMACKey(state.w, key, keyLen, 0x5C);
state.lengthLow += 128 * 8;
processChunk();
update(temp, sizeof(temp));
finalize(hash, hashLen);
clean(temp);
}
/**
* \brief Copies the entire hash state from another object.
*
* \param other The other object to copy the state from.
*
* This function is intended for scenarios where the application needs to
* finalize the state to get an intermediate hash value, but must then
* continue hashing new data into the original state.
*
* In the following example, h1 will be the hash over data1 and h2 will
* be the hash over data1 concatenated with data2:
*
* \code
* // Hash the initial data.
* SHA512 hash1;
* hash1.update(data1, sizeof(data1));
*
* // Copy the hash state and finalize to create h1.
* SHA512 hash2;
* hash2.copyFrom(hash1);
* hash2.finalize(h1, sizeof(h1));
*
* // Continue adding data to the original unfinalized hash.
* hash1.update(data2, sizeof(data2));
*
* // Get the final hash value h2.
* hash1.finalize(h2, sizeof(h2));
* \endcode
*/
void SHA512::copyFrom(const SHA512 &other)
{
state = other.state;
}
/**
* \brief Processes a single 1024-bit chunk with the core SHA-512 algorithm.
*
* Reference: http://en.wikipedia.org/wiki/SHA-2
*/
void SHA512::processChunk()
{
// Round constants for SHA-512.
static uint64_t const k[80] PROGMEM = {
0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL, 0xB5C0FBCFEC4D3B2FULL,
0xE9B5DBA58189DBBCULL, 0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL,
0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL, 0xD807AA98A3030242ULL,
0x12835B0145706FBEULL, 0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL, 0x9BDC06A725C71235ULL,
0xC19BF174CF692694ULL, 0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL,
0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL, 0x2DE92C6F592B0275ULL,
0x4A7484AA6EA6E483ULL, 0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL, 0xB00327C898FB213FULL,
0xBF597FC7BEEF0EE4ULL, 0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL,
0x06CA6351E003826FULL, 0x142929670A0E6E70ULL, 0x27B70A8546D22FFCULL,
0x2E1B21385C26C926ULL, 0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL, 0x81C2C92E47EDAEE6ULL,
0x92722C851482353BULL, 0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL,
0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL, 0xD192E819D6EF5218ULL,
0xD69906245565A910ULL, 0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL, 0x2748774CDF8EEB99ULL,
0x34B0BCB5E19B48A8ULL, 0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL,
0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL, 0x748F82EE5DEFB2FCULL,
0x78A5636F43172F60ULL, 0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL, 0xBEF9A3F7B2C67915ULL,
0xC67178F2E372532BULL, 0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL,
0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL, 0x06F067AA72176FBAULL,
0x0A637DC5A2C898A6ULL, 0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL, 0x3C9EBE0A15C9BEBCULL,
0x431D67C49C100D4CULL, 0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL,
0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL
};
// Convert the first 16 words from big endian to host byte order.
uint8_t index;
for (index = 0; index < 16; ++index)
state.w[index] = be64toh(state.w[index]);
// Initialise working variables to the current hash value.
uint64_t a = state.h[0];
uint64_t b = state.h[1];
uint64_t c = state.h[2];
uint64_t d = state.h[3];
uint64_t e = state.h[4];
uint64_t f = state.h[5];
uint64_t g = state.h[6];
uint64_t h = state.h[7];
// Perform the first 16 rounds of the compression function main loop.
uint64_t temp1, temp2;
for (index = 0; index < 16; ++index) {
temp1 = h + pgm_read_qword(k + index) + state.w[index] +
(rightRotate14_64(e) ^ rightRotate18_64(e) ^
rightRotate41_64(e)) + ((e & f) ^ ((~e) & g));
temp2 = (rightRotate28_64(a) ^ rightRotate34_64(a) ^
rightRotate39_64(a)) + ((a & b) ^ (a & c) ^ (b & c));
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
// Perform the 64 remaining rounds. We expand the first 16 words to
// 80 in-place in the "w" array. This saves 512 bytes of memory
// that would have otherwise need to be allocated to the "w" array.
for (; index < 80; ++index) {
// Expand the next word.
temp1 = state.w[(index - 15) & 0x0F];
temp2 = state.w[(index - 2) & 0x0F];
temp1 = state.w[index & 0x0F] =
state.w[(index - 16) & 0x0F] + state.w[(index - 7) & 0x0F] +
(rightRotate1_64(temp1) ^ rightRotate8_64(temp1) ^
(temp1 >> 7)) +
(rightRotate19_64(temp2) ^ rightRotate61_64(temp2) ^
(temp2 >> 6));
// Perform the round.
temp1 = h + pgm_read_qword(k + index) + temp1 +
(rightRotate14_64(e) ^ rightRotate18_64(e) ^
rightRotate41_64(e)) + ((e & f) ^ ((~e) & g));
temp2 = (rightRotate28_64(a) ^ rightRotate34_64(a) ^
rightRotate39_64(a)) + ((a & b) ^ (a & c) ^ (b & c));
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
// Add the compressed chunk to the current hash value.
state.h[0] += a;
state.h[1] += b;
state.h[2] += c;
state.h[3] += d;
state.h[4] += e;
state.h[5] += f;
state.h[6] += g;
state.h[7] += h;
// Attempt to clean up the stack.
a = b = c = d = e = f = g = h = temp1 = temp2 = 0;
}