1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
arduinolibs/libraries/Crypto/SpeckSmall.cpp
Rhys Weatherley 33df6a873d Refactor the low-memory versions of Speck
Rename SpeckLowMemory to SpeckTiny for the encrypt-only version.
SpeckSmall for the version that supports both encryption and decryption.
2016-02-13 06:59:05 +10:00

653 lines
18 KiB
C++

/*
* Copyright (C) 2016 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "SpeckSmall.h"
#include "Crypto.h"
#include "utility/RotateUtil.h"
#include "utility/EndianUtil.h"
#include <string.h>
/**
* \class SpeckSmall SpeckSmall.h <SpeckSmall.h>
* \brief Speck block cipher with a 128-bit block size (small-memory version).
*
* This class differs from the Speck class in that the RAM requirements are
* vastly reduced. The key schedule is expanded round by round instead of
* being generated and stored by setKey(). The performance of encryption
* and decryption is slightly less because of this.
*
* This class is useful when RAM is at a premium and reduced encryption
* performance is not a hindrance to the application. Even though the
* performance is reduced, this class is still faster than AES with
* equivalent key sizes.
*
* The companion SpeckTiny class uses even less RAM but only supports the
* encryptBlock() operation. Block cipher modes like CTR, EAX, and GCM
* do not need the decryptBlock() operation, so SpeckTiny may be a better
* option than SpeckSmall for many applications.
*
* See the documentation for the Speck class for more information on the
* Speck family of block ciphers.
*
* References: https://en.wikipedia.org/wiki/Speck_%28cipher%29,
* http://eprint.iacr.org/2013/404
*
* \sa Speck, SpeckTiny
*/
// The "avr-gcc" compiler doesn't do a very good job of compiling
// code involving 64-bit values. So we have to use inline assembly.
// It also helps to break the state up into 32-bit quantities
// because "asm" supports register names like %A0, %B0, %C0, %D0
// for the bytes in a 32-bit quantity, but it does not support
// %E0, %F0, %G0, %H0 for the high bytes of a 64-bit quantity.
#if defined(__AVR__)
#define USE_AVR_INLINE_ASM 1
#endif
// Pack/unpack byte-aligned big-endian 64-bit quantities.
#define pack64(data, value) \
do { \
uint64_t v = htobe64((value)); \
memcpy((data), &v, sizeof(uint64_t)); \
} while (0)
#define unpack64(value, data) \
do { \
memcpy(&(value), (data), sizeof(uint64_t)); \
(value) = be64toh((value)); \
} while (0)
/**
* \brief Constructs a small-memory Speck block cipher with no initial key.
*
* This constructor must be followed by a call to setKey() before the
* block cipher can be used for encryption or decryption.
*/
SpeckSmall::SpeckSmall()
{
}
SpeckSmall::~SpeckSmall()
{
clean(l);
}
bool SpeckSmall::setKey(const uint8_t *key, size_t len)
{
// Try setting the key for the forward encryption direction.
if (!SpeckTiny::setKey(key, len))
return false;
#if USE_AVR_INLINE_ASM
// Expand the key schedule to get the l and s values at the end
// of the schedule, which will allow us to reverse it later.
uint8_t mb = (rounds - 31) * 8;
__asm__ __volatile__ (
"ld r16,Z+\n" // s = k[0]
"ld r17,Z+\n"
"ld r18,Z+\n"
"ld r19,Z+\n"
"ld r20,Z+\n"
"ld r21,Z+\n"
"ld r22,Z+\n"
"ld r23,Z+\n"
"mov r24,%3\n" // memcpy(l, k + 1, mb)
"3:\n"
"ld __tmp_reg__,Z+\n"
"st X+,__tmp_reg__\n"
"dec r24\n"
"brne 3b\n"
"sub %A1,%3\n" // return X to its initial value
"sbc %B1,__zero_reg__\n"
"1:\n"
// l[li_out] = (s + rightRotate8_64(l[li_in])) ^ i;
"add %A1,%2\n" // X = &(l[li_in])
"adc %B1,__zero_reg__\n"
"ld r15,X+\n" // x = rightRotate8_64(l[li_in])
"ld r8,X+\n"
"ld r9,X+\n"
"ld r10,X+\n"
"ld r11,X+\n"
"ld r12,X+\n"
"ld r13,X+\n"
"ld r14,X+\n"
"add r8,r16\n" // x += s
"adc r9,r17\n"
"adc r10,r18\n"
"adc r11,r19\n"
"adc r12,r20\n"
"adc r13,r21\n"
"adc r14,r22\n"
"adc r15,r23\n"
"eor r8,%4\n" // x ^= i
// X = X - li_in + li_out
"ldi r24,8\n" // li_in = li_in + 1
"add %2,r24\n"
"sub %A1,%2\n" // return X to its initial value
"sbc %B1,__zero_reg__\n"
"ldi r25,0x1f\n"
"and %2,r25\n" // li_in = li_in % 4
"add %A1,%3\n" // X = &(l[li_out])
"adc %B1,__zero_reg__\n"
"st X+,r8\n" // l[li_out] = x
"st X+,r9\n"
"st X+,r10\n"
"st X+,r11\n"
"st X+,r12\n"
"st X+,r13\n"
"st X+,r14\n"
"st X+,r15\n"
"add %3,r24\n" // li_out = li_out + 1
"sub %A1,%3\n" // return X to its initial value
"sbc %B1,__zero_reg__\n"
"and %3,r25\n" // li_out = li_out % 4
// s = leftRotate3_64(s) ^ l[li_out];
"lsl r16\n" // s = leftRotate1_64(s)
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"rol r21\n"
"rol r22\n"
"rol r23\n"
"adc r16,__zero_reg__\n"
"lsl r16\n" // s = leftRotate1_64(s)
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"rol r21\n"
"rol r22\n"
"rol r23\n"
"adc r16,__zero_reg__\n"
"lsl r16\n" // s = leftRotate1_64(s)
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"rol r21\n"
"rol r22\n"
"rol r23\n"
"adc r16,__zero_reg__\n"
"eor r16,r8\n" // s ^= x
"eor r17,r9\n"
"eor r18,r10\n"
"eor r19,r11\n"
"eor r20,r12\n"
"eor r21,r13\n"
"eor r22,r14\n"
"eor r23,r15\n"
// Loop
"inc %4\n" // ++i
"dec %5\n" // --rounds
"breq 2f\n"
"rjmp 1b\n"
"2:\n"
"add %A1,%3\n" // X = &(l[li_out])
"adc %B1,__zero_reg__\n"
"st X+,r16\n" // l[li_out] = s
"st X+,r17\n"
"st X+,r18\n"
"st X+,r19\n"
"st X+,r20\n"
"st X+,r21\n"
"st X+,r22\n"
"st X+,r23\n"
: : "z"(k), "x"(l),
"r"((uint8_t)0), // initial value of li_in
"r"((uint8_t)mb), // initial value of li_out
"r"(0), // initial value of i
"r"(rounds - 1)
: "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25"
);
return true;
#else
// Expand the key schedule to get the l and s values at the end
// of the schedule, which will allow us to reverse it later.
uint8_t m = rounds - 30;
uint8_t li_in = 0;
uint8_t li_out = m - 1;
uint64_t s = k[0];
memcpy(l, k + 1, (m - 1) * sizeof(uint64_t));
for (uint8_t i = 0; i < (rounds - 1); ++i) {
l[li_out] = (s + rightRotate8_64(l[li_in])) ^ i;
s = leftRotate3_64(s) ^ l[li_out];
li_in = (li_in + 1) & 0x03;
li_out = (li_out + 1) & 0x03;
}
// Save the final s value in the l array so that we can recover it later.
l[li_out] = s;
return true;
#endif
}
void SpeckSmall::decryptBlock(uint8_t *output, const uint8_t *input)
{
#if USE_AVR_INLINE_ASM
uint64_t l[4];
uint32_t xlow, xhigh, ylow, yhigh;
uint32_t slow, shigh;
uint8_t li_in = (rounds + 3) & 0x03;
uint8_t li_out = (((rounds - 31) + li_in) & 0x03) * 8;
li_in *= 8;
// Prepare to expand the key schedule.
__asm__ __volatile__ (
"add r30,%4\n" // Z = &(this->l[li_out])
"adc r31,__zero_reg__\n"
"ld __tmp_reg__,Z\n" // s = this->l[li_out]
"std %A0,__tmp_reg__\n"
"ldd __tmp_reg__,Z+1\n"
"std %B0,__tmp_reg__\n"
"ldd __tmp_reg__,Z+2\n"
"std %C0,__tmp_reg__\n"
"ldd __tmp_reg__,Z+3\n"
"std %D0,__tmp_reg__\n"
"ldd __tmp_reg__,Z+4\n"
"std %A1,__tmp_reg__\n"
"ldd __tmp_reg__,Z+5\n"
"std %B1,__tmp_reg__\n"
"ldd __tmp_reg__,Z+6\n"
"std %C1,__tmp_reg__\n"
"ldd __tmp_reg__,Z+7\n"
"std %D1,__tmp_reg__\n"
"sub r30,%4\n" // Point Z back to the start of this->l.
"sbc r31,__zero_reg__\n"
"ldi r25,32\n" // Copy the entire this->l array into l.
"1:\n"
"ld __tmp_reg__,Z+\n"
"st X+,__tmp_reg__\n"
"dec r25\n"
"brne 1b\n"
: "=Q"(slow), "=Q"(shigh)
: "z"(this->l), "x"(l), "r"(li_out)
: "r25"
);
// Unpack the input into the x and y variables, converting
// from big-endian into little-endian in the process.
__asm__ __volatile__ (
"ld %D1,Z\n"
"ldd %C1,Z+1\n"
"ldd %B1,Z+2\n"
"ldd %A1,Z+3\n"
"ldd %D0,Z+4\n"
"ldd %C0,Z+5\n"
"ldd %B0,Z+6\n"
"ldd %A0,Z+7\n"
"ldd %D3,Z+8\n"
"ldd %C3,Z+9\n"
"ldd %B3,Z+10\n"
"ldd %A3,Z+11\n"
"ldd %D2,Z+12\n"
"ldd %C2,Z+13\n"
"ldd %B2,Z+14\n"
"ldd %A2,Z+15\n"
: "=r"(xlow), "=r"(xhigh), "=r"(ylow), "=r"(yhigh)
: "z"(input)
);
// Perform all decryption rounds while expanding the key schedule in-place.
__asm__ __volatile__ (
"mov r23,%9\n" // i = rounds - 1
"dec r23\n"
"1:\n"
// Adjust x and y for this round using the key schedule word s.
// y = rightRotate3_64(x ^ y);
"eor %A2,%A0\n" // y ^= x
"eor %B2,%B0\n"
"eor %C2,%C0\n"
"eor %D2,%D0\n"
"eor %A3,%A1\n"
"eor %B3,%B1\n"
"eor %C3,%C1\n"
"eor %D3,%D1\n"
"bst %A2,0\n" // y = rightRotate1_64(y)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
"bst %A2,0\n" // y = rightRotate1_64(y)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
"bst %A2,0\n" // y = rightRotate1_64(y)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
// x = leftRotate8_64((x ^ s) - y);
"ldd __tmp_reg__,%A4\n" // x ^= s
"eor %A0,__tmp_reg__\n"
"ldd __tmp_reg__,%B4\n"
"eor %B0,__tmp_reg__\n"
"ldd __tmp_reg__,%C4\n"
"eor %C0,__tmp_reg__\n"
"ldd __tmp_reg__,%D4\n"
"eor %D0,__tmp_reg__\n"
"ldd __tmp_reg__,%A5\n"
"eor %A1,__tmp_reg__\n"
"ldd __tmp_reg__,%B5\n"
"eor %B1,__tmp_reg__\n"
"ldd __tmp_reg__,%C5\n"
"eor %C1,__tmp_reg__\n"
"ldd __tmp_reg__,%D5\n"
"eor %D1,__tmp_reg__\n"
"sub %A0,%A2\n" // x -= y
"sbc %B0,%B2\n"
"sbc %C0,%C2\n"
"sbc %D0,%D2\n"
"sbc %A1,%A3\n"
"sbc %B1,%B3\n"
"sbc %C1,%C3\n"
"sbc %D1,%D3\n"
"mov __tmp_reg__,%D1\n" // x = lefRotate8_64(x)
"mov %D1,%C1\n"
"mov %C1,%B1\n"
"mov %B1,%A1\n"
"mov %A1,%D0\n"
"mov %D0,%C0\n"
"mov %C0,%B0\n"
"mov %B0,%A0\n"
"mov %A0,__tmp_reg__\n"
// On the last round we don't need to compute s so we
// can exit early here if i == 0.
"or r23,r23\n" // if (i == 0)
"brne 2f\n"
"rjmp 3f\n"
"2:\n"
"dec r23\n" // --i
// Save x and y on the stack so we can reuse registers for t and s.
"push %A0\n"
"push %B0\n"
"push %C0\n"
"push %D0\n"
"push %A1\n"
"push %B1\n"
"push %C1\n"
"push %D1\n"
"push %A2\n"
"push %B2\n"
"push %C2\n"
"push %D2\n"
"push %A3\n"
"push %B3\n"
"push %C3\n"
"push %D3\n"
// Compute the key schedule word s for the next round.
// li_out = (li_out + 3) & 0x03;
"ldd r24,%7\n"
"ldi r25,24\n"
"add r24,r25\n"
"andi r24,0x1f\n"
"std %7,r24\n"
// s = rightRotate3_64(s ^ l[li_out]);
"add %A8,r24\n" // Z = &(l[li_out])
"adc %B8,__zero_reg__\n"
"ld %A0,Z\n" // t = l[li_out]
"ldd %B0,Z+1\n"
"ldd %C0,Z+2\n"
"ldd %D0,Z+3\n"
"ldd %A1,Z+4\n"
"ldd %B1,Z+5\n"
"ldd %C1,Z+6\n"
"ldd %D1,Z+7\n"
"ldd %A2,%A4\n" // load s
"ldd %B2,%B4\n"
"ldd %C2,%C4\n"
"ldd %D2,%D4\n"
"ldd %A3,%A5\n"
"ldd %B3,%B5\n"
"ldd %C3,%C5\n"
"ldd %D3,%D5\n"
"eor %A2,%A0\n" // s ^= t
"eor %B2,%B0\n"
"eor %C2,%C0\n"
"eor %D2,%D0\n"
"eor %A3,%A1\n"
"eor %B3,%B1\n"
"eor %C3,%C1\n"
"eor %D3,%D1\n"
"bst %A2,0\n" // s = rightRotate1_64(s)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
"bst %A2,0\n" // s = rightRotate1_64(s)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
"bst %A2,0\n" // s = rightRotate1_64(s)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
"sub %A8,r24\n" // Z -= li_out
"sbc %B8,__zero_reg__\n"
// li_in = (li_in + 3) & 0x03;
"ldd r24,%6\n"
"add r24,r25\n"
"andi r24,0x1f\n"
"std %6,r24\n"
// l[li_in] = leftRotate8_64((l[li_out] ^ i) - s);
"add %A8,r24\n" // Z = &(l[li_in])
"adc %B8,__zero_reg__\n"
"eor %A0,r23\n" // t ^= i
"sub %A0,%A2\n" // t -= s
"sbc %B0,%B2\n"
"sbc %C0,%C2\n"
"sbc %D0,%D2\n"
"sbc %A1,%A3\n"
"sbc %B1,%B3\n"
"sbc %C1,%C3\n"
"sbc %D1,%D3\n"
"st Z,%D1\n" // l[li_in] = leftRotate8_64(t)
"std Z+1,%A0\n"
"std Z+2,%B0\n"
"std Z+3,%C0\n"
"std Z+4,%D0\n"
"std Z+5,%A1\n"
"std Z+6,%B1\n"
"std Z+7,%C1\n"
"sub %A8,r24\n" // Z -= li_in
"sbc %B8,__zero_reg__\n"
"std %A4,%A2\n" // store s
"std %B4,%B2\n"
"std %C4,%C2\n"
"std %D4,%D2\n"
"std %A5,%A3\n"
"std %B5,%B3\n"
"std %C5,%C3\n"
"std %D5,%D3\n"
// Pop registers from the stack to recover the x and y values.
"pop %D3\n"
"pop %C3\n"
"pop %B3\n"
"pop %A3\n"
"pop %D2\n"
"pop %C2\n"
"pop %B2\n"
"pop %A2\n"
"pop %D1\n"
"pop %C1\n"
"pop %B1\n"
"pop %A1\n"
"pop %D0\n"
"pop %C0\n"
"pop %B0\n"
"pop %A0\n"
// Bottom of the loop.
"rjmp 1b\n"
"3:\n"
: "+r"(xlow), "+r"(xhigh), "+r"(ylow), "+r"(yhigh),
"+Q"(slow), "+Q"(shigh), "+Q"(li_in), "+Q"(li_out)
: "z"(l), "r"(rounds)
: "r23", "r24", "r25"
);
// Pack the results into the output and convert back to big-endian.
__asm__ __volatile__ (
"st Z,%D1\n"
"std Z+1,%C1\n"
"std Z+2,%B1\n"
"std Z+3,%A1\n"
"std Z+4,%D0\n"
"std Z+5,%C0\n"
"std Z+6,%B0\n"
"std Z+7,%A0\n"
"std Z+8,%D3\n"
"std Z+9,%C3\n"
"std Z+10,%B3\n"
"std Z+11,%A3\n"
"std Z+12,%D2\n"
"std Z+13,%C2\n"
"std Z+14,%B2\n"
"std Z+15,%A2\n"
: : "r"(xlow), "r"(xhigh), "r"(ylow), "r"(yhigh), "z"(output)
);
#else
uint64_t l[4];
uint64_t x, y, s;
uint8_t round;
uint8_t li_in = (rounds + 3) & 0x03;
uint8_t li_out = ((rounds - 31) + li_in) & 0x03;
// Prepare the key schedule, starting at the end.
for (round = li_in; round != li_out; round = (round + 1) & 0x03)
l[round] = this->l[round];
s = this->l[li_out];
// Unpack the input and convert from big-endian.
unpack64(x, input);
unpack64(y, input + 8);
// Perform all decryption rounds except the last while
// expanding the decryption schedule on the fly.
for (uint8_t round = rounds - 1; round > 0; --round) {
// Decrypt using the current round key.
y = rightRotate3_64(x ^ y);
x = leftRotate8_64((x ^ s) - y);
// Generate the round key for the previous round.
li_in = (li_in + 3) & 0x03;
li_out = (li_out + 3) & 0x03;
s = rightRotate3_64(s ^ l[li_out]);
l[li_in] = leftRotate8_64((l[li_out] ^ (round - 1)) - s);
}
// Perform the final decryption round.
y = rightRotate3_64(x ^ y);
x = leftRotate8_64((x ^ s) - y);
// Pack the output and convert to big-endian.
pack64(output, x);
pack64(output + 8, y);
#endif
}
void SpeckSmall::clear()
{
SpeckTiny::clear();
clean(l);
}