1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
arduinolibs/libraries/RTC/DS3232RTC.cpp
2012-05-25 15:04:49 +10:00

517 lines
15 KiB
C++

/*
* Copyright (C) 2012 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "DS3232RTC.h"
#include "../I2C/I2CMaster.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
/**
* \class DS3232RTC DS3232RTC.h <DS3232RTC.h>
* \brief Communicates with a DS3232 realtime clock chip via I2C.
*
* This class simplifies the process of reading and writing the time and
* date information in a DS3232 realtime clock chip. The class also
* provides support for reading and writing information about alarms
* and other clock settings.
*
* If there is no DS3232 chip on the I2C bus, this class will fall back to
* the RTC class to simulate the current time and date based on the value
* of millis().
*
* Alarms 0 and 1 can be set to generate an interrupt when they fire using
* enableAlarmInterrupts(). The firedAlarm() function can be used to
* determine which alarm has fired. Alarms 2 and 3 cannot be monitored
* with interrupts.
*
* The DS3232 uses a 2-digit year so this class is limited to dates between
* 2000 and 2099 inclusive.
*
* Note: if this class has not been used with the DS3232 chip before,
* then the contents of NVRAM will be cleared. Any previous contents
* will be lost.
*
* \sa RTC, DS1307RTC
*/
// I2C address of the RTC chip (7-bit).
#define DS3232_I2C_ADDRESS 0x68
// Registers.
#define DS3232_SECOND 0x00
#define DS3232_MINUTE 0x01
#define DS3232_HOUR 0x02
#define DS3232_DAY_OF_WEEK 0x03
#define DS3232_DATE 0x04
#define DS3232_MONTH 0x05
#define DS3232_YEAR 0x06
#define DS3232_ALARM1_SEC 0x07
#define DS3232_ALARM1_MIN 0x08
#define DS3232_ALARM1_HOUR 0x09
#define DS3232_ALARM1_DAY 0x0A
#define DS3232_ALARM2_MIN 0x0B
#define DS3232_ALARM2_HOUR 0x0C
#define DS3232_ALARM2_DAY 0x0D
#define DS3232_CONTROL 0x0E
#define DS3232_STATUS 0x0F
#define DS3232_AGING_OFFSET 0x10
#define DS3232_TEMP_MSB 0x11
#define DS3232_TEMP_LSB 0x12
#define DS3232_RESERVED 0x13
#define DS3232_NVRAM 0x14
// Bits in the DS3232_CONTROL register.
#define DS3232_EOSC 0x80
#define DS3232_BBSQW 0x40
#define DS3232_CONV 0x20
#define DS3232_RS_1HZ 0x00
#define DS3232_RS_1024HZ 0x08
#define DS3232_RS_4096HZ 0x10
#define DS3232_RS_8192HZ 0x18
#define DS3232_INTCN 0x04
#define DS3232_A2IE 0x02
#define DS3232_A1IE 0x01
// Bits in the DS3232_STATUS register.
#define DS3232_OSF 0x80
#define DS3232_BB32KHZ 0x40
#define DS3232_CRATE_64 0x00
#define DS3232_CRATE_128 0x10
#define DS3232_CRATE_256 0x20
#define DS3232_CRATE_512 0x30
#define DS3232_EN32KHZ 0x08
#define DS3232_BSY 0x04
#define DS3232_A2F 0x02
#define DS3232_A1F 0x01
// Alarm storage at the end of the RTC's NVRAM.
#define DS3232_ALARM_SIZE 3
#define DS3232_ALARMS (256 - RTC::ALARM_COUNT * DS3232_ALARM_SIZE - 1)
#define DS3232_ALARM_MAGIC 255
/**
* \brief Attaches to a realtime clock slave device on \a bus.
*
* If \a oneHzPin is not 255, then it indicates a digital input pin
* that is connected to the 1 Hz square wave output on the realtime clock.
* This input is used by hasUpdates() to determine if the time information
* has changed in a non-trivial manner.
*
* If you wish to use enableAlarmInterrupts(), then \a oneHzPin must be 255.
*
* \sa hasUpdates(), enableAlarmInterrupts()
*/
DS3232RTC::DS3232RTC(I2CMaster &bus, uint8_t oneHzPin)
: _bus(&bus)
, _oneHzPin(oneHzPin)
, prevOneHz(false)
, _isRealTime(true)
, alarmInterrupts(false)
{
// Probe the device and configure it for our use.
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_CONTROL);
if (_bus->startRead(DS3232_I2C_ADDRESS, 1)) {
uint8_t value = _bus->read() & DS3232_CONV;
if (oneHzPin != 255)
value |= DS3232_BBSQW | DS3232_RS_1HZ;
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_CONTROL);
_bus->write(value);
_bus->write(DS3232_CRATE_64);
_bus->endWrite();
} else {
// Did not get an acknowledgement from the RTC chip.
_isRealTime = false;
}
// Configure the 1 Hz square wave pin if required.
if (oneHzPin != 255 && _isRealTime) {
pinMode(oneHzPin, INPUT);
digitalWrite(oneHzPin, HIGH);
}
// Initialize the alarms in the RTC chip's NVRAM.
if (_isRealTime)
initAlarms();
}
/**
* \fn bool DS3232RTC::isRealTime() const
* \brief Returns true if the realtime clock is on the I2C bus; false if the time and date are simulated.
*/
bool DS3232RTC::hasUpdates()
{
// If not using a 1 Hz pin or there is no RTC chip available,
// then assume that there is an update available.
if (_oneHzPin == 255 || !_isRealTime)
return true;
// The DS3232 updates the internal registers on the falling edge of the
// 1 Hz clock. The values should be ready to read on the rising edge.
bool value = digitalRead(_oneHzPin);
if (value && !prevOneHz) {
prevOneHz = value;
return true;
} else {
prevOneHz = value;
return false;
}
}
inline uint8_t fromBCD(uint8_t value)
{
return (value >> 4) * 10 + (value & 0x0F);
}
inline uint8_t fromHourBCD(uint8_t value)
{
if ((value & 0x40) != 0) {
// 12-hour mode.
uint8_t result = ((value >> 4) & 0x01) * 10 + (value & 0x0F);
if ((value & 0x20) != 0)
return (result == 12) ? 12 : (result + 12); // PM
else
return (result == 12) ? 0 : result; // AM
} else {
// 24-hour mode.
return fromBCD(value);
}
}
void DS3232RTC::readTime(RTCTime *value)
{
if (_isRealTime) {
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_SECOND);
if (_bus->startRead(DS3232_I2C_ADDRESS, 3)) {
value->second = fromBCD(_bus->read());
value->minute = fromBCD(_bus->read());
value->hour = fromHourBCD(_bus->read());
} else {
// RTC chip is not responding.
value->second = 0;
value->minute = 0;
value->hour = 0;
}
} else {
RTC::readTime(value);
}
}
void DS3232RTC::readDate(RTCDate *value)
{
if (!_isRealTime) {
RTC::readDate(value);
return;
}
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_DATE);
if (_bus->startRead(DS3232_I2C_ADDRESS, 3)) {
value->day = fromBCD(_bus->read());
value->month = fromBCD(_bus->read() & 0x7F); // Strip century bit.
value->year = fromBCD(_bus->read()) + 2000;
} else {
// RTC chip is not responding.
value->day = 1;
value->month = 1;
value->year = 2000;
}
}
inline uint8_t toBCD(uint8_t value)
{
return ((value / 10) << 4) + (value % 10);
}
void DS3232RTC::writeTime(const RTCTime *value)
{
if (_isRealTime) {
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_SECOND);
_bus->write(toBCD(value->second));
_bus->write(toBCD(value->minute));
_bus->write(toBCD(value->hour)); // Changes mode to 24-hour clock.
_bus->endWrite();
} else {
RTC::writeTime(value);
}
}
void DS3232RTC::writeDate(const RTCDate *value)
{
if (_isRealTime) {
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_DATE);
_bus->write(toBCD(value->day));
_bus->write(toBCD(value->month));
_bus->write(toBCD(value->year % 100));
_bus->endWrite();
} else {
RTC::writeDate(value);
}
}
void DS3232RTC::readAlarm(uint8_t alarmNum, RTCAlarm *value)
{
if (_isRealTime) {
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_ALARMS + alarmNum * DS3232_ALARM_SIZE);
if (_bus->startRead(DS3232_I2C_ADDRESS, 3)) {
value->hour = fromBCD(_bus->read());
value->minute = fromBCD(_bus->read());
value->flags = _bus->read();
} else {
// RTC chip is not responding.
value->hour = 0;
value->minute = 0;
value->flags = 0;
}
} else {
RTC::readAlarm(alarmNum, value);
}
}
void DS3232RTC::writeAlarm(uint8_t alarmNum, const RTCAlarm *value)
{
if (_isRealTime) {
// Write the alarm details to NVRAM.
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_ALARMS + alarmNum * DS3232_ALARM_SIZE);
_bus->write(toBCD(value->hour));
_bus->write(toBCD(value->minute));
_bus->write(value->flags);
_bus->endWrite();
// Keep the DS3232's built-in alarms in sync with the first two alarms.
if (alarmNum == 0) {
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_ALARM1_SEC);
_bus->write(0);
_bus->write(toBCD(value->minute));
_bus->write(toBCD(value->hour));
_bus->write(0x81); // Match hours, mins, secs; day = 1
_bus->endWrite();
if (alarmInterrupts)
updateAlarmInterrupts();
} else if (alarmNum == 1) {
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_ALARM2_MIN);
_bus->write(toBCD(value->minute));
_bus->write(toBCD(value->hour));
_bus->write(0x81); // Match hours, mins; day = 1
_bus->endWrite();
if (alarmInterrupts)
updateAlarmInterrupts();
}
} else {
RTC::writeAlarm(alarmNum, value);
}
}
int DS3232RTC::byteCount() const
{
return DS3232_ALARMS - DS3232_NVRAM;
}
uint8_t DS3232RTC::readByte(uint8_t offset)
{
if (_isRealTime)
return readRegister(DS3232_NVRAM + offset);
else
return RTC::readByte(offset);
}
void DS3232RTC::writeByte(uint8_t offset, uint8_t value)
{
if (_isRealTime)
writeRegister(DS3232_NVRAM + offset, value);
else
RTC::writeByte(offset, value);
}
/**
* \brief Enables the generation of interrupts for alarms 0 and 1.
*
* When the interrupt occurs, use firedAlarm() to determine which alarm
* has fired. The application is responsible for implementing the
* interrupt service routine to watch for the interrupt.
*
* Note: this function does nothing if the 1 Hz pin was enabled in the
* constructor, but firedAlarm() can still be used to determine which
* alarm has fired when hasUpdates() reports that there is an update
* available.
*
* \sa disableAlarmInterrupts(), firedAlarm()
*/
void DS3232RTC::enableAlarmInterrupts()
{
if (_oneHzPin == 255 && _isRealTime) {
updateAlarmInterrupts();
alarmInterrupts = true;
}
}
/**
* \brief Disables the generation of interrupts for alarms 0 and 1.
*
* \sa enableAlarmInterrupts()
*/
void DS3232RTC::disableAlarmInterrupts()
{
if (alarmInterrupts) {
uint8_t value = readRegister(DS3232_CONTROL);
value &= ~(DS3232_INTCN | DS3232_A2IE | DS3232_A1IE);
writeRegister(DS3232_CONTROL, value);
alarmInterrupts = false;
}
}
/**
* \brief Determines which of alarms 0 or 1 have fired since the last call.
*
* Returns 0 if alarm 0 has fired, 1 if alarm 1 has fired, 2 if both alarms
* have fired, or -1 if neither alarm has fired.
*
* The fired alarm state will be cleared, ready for the next call.
*
* This function cannot be used to determine if alarms 2 or 3 have fired
* as they are stored in NVRAM and are not handled specially by the DS3232.
*
* \sa enableAlarmInterrupts()
*/
int DS3232RTC::firedAlarm()
{
if (!_isRealTime)
return -1;
uint8_t value = readRegister(DS3232_STATUS);
int alarm;
if (value & DS3232_A1F) {
if (value & DS3232_A2F)
alarm = 2;
else
alarm = 0;
} else if (value & DS3232_A2F) {
alarm = 1;
} else {
alarm = -1;
}
if (alarm != -1) {
value &= ~(DS3232_A1F | DS3232_A2F);
writeRegister(DS3232_STATUS, value);
}
return alarm;
}
/**
* \brief Enables the 32 kHz output on the DS3232 chip.
*
* \sa disable32kHzOutput()
*/
void DS3232RTC::enable32kHzOutput()
{
if (_isRealTime) {
uint8_t value = readRegister(DS3232_STATUS);
value |= DS3232_BB32KHZ | DS3232_EN32KHZ;
writeRegister(DS3232_STATUS, value);
}
}
/**
* \brief Disables the 32 kHz output on the DS3232 chip.
*
* \sa enable32kHzOutput()
*/
void DS3232RTC::disable32kHzOutput()
{
if (_isRealTime) {
uint8_t value = readRegister(DS3232_STATUS);
value &= ~(DS3232_BB32KHZ | DS3232_EN32KHZ);
writeRegister(DS3232_STATUS, value);
}
}
void DS3232RTC::initAlarms()
{
uint8_t value = readRegister(DS3232_ALARM_MAGIC);
if (value != (0xB0 + ALARM_COUNT)) {
// This is the first time we have used this clock chip,
// so initialize all alarms to their default state.
RTCAlarm alarm;
alarm.hour = 6; // Default to 6am for alarms.
alarm.minute = 0;
alarm.flags = 0;
for (uint8_t index = 0; index < ALARM_COUNT; ++index)
writeAlarm(index, &alarm);
writeRegister(DS3232_ALARM_MAGIC, 0xB0 + ALARM_COUNT);
// Also clear the rest of NVRAM so that it is in a known state.
// Otherwise we'll have whatever garbage was present at power-on.
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(DS3232_NVRAM);
for (uint8_t index = DS3232_NVRAM; index < DS3232_ALARMS; ++index)
_bus->write(0);
_bus->endWrite();
}
}
uint8_t DS3232RTC::readRegister(uint8_t reg)
{
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(reg);
if (!_bus->startRead(DS3232_I2C_ADDRESS, 1))
return 0; // RTC chip is not responding.
return _bus->read();
}
bool DS3232RTC::writeRegister(uint8_t reg, uint8_t value)
{
_bus->startWrite(DS3232_I2C_ADDRESS);
_bus->write(reg);
_bus->write(value);
return _bus->endWrite();
}
#define DS3232_ALARM1_FLAGS (DS3232_ALARMS + 2)
#define DS3232_ALARM2_FLAGS (DS3232_ALARMS + DS3232_ALARM_SIZE + 2)
void DS3232RTC::updateAlarmInterrupts()
{
bool alarm1Enabled = ((readRegister(DS3232_ALARM1_FLAGS) & 0x01) != 0);
bool alarm2Enabled = ((readRegister(DS3232_ALARM2_FLAGS) & 0x01) != 0);
uint8_t value = readRegister(DS3232_CONTROL);
value |= DS3232_INTCN;
if (alarm1Enabled)
value |= DS3232_A1IE;
else
value &= ~DS3232_A1IE;
if (alarm2Enabled)
value |= DS3232_A2IE;
else
value &= ~DS3232_A2IE;
writeRegister(DS3232_CONTROL, value);
}