1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
2012-05-25 15:04:49 +10:00

422 lines
10 KiB
C++

/*
* Copyright (C) 2012 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "RTC.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
#include <stdlib.h>
#include <string.h>
/**
* \class RTC RTC.h <RTC.h>
* \brief Base class for realtime clock handlers.
*
* This class simplifies the process of reading and writing the time and
* date information in a realtime clock chip. The class also provides
* support for reading and writing information about alarms and other
* clock settings.
*
* It is intended that the application will instantiate a subclass of this
* class to handle the specific realtime clock chip in the system. The default
* implementation in RTC simulates a clock based on the value of millis(),
* with alarms and clock settings stored in main memory.
*
* Because the common DS1307 and DS3232 realtime clock chips use a
* 2-digit year, this class is also limited to dates between 2000
* and 2099 inclusive.
*
* \sa RTCTime, RTCDate, RTCAlarm, DS1307RTC, DS3232RTC
*/
/**
* \var RTC::ALARM_COUNT
* \brief Number of alarms that are supported by RTC::readAlarm() and RTC::writeAlarm().
*/
#define DEFAULT_BYTE_COUNT 43 // Default simulates DS1307 NVRAM size.
#define MILLIS_PER_DAY 86400000UL
#define MILLIS_PER_SECOND 1000UL
#define MILLIS_PER_MINUTE 60000UL
#define MILLIS_PER_HOUR 3600000UL
static uint8_t monthLengths[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
inline bool isLeapYear(unsigned int year)
{
if ((year % 100) == 0)
return (year % 400) == 0;
else
return (year % 4) == 0;
}
inline uint8_t monthLength(const RTCDate *date)
{
if (date->month != 2 || !isLeapYear(date->year))
return monthLengths[date->month - 1];
else
return 29;
}
/**
* \brief Constructs a new realtime clock handler.
*
* \sa hasUpdates()
*/
RTC::RTC()
: midnight(millis() - 9 * MILLIS_PER_HOUR) // Simulated clock starts at 9am
, nvram(0)
{
// Start the simulated date at 1 Jan, 2000.
date.day = 1;
date.month = 1;
date.year = 2000;
// Set all simulated alarms to 6am by default.
for (uint8_t index = 0; index < ALARM_COUNT; ++index) {
alarms[index].hour = 6;
alarms[index].minute = 0;
alarms[index].flags = 0;
}
}
RTC::~RTC()
{
if (nvram)
free(nvram);
}
/**
* \brief Returns true if the realtime clock has updated since the last call to this function.
*
* The default implementation returns true, indicating that an update is
* always available to be read.
*/
bool RTC::hasUpdates()
{
return true;
}
/**
* \brief Reads the current time from the realtime clock into \a value.
*
* \sa writeTime(), readDate()
*/
void RTC::readTime(RTCTime *value)
{
// Determine the number of seconds since the last midnight event.
unsigned long sinceMidnight = millis() - midnight;
if (sinceMidnight >= MILLIS_PER_DAY) {
// We have overflowed into the next day. Readjust midnight.
midnight += MILLIS_PER_DAY;
sinceMidnight -= MILLIS_PER_DAY;
// Increment the simulated date.
adjustDays(&date, INCREMENT);
}
value->second = (uint8_t)(((sinceMidnight / MILLIS_PER_SECOND) % 60));
value->minute = (uint8_t)(((sinceMidnight / MILLIS_PER_MINUTE) % 60));
value->hour = (uint8_t)(sinceMidnight / MILLIS_PER_HOUR);
}
/**
* \brief Reads the current date from the realtime clock into \a value.
*
* The time should be read first with readTime() as the default implementation
* only advances the date when the time is read and it crosses midnight.
*
* \sa writeDate(), readTime()
*/
void RTC::readDate(RTCDate *value)
{
*value = date;
}
/**
* \brief Updates the time in the realtime clock to match \a value.
*
* \sa readTime(), writeDate()
*/
void RTC::writeTime(const RTCTime *value)
{
// Adjust the position of the last simulated midnight event.
unsigned long sinceMidnight =
value->second * MILLIS_PER_SECOND +
value->minute * MILLIS_PER_MINUTE +
value->hour * MILLIS_PER_HOUR;
midnight = millis() - sinceMidnight;
}
/**
* \brief Updates the date in the realtime clock to match \a value.
*
* \sa readDate(), writeTime()
*/
void RTC::writeDate(const RTCDate *value)
{
date = *value;
}
/**
* \brief Reads the details of the alarm with index \a alarmNum into \a value.
*
* The \a alarmNum parameter must be between 0 and \ref ALARM_COUNT - 1.
*
* Alarm details are stored at the end of the realtime clock's non-volatile
* memory.
*
* \sa writeAlarm(), alarmCount()
*/
void RTC::readAlarm(uint8_t alarmNum, RTCAlarm *value)
{
*value = alarms[alarmNum];
}
/**
* \brief Updates the details of the alarm with index \a alarmNum from \a value.
*
* The \a alarmNum parameter must be between 0 and \ref ALARM_COUNT - 1.
*
* Alarm details are stored at the end of the realtime clock's non-volatile
* memory.
*
* \sa readAlarm(), alarmCount()
*/
void RTC::writeAlarm(uint8_t alarmNum, const RTCAlarm *value)
{
alarms[alarmNum] = *value;
}
/**
* \brief Returns the number of bytes of non-volatile memory that can be
* used for storage of arbitrary settings, excluding storage used by alarms.
*
* \sa readByte(), writeByte()
*/
int RTC::byteCount() const
{
return DEFAULT_BYTE_COUNT;
}
/**
* \brief Reads the byte at \a offset within the realtime clock's non-volatile memory.
*
* The \a offset parameter must be between 0 and byteCount() - 1.
*
* \sa writeByte(), byteCount()
*/
uint8_t RTC::readByte(uint8_t offset)
{
if (nvram)
return nvram[offset];
else
return 0;
}
/**
* \brief Writes \a value to \a offset within the realtime clock's non-volatile memory.
*
* The \a offset parameter must be between 0 and byteCount() - 1.
*
* \sa readByte(), byteCount()
*/
void RTC::writeByte(uint8_t offset, uint8_t value)
{
if (nvram) {
nvram[offset] = value;
} else {
nvram = (uint8_t *)malloc(DEFAULT_BYTE_COUNT);
if (nvram) {
memset(nvram, 0, DEFAULT_BYTE_COUNT);
nvram[offset] = value;
}
}
}
/**
* \var RTC::INCREMENT
* \brief Increment the day, month, or year in a call to adjustDays(), adjustMonths(), or adjustYears().
*/
/**
* \var RTC::DECREMENT
* \brief Decrement the day, month, or year in a call to adjustDays(), adjustMonths(), or adjustYears().
*/
/**
* \var RTC::WRAP
* \brief Wrap around to the beginning of the current month/year rather than advance to the next one.
*/
/**
* \brief Adjusts \a date up or down one day according to \a flags.
*
* \sa adjustMonths(), adjustYears()
*/
void RTC::adjustDays(RTCDate *date, uint8_t flags)
{
if (flags & DECREMENT) {
--(date->day);
if (date->day == 0) {
if (!(flags & WRAP)) {
--(date->month);
if (date->month == 0)
date->month = 12;
}
date->day = monthLength(date);
}
} else {
++(date->day);
if (date->day > monthLength(date)) {
if (!(flags & WRAP)) {
++(date->month);
if (date->month == 13)
date->month = 1;
}
date->day = 1;
}
}
}
/**
* \brief Adjusts \a date up or down one month according to \a flags.
*
* \sa adjustDays(), adjustYears()
*/
void RTC::adjustMonths(RTCDate *date, uint8_t flags)
{
if (flags & DECREMENT) {
--(date->month);
if (date->month == 0) {
date->month = 12;
if (!(flags & WRAP) && date->year > 2000)
--(date->year);
}
} else {
++(date->month);
if (date->month == 13) {
date->month = 1;
if (!(flags & WRAP) && date->year < 2099)
++(date->year);
}
}
uint8_t len = monthLength(date);
if (date->day > len)
date->day = len;
}
/**
* \brief Adjusts \a date up or down one year according to \a flags.
*
* \sa adjustDays(), adjustMonths()
*/
void RTC::adjustYears(RTCDate *date, uint8_t flags)
{
if (flags & DECREMENT) {
--(date->year);
if (date->year < 2000)
date->year = 2000;
} else {
++(date->year);
if (date->year > 2099)
date->year = 2099;
}
uint8_t len = monthLength(date);
if (date->day > len)
date->day = len;
}
/**
* \class RTCTime RTC.h <RTC.h>
* \brief Stores time information from a realtime clock chip.
*
* \sa RTCDate, RTCAlarm, RTC
*/
/**
* \var RTCTime::hour
* \brief Hour of the day (0-23)
*/
/**
* \var RTCTime::minute
* \brief Minute within the hour (0-59)
*/
/**
* \var RTCTime::second
* \brief Second within the minute (0-59)
*/
/**
* \class RTCDate RTC.h <RTC.h>
* \brief Stores date information from a realtime clock chip.
*
* \sa RTCTime, RTCAlarm, RTC
*/
/**
* \var RTCDate::year
* \brief Year (4-digit)
*/
/**
* \var RTCDate::month
* \brief Month of the year (1-12)
*/
/**
* \var RTCDate::day
* \brief Day of the month (1-31)
*/
/**
* \class RTCAlarm RTC.h <RTC.h>
* \brief Stores alarm information from a realtime clock chip.
*
* \sa RTCTime, RTCDate, RTC
*/
/**
* \var RTCAlarm::hour
* \brief Hour of the day for the alarm (0-23).
*/
/**
* \var RTCAlarm::minute
* \brief Minute of the hour for the alarm (0-59).
*/
/**
* \var RTCAlarm::flags
* \brief Additional flags for the alarm.
*
* The least significant bit will be 0 if the alarm is disabled or
* 1 if the alarm is enabled. Other bits can be used by the application
* for any purpose.
*/