1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
Rhys Weatherley 33df6a873d Refactor the low-memory versions of Speck
Rename SpeckLowMemory to SpeckTiny for the encrypt-only version.
SpeckSmall for the version that supports both encryption and decryption.
2016-02-13 06:59:05 +10:00

615 lines
17 KiB
C++

/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "Speck.h"
#include "Crypto.h"
#include "utility/RotateUtil.h"
#include "utility/EndianUtil.h"
#include <string.h>
/**
* \class Speck Speck.h <Speck.h>
* \brief Speck block cipher with a 128-bit block size.
*
* Speck is a family of lightweight block ciphers designed by the
* National Security Agency (NSA). The ciphers are highly optimized
* for software implementation on microcontrollers.
*
* This class implements the Speck family that uses 128-bit block sizes
* with 128-bit, 192-bit, or 256-bit key sizes. Other Speck families support
* smaller block sizes of 32, 48, 64, or 96 bits but such block sizes are
* too small for use in modern cryptosystems.
*
* \note Current crytoanalysis (up until 2015) has not revealed any obvious
* weaknesses in the full-round version of Speck. But if you are wary of
* ciphers designed by the NSA, then use ChaCha or AES instead.
*
* The SpeckTiny and SpeckSmall classes provide alternative implementations
* that have reduced RAM and flash size requirements at the cost of some
* features and performance.
*
* References: https://en.wikipedia.org/wiki/Speck_%28cipher%29,
* http://eprint.iacr.org/2013/404
*
* \sa SpeckTiny, SpeckSmall
*/
// The "avr-gcc" compiler doesn't do a very good job of compiling
// code involving 64-bit values. So we have to use inline assembly.
// It also helps to break the state up into 32-bit quantities
// because "asm" supports register names like %A0, %B0, %C0, %D0
// for the bytes in a 32-bit quantity, but it does not support
// %E0, %F0, %G0, %H0 for the high bytes of a 64-bit quantity.
#if defined(__AVR__)
#define USE_AVR_INLINE_ASM 1
#endif
/**
* \brief Constructs a Speck block cipher with no initial key.
*
* This constructor must be followed by a call to setKey() before the
* block cipher can be used for encryption or decryption.
*/
Speck::Speck()
: rounds(32)
{
}
Speck::~Speck()
{
clean(k);
}
size_t Speck::blockSize() const
{
return 16;
}
size_t Speck::keySize() const
{
// Also supports 128-bit and 192-bit, but we only report 256-bit.
return 32;
}
// Pack/unpack byte-aligned big-endian 64-bit quantities.
#define pack64(data, value) \
do { \
uint64_t v = htobe64((value)); \
memcpy((data), &v, sizeof(uint64_t)); \
} while (0)
#define unpack64(value, data) \
do { \
memcpy(&(value), (data), sizeof(uint64_t)); \
(value) = be64toh((value)); \
} while (0)
bool Speck::setKey(const uint8_t *key, size_t len)
{
#if USE_AVR_INLINE_ASM
uint64_t l[4];
uint8_t m, mb;
if (len == 32) {
m = 4;
mb = 3 * 8;
} else if (len == 24) {
m = 3;
mb = 2 * 8;
} else if (len == 16) {
m = 2;
mb = 8;
} else {
return false;
}
rounds = 30 + m;
// Copy the first (m - 1) * 8 bytes of the key into the "l" array
// in reverse order to convert big endian into little-endian.
__asm__ __volatile__ (
"1:\n"
"ld __tmp_reg__,-Z\n"
"st X+,__tmp_reg__\n"
"dec %2\n"
"brne 1b\n"
: : "x"(l), "z"(key + len - 8), "r"(mb)
);
// Copy the final 8 bytes of the key into k[0] in reverse order.
__asm__ __volatile__ (
"1:\n"
"ld __tmp_reg__,-Z\n"
"st X+,__tmp_reg__\n"
"dec %2\n"
"brne 1b\n"
: : "x"(k), "z"(key + len), "r"(8)
);
// Expand the key to the full key schedule.
__asm__ __volatile__ (
"1:\n"
// l[li_out] = (k[i] + rightRotate8_64(l[li_in])) ^ i;
"add %A1,%2\n" // X = &(l[li_in])
"adc %B1,__zero_reg__\n"
"ld r15,X+\n" // x = rightRotate8_64(l[li_in])
"ld r8,X+\n"
"ld r9,X+\n"
"ld r10,X+\n"
"ld r11,X+\n"
"ld r12,X+\n"
"ld r13,X+\n"
"ld r14,X+\n"
"ld r16,Z+\n" // y = k[i]
"ld r17,Z+\n"
"ld r18,Z+\n"
"ld r19,Z+\n"
"ld r20,Z+\n"
"ld r21,Z+\n"
"ld r22,Z+\n"
"ld r23,Z+\n"
"add r8,r16\n" // x += y
"adc r9,r17\n"
"adc r10,r18\n"
"adc r11,r19\n"
"adc r12,r20\n"
"adc r13,r21\n"
"adc r14,r22\n"
"adc r15,r23\n"
"eor r8,%4\n" // x ^= i
// X = X - li_in + li_out
"ldi r24,8\n" // li_in = li_in + 1
"add %2,r24\n"
"sub %A1,%2\n" // return X to its initial value
"sbc %B1,__zero_reg__\n"
"ldi r25,0x1f\n"
"and %2,r25\n" // li_in = li_in % 4
"add %A1,%3\n" // X = &(l[li_out])
"adc %B1,__zero_reg__\n"
"st X+,r8\n" // l[li_out] = x
"st X+,r9\n"
"st X+,r10\n"
"st X+,r11\n"
"st X+,r12\n"
"st X+,r13\n"
"st X+,r14\n"
"st X+,r15\n"
"add %3,r24\n" // li_out = li_out + 1
"sub %A1,%3\n" // return X to its initial value
"sbc %B1,__zero_reg__\n"
"and %3,r25\n" // li_out = li_out % 4
// k[i + 1] = leftRotate3_64(k[i]) ^ l[li_out];
"lsl r16\n" // y = leftRotate1_64(y)
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"rol r21\n"
"rol r22\n"
"rol r23\n"
"adc r16,__zero_reg__\n"
"lsl r16\n" // y = leftRotate1_64(y)
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"rol r21\n"
"rol r22\n"
"rol r23\n"
"adc r16,__zero_reg__\n"
"lsl r16\n" // y = leftRotate1_64(y)
"rol r17\n"
"rol r18\n"
"rol r19\n"
"rol r20\n"
"rol r21\n"
"rol r22\n"
"rol r23\n"
"adc r16,__zero_reg__\n"
"eor r16,r8\n" // y ^= x
"eor r17,r9\n"
"eor r18,r10\n"
"eor r19,r11\n"
"eor r20,r12\n"
"eor r21,r13\n"
"eor r22,r14\n"
"eor r23,r15\n"
"st Z,r16\n" // k[i + 1] = y
"std Z+1,r17\n"
"std Z+2,r18\n"
"std Z+3,r19\n"
"std Z+4,r20\n"
"std Z+5,r21\n"
"std Z+6,r22\n"
"std Z+7,r23\n"
// Loop
"inc %4\n" // ++i
"dec %5\n" // --rounds
"breq 2f\n"
"rjmp 1b\n"
"2:\n"
: : "z"(k), "x"(l),
"r"((uint8_t)0), // initial value of li_in
"r"((uint8_t)((m - 1) * 8)), // initial value of li_out
"r"(0), // initial value of i
"r"(rounds - 1)
: "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25"
);
#else
uint64_t l[4];
uint8_t m;
if (len == 32) {
m = 4;
unpack64(l[2], key);
unpack64(l[1], key + 8);
unpack64(l[0], key + 16);
unpack64(k[0], key + 24);
} else if (len == 24) {
m = 3;
unpack64(l[1], key);
unpack64(l[0], key + 8);
unpack64(k[0], key + 16);
} else if (len == 16) {
m = 2;
unpack64(l[0], key);
unpack64(k[0], key + 8);
} else {
return false;
}
rounds = 30 + m;
uint8_t li_in = 0;
uint8_t li_out = m - 1;
for (uint8_t i = 0; i < (rounds - 1); ++i) {
l[li_out] = (k[i] + rightRotate8_64(l[li_in])) ^ i;
k[i + 1] = leftRotate3_64(k[i]) ^ l[li_out];
if ((++li_in) >= m)
li_in = 0;
if ((++li_out) >= m)
li_out = 0;
}
#endif
clean(l);
return true;
}
void Speck::encryptBlock(uint8_t *output, const uint8_t *input)
{
#if USE_AVR_INLINE_ASM
uint32_t xlow, xhigh, ylow, yhigh;
// Unpack the input into the x and y variables, converting
// from big-endian into little-endian in the process.
__asm__ __volatile__ (
"ld %D1,Z\n"
"ldd %C1,Z+1\n"
"ldd %B1,Z+2\n"
"ldd %A1,Z+3\n"
"ldd %D0,Z+4\n"
"ldd %C0,Z+5\n"
"ldd %B0,Z+6\n"
"ldd %A0,Z+7\n"
"ldd %D3,Z+8\n"
"ldd %C3,Z+9\n"
"ldd %B3,Z+10\n"
"ldd %A3,Z+11\n"
"ldd %D2,Z+12\n"
"ldd %C2,Z+13\n"
"ldd %B2,Z+14\n"
"ldd %A2,Z+15\n"
: "=r"(xlow), "=r"(xhigh), "=r"(ylow), "=r"(yhigh)
: "z"(input)
);
// Perform all encryption rounds. Z points to the key schedule.
__asm__ __volatile__ (
"1:\n"
// x = (rightRotate8_64(x) + y) ^ *s++;
"mov __tmp_reg__,%A0\n" // x = rightRotate8_64(x)
"mov %A0,%B0\n"
"mov %B0,%C0\n"
"mov %C0,%D0\n"
"mov %D0,%A1\n"
"mov %A1,%B1\n"
"mov %B1,%C1\n"
"mov %C1,%D1\n"
"mov %D1,__tmp_reg__\n"
"add %A0,%A2\n" // x += y
"adc %B0,%B2\n"
"adc %C0,%C2\n"
"adc %D0,%D2\n"
"adc %A1,%A3\n"
"adc %B1,%B3\n"
"adc %C1,%C3\n"
"adc %D1,%D3\n"
"ld __tmp_reg__,Z+\n" // x ^= *s++
"eor %A0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"eor %B0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"eor %C0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"eor %D0,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"eor %A1,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"eor %B1,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"eor %C1,__tmp_reg__\n"
"ld __tmp_reg__,Z+\n"
"eor %D1,__tmp_reg__\n"
// y = leftRotate3_64(y) ^ x;
"lsl %A2\n" // y = leftRotate1_64(y)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"lsl %A2\n" // y = leftRotate1_64(y)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"lsl %A2\n" // y = leftRotate1_64(y)
"rol %B2\n"
"rol %C2\n"
"rol %D2\n"
"rol %A3\n"
"rol %B3\n"
"rol %C3\n"
"rol %D3\n"
"adc %A2,__zero_reg__\n"
"eor %A2,%A0\n" // y ^= x
"eor %B2,%B0\n"
"eor %C2,%C0\n"
"eor %D2,%D0\n"
"eor %A3,%A1\n"
"eor %B3,%B1\n"
"eor %C3,%C1\n"
"eor %D3,%D1\n"
// Loop
"dec %5\n" // --round
"breq 2f\n"
"rjmp 1b\n"
"2:\n"
: "+r"(xlow), "+r"(xhigh), "+r"(ylow), "+r"(yhigh)
: "z"(k), "r"(rounds)
);
// Pack the results into the output and convert back to big-endian.
__asm__ __volatile__ (
"st Z,%D1\n"
"std Z+1,%C1\n"
"std Z+2,%B1\n"
"std Z+3,%A1\n"
"std Z+4,%D0\n"
"std Z+5,%C0\n"
"std Z+6,%B0\n"
"std Z+7,%A0\n"
"std Z+8,%D3\n"
"std Z+9,%C3\n"
"std Z+10,%B3\n"
"std Z+11,%A3\n"
"std Z+12,%D2\n"
"std Z+13,%C2\n"
"std Z+14,%B2\n"
"std Z+15,%A2\n"
: : "r"(xlow), "r"(xhigh), "r"(ylow), "r"(yhigh), "z"(output)
);
#else
uint64_t x, y;
const uint64_t *s = k;
unpack64(x, input);
unpack64(y, input + 8);
for (uint8_t round = rounds; round > 0; --round, ++s) {
x = (rightRotate8_64(x) + y) ^ s[0];
y = leftRotate3_64(y) ^ x;
}
pack64(output, x);
pack64(output + 8, y);
#endif
}
void Speck::decryptBlock(uint8_t *output, const uint8_t *input)
{
#if USE_AVR_INLINE_ASM
uint32_t xlow, xhigh, ylow, yhigh;
// Unpack the input into the x and y variables, converting
// from big-endian into little-endian in the process.
__asm__ __volatile__ (
"ld %D1,Z\n"
"ldd %C1,Z+1\n"
"ldd %B1,Z+2\n"
"ldd %A1,Z+3\n"
"ldd %D0,Z+4\n"
"ldd %C0,Z+5\n"
"ldd %B0,Z+6\n"
"ldd %A0,Z+7\n"
"ldd %D3,Z+8\n"
"ldd %C3,Z+9\n"
"ldd %B3,Z+10\n"
"ldd %A3,Z+11\n"
"ldd %D2,Z+12\n"
"ldd %C2,Z+13\n"
"ldd %B2,Z+14\n"
"ldd %A2,Z+15\n"
: "=r"(xlow), "=r"(xhigh), "=r"(ylow), "=r"(yhigh)
: "z"(input)
);
// Perform all decryption rounds. Z points to the end of key schedule.
__asm__ __volatile__ (
"1:\n"
// y = rightRotate3_64(x ^ y);
"eor %A2,%A0\n" // y ^= x
"eor %B2,%B0\n"
"eor %C2,%C0\n"
"eor %D2,%D0\n"
"eor %A3,%A1\n"
"eor %B3,%B1\n"
"eor %C3,%C1\n"
"eor %D3,%D1\n"
"bst %A2,0\n" // y = rightRotate1_64(y)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
"bst %A2,0\n" // y = rightRotate1_64(y)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
"bst %A2,0\n" // y = rightRotate1_64(y)
"ror %D3\n"
"ror %C3\n"
"ror %B3\n"
"ror %A3\n"
"ror %D2\n"
"ror %C2\n"
"ror %B2\n"
"ror %A2\n"
"bld %D3,7\n"
// x = leftRotate8_64((x ^ *s--) - y);
"ld __tmp_reg__,-Z\n" // x ^= *s--
"eor %D1,__tmp_reg__\n"
"ld __tmp_reg__,-Z\n"
"eor %C1,__tmp_reg__\n"
"ld __tmp_reg__,-Z\n"
"eor %B1,__tmp_reg__\n"
"ld __tmp_reg__,-Z\n"
"eor %A1,__tmp_reg__\n"
"ld __tmp_reg__,-Z\n"
"eor %D0,__tmp_reg__\n"
"ld __tmp_reg__,-Z\n"
"eor %C0,__tmp_reg__\n"
"ld __tmp_reg__,-Z\n"
"eor %B0,__tmp_reg__\n"
"ld __tmp_reg__,-Z\n"
"eor %A0,__tmp_reg__\n"
"sub %A0,%A2\n" // x -= y
"sbc %B0,%B2\n"
"sbc %C0,%C2\n"
"sbc %D0,%D2\n"
"sbc %A1,%A3\n"
"sbc %B1,%B3\n"
"sbc %C1,%C3\n"
"sbc %D1,%D3\n"
"mov __tmp_reg__,%D1\n" // x = lefRotate8_64(x)
"mov %D1,%C1\n"
"mov %C1,%B1\n"
"mov %B1,%A1\n"
"mov %A1,%D0\n"
"mov %D0,%C0\n"
"mov %C0,%B0\n"
"mov %B0,%A0\n"
"mov %A0,__tmp_reg__\n"
// Loop
"dec %5\n" // --round
"breq 2f\n"
"rjmp 1b\n"
"2:\n"
: "+r"(xlow), "+r"(xhigh), "+r"(ylow), "+r"(yhigh)
: "z"(k + rounds), "r"(rounds)
);
// Pack the results into the output and convert back to big-endian.
__asm__ __volatile__ (
"st Z,%D1\n"
"std Z+1,%C1\n"
"std Z+2,%B1\n"
"std Z+3,%A1\n"
"std Z+4,%D0\n"
"std Z+5,%C0\n"
"std Z+6,%B0\n"
"std Z+7,%A0\n"
"std Z+8,%D3\n"
"std Z+9,%C3\n"
"std Z+10,%B3\n"
"std Z+11,%A3\n"
"std Z+12,%D2\n"
"std Z+13,%C2\n"
"std Z+14,%B2\n"
"std Z+15,%A2\n"
: : "r"(xlow), "r"(xhigh), "r"(ylow), "r"(yhigh), "z"(output)
);
#else
uint64_t x, y;
const uint64_t *s = k + rounds - 1;
unpack64(x, input);
unpack64(y, input + 8);
for (uint8_t round = rounds; round > 0; --round, --s) {
y = rightRotate3_64(x ^ y);
x = leftRotate8_64((x ^ s[0]) - y);
}
pack64(output, x);
pack64(output + 8, y);
#endif
}
void Speck::clear()
{
clean(k);
}