1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
2015-03-24 19:41:24 +10:00

242 lines
7.0 KiB
C++

/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "SHA1.h"
#include "Crypto.h"
#include "utility/RotateUtil.h"
#include "utility/EndianUtil.h"
#include <string.h>
/**
* \class SHA1 SHA1.h <SHA1.h>
* \brief SHA-1 hash algorithm.
*
* Reference: http://en.wikipedia.org/wiki/SHA-1
*
* \sa SHA256, SHA512
*/
/**
* \brief Constructs a SHA-1 hash object.
*/
SHA1::SHA1()
{
reset();
}
/**
* \brief Destroys this SHA-1 hash object after clearing sensitive information.
*/
SHA1::~SHA1()
{
clean(state);
}
size_t SHA1::hashSize() const
{
return 20;
}
size_t SHA1::blockSize() const
{
return 64;
}
void SHA1::reset()
{
state.h[0] = 0x67452301;
state.h[1] = 0xEFCDAB89;
state.h[2] = 0x98BADCFE;
state.h[3] = 0x10325476;
state.h[4] = 0xC3D2E1F0;
state.chunkSize = 0;
state.length = 0;
}
void SHA1::update(const void *data, size_t len)
{
// Update the total length (in bits, not bytes).
state.length += ((uint64_t)len) << 3;
// Break the input up into 512-bit chunks and process each in turn.
const uint8_t *d = (const uint8_t *)data;
while (len > 0) {
uint8_t size = 64 - state.chunkSize;
if (size > len)
size = len;
memcpy(((uint8_t *)state.w) + state.chunkSize, d, size);
state.chunkSize += size;
len -= size;
d += size;
if (state.chunkSize == 64) {
processChunk();
state.chunkSize = 0;
}
}
}
void SHA1::finalize(void *hash, size_t len)
{
// Pad the last chunk. We may need two padding chunks if there
// isn't enough room in the first for the padding and length.
uint8_t *wbytes = (uint8_t *)state.w;
if (state.chunkSize <= (64 - 9)) {
wbytes[state.chunkSize] = 0x80;
memset(wbytes + state.chunkSize + 1, 0x00, 64 - 8 - (state.chunkSize + 1));
state.w[14] = htobe32((uint32_t)(state.length >> 32));
state.w[15] = htobe32((uint32_t)state.length);
processChunk();
} else {
wbytes[state.chunkSize] = 0x80;
memset(wbytes + state.chunkSize + 1, 0x00, 64 - (state.chunkSize + 1));
processChunk();
memset(wbytes, 0x00, 64 - 8);
state.w[14] = htobe32((uint32_t)(state.length >> 32));
state.w[15] = htobe32((uint32_t)state.length);
processChunk();
}
// Convert the result into big endian and return it.
for (uint8_t posn = 0; posn < 5; ++posn)
state.w[posn] = htobe32(state.h[posn]);
// Copy the hash to the caller's return buffer.
if (len > 20)
len = 20;
memcpy(hash, state.w, len);
}
void SHA1::clear()
{
clean(state);
reset();
}
void SHA1::resetHMAC(const void *key, size_t keyLen)
{
formatHMACKey(state.w, key, keyLen, 0x36);
state.length += 64 * 8;
processChunk();
}
void SHA1::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen)
{
uint8_t temp[20];
finalize(temp, sizeof(temp));
formatHMACKey(state.w, key, keyLen, 0x5C);
state.length += 64 * 8;
processChunk();
update(temp, sizeof(temp));
finalize(hash, hashLen);
clean(temp);
}
/**
* \brief Processes a single 512-bit chunk with the core SHA-1 algorithm.
*
* Reference: http://en.wikipedia.org/wiki/SHA-1
*/
void SHA1::processChunk()
{
uint8_t index;
// Convert the first 16 words from big endian to host byte order.
for (index = 0; index < 16; ++index)
state.w[index] = be32toh(state.w[index]);
// Initialize the hash value for this chunk.
uint32_t a = state.h[0];
uint32_t b = state.h[1];
uint32_t c = state.h[2];
uint32_t d = state.h[3];
uint32_t e = state.h[4];
// Perform the first 16 rounds of the compression function main loop.
uint32_t temp;
for (index = 0; index < 16; ++index) {
temp = leftRotate5(a) + ((b & c) | ((~b) & d)) + e + 0x5A827999 + state.w[index];
e = d;
d = c;
c = leftRotate30(b);
b = a;
a = temp;
}
// Perform the 64 remaining rounds. We expand the first 16 words to
// 80 in-place in the "w" array. This saves 256 bytes of memory
// that would have otherwise need to be allocated to the "w" array.
for (; index < 20; ++index) {
temp = state.w[index & 0x0F] = leftRotate1
(state.w[(index - 3) & 0x0F] ^ state.w[(index - 8) & 0x0F] ^
state.w[(index - 14) & 0x0F] ^ state.w[(index - 16) & 0x0F]);
temp = leftRotate5(a) + ((b & c) | ((~b) & d)) + e + 0x5A827999 + temp;
e = d;
d = c;
c = leftRotate30(b);
b = a;
a = temp;
}
for (; index < 40; ++index) {
temp = state.w[index & 0x0F] = leftRotate1
(state.w[(index - 3) & 0x0F] ^ state.w[(index - 8) & 0x0F] ^
state.w[(index - 14) & 0x0F] ^ state.w[(index - 16) & 0x0F]);
temp = leftRotate5(a) + (b ^ c ^ d) + e + 0x6ED9EBA1 + temp;
e = d;
d = c;
c = leftRotate30(b);
b = a;
a = temp;
}
for (; index < 60; ++index) {
temp = state.w[index & 0x0F] = leftRotate1
(state.w[(index - 3) & 0x0F] ^ state.w[(index - 8) & 0x0F] ^
state.w[(index - 14) & 0x0F] ^ state.w[(index - 16) & 0x0F]);
temp = leftRotate5(a) + ((b & c) | (b & d) | (c & d)) + e + 0x8F1BBCDC + temp;
e = d;
d = c;
c = leftRotate30(b);
b = a;
a = temp;
}
for (; index < 80; ++index) {
temp = state.w[index & 0x0F] = leftRotate1
(state.w[(index - 3) & 0x0F] ^ state.w[(index - 8) & 0x0F] ^
state.w[(index - 14) & 0x0F] ^ state.w[(index - 16) & 0x0F]);
temp = leftRotate5(a) + (b ^ c ^ d) + e + 0xCA62C1D6 + temp;
e = d;
d = c;
c = leftRotate30(b);
b = a;
a = temp;
}
// Add this chunk's hash to the result so far.
state.h[0] += a;
state.h[1] += b;
state.h[2] += c;
state.h[3] += d;
state.h[4] += e;
// Attempt to clean up the stack.
a = b = c = d = e = temp = 0;
}