1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
2018-04-07 02:39:30 +10:00

398 lines
11 KiB
C++

/*
* Copyright (C) 2015,2018 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "AES.h"
#include "Crypto.h"
#include <string.h>
/**
* \class AES256 AES.h <AES.h>
* \brief AES block cipher with 256-bit keys.
*
* \sa AES128, AES192, AESTiny256, AESSmall256
*/
/**
* \brief Constructs an AES 256-bit block cipher with no initial key.
*
* This constructor must be followed by a call to setKey() before the
* block cipher can be used for encryption or decryption.
*/
AES256::AES256()
{
rounds = 14;
schedule = sched;
}
AES256::~AES256()
{
clean(sched);
}
/**
* \brief Size of a 256-bit AES key in bytes.
* \return Always returns 32.
*/
size_t AES256::keySize() const
{
return 32;
}
bool AES256::setKey(const uint8_t *key, size_t len)
{
if (len != 32)
return false;
// Copy the key itself into the first 32 bytes of the schedule.
uint8_t *schedule = sched;
memcpy(schedule, key, 32);
// Expand the key schedule until we have 240 bytes of expanded key.
uint8_t iteration = 1;
uint8_t n = 32;
uint8_t w = 8;
while (n < 240) {
if (w == 8) {
// Every 32 bytes (8 words) we need to apply the key schedule core.
keyScheduleCore(schedule + 32, schedule + 28, iteration);
schedule[32] ^= schedule[0];
schedule[33] ^= schedule[1];
schedule[34] ^= schedule[2];
schedule[35] ^= schedule[3];
++iteration;
w = 0;
} else if (w == 4) {
// At the 16 byte mark we need to apply the S-box.
applySbox(schedule + 32, schedule + 28);
schedule[32] ^= schedule[0];
schedule[33] ^= schedule[1];
schedule[34] ^= schedule[2];
schedule[35] ^= schedule[3];
} else {
// Otherwise just XOR the word with the one 32 bytes previous.
schedule[32] = schedule[28] ^ schedule[0];
schedule[33] = schedule[29] ^ schedule[1];
schedule[34] = schedule[30] ^ schedule[2];
schedule[35] = schedule[31] ^ schedule[3];
}
// Advance to the next word in the schedule.
schedule += 4;
n += 4;
++w;
}
return true;
}
/**
* \class AESTiny256 AES.h <AES.h>
* \brief AES block cipher with 256-bit keys and tiny memory usage.
*
* This class differs from the AES256 class in the following ways:
*
* \li RAM requirements are vastly reduced. The key is stored directly
* and then expanded to the full key schedule round by round. The setKey()
* method is very fast because of this.
* \li Performance of encryptBlock() is slower than for AES256 due to
* expanding the key on the fly rather than ahead of time.
* \li The decryptBlock() function is not supported, which means that CBC
* mode cannot be used but the CTR, CFB, OFB, EAX, and GCM modes can be used.
*
* This class is useful when RAM is at a premium, CBC mode is not required,
* and reduced encryption performance is not a hindrance to the application.
*
* The companion AESSmall256 class supports decryptBlock() at the cost of
* some additional memory and slower setKey() times.
*
* \sa AESSmall256, AES256
*/
/** @cond */
// Helper macros.
#define LEFT 0
#define RIGHT 16
#define ENCRYPT(phase) \
do { \
AESCommon::subBytesAndShiftRows(state2, state1); \
AESCommon::mixColumn(state1, state2); \
AESCommon::mixColumn(state1 + 4, state2 + 4); \
AESCommon::mixColumn(state1 + 8, state2 + 8); \
AESCommon::mixColumn(state1 + 12, state2 + 12); \
for (posn = 0; posn < 16; ++posn) \
state1[posn] ^= schedule[posn + (phase)]; \
} while (0)
#define DECRYPT(phase) \
do { \
for (posn = 0; posn < 16; ++posn) \
state2[posn] ^= schedule[posn + (phase)]; \
AESCommon::inverseMixColumn(state1, state2); \
AESCommon::inverseMixColumn(state1 + 4, state2 + 4); \
AESCommon::inverseMixColumn(state1 + 8, state2 + 8); \
AESCommon::inverseMixColumn(state1 + 12, state2 + 12); \
AESCommon::inverseShiftRowsAndSubBytes(state2, state1); \
} while (0)
#define KCORE(n) \
do { \
AESCommon::keyScheduleCore(temp, schedule + 28, (n)); \
schedule[0] ^= temp[0]; \
schedule[1] ^= temp[1]; \
schedule[2] ^= temp[2]; \
schedule[3] ^= temp[3]; \
} while (0)
#define KXOR(a, b) \
do { \
schedule[(a) * 4] ^= schedule[(b) * 4]; \
schedule[(a) * 4 + 1] ^= schedule[(b) * 4 + 1]; \
schedule[(a) * 4 + 2] ^= schedule[(b) * 4 + 2]; \
schedule[(a) * 4 + 3] ^= schedule[(b) * 4 + 3]; \
} while (0)
#define KSBOX() \
do { \
AESCommon::applySbox(temp, schedule + 12); \
schedule[16] ^= temp[0]; \
schedule[17] ^= temp[1]; \
schedule[18] ^= temp[2]; \
schedule[19] ^= temp[3]; \
} while (0)
/** @endcond */
/**
* \brief Constructs an AES 256-bit block cipher with no initial key.
*
* This constructor must be followed by a call to setKey() before the
* block cipher can be used for encryption or decryption.
*/
AESTiny256::AESTiny256()
{
}
AESTiny256::~AESTiny256()
{
clean(schedule);
}
/**
* \brief Size of an AES block in bytes.
* \return Always returns 16.
*/
size_t AESTiny256::blockSize() const
{
return 16;
}
/**
* \brief Size of a 256-bit AES key in bytes.
* \return Always returns 32.
*/
size_t AESTiny256::keySize() const
{
return 32;
}
bool AESTiny256::setKey(const uint8_t *key, size_t len)
{
if (len == 32) {
// Make a copy of the key - it will be expanded in encryptBlock().
memcpy(schedule, key, 32);
return true;
}
return false;
}
void AESTiny256::encryptBlock(uint8_t *output, const uint8_t *input)
{
uint8_t schedule[32];
uint8_t posn;
uint8_t round;
uint8_t state1[16];
uint8_t state2[16];
uint8_t temp[4];
// Start with the key in the schedule buffer.
memcpy(schedule, this->schedule, 32);
// Copy the input into the state and perform the first round.
for (posn = 0; posn < 16; ++posn)
state1[posn] = input[posn] ^ schedule[posn];
ENCRYPT(RIGHT);
// Perform the next 12 rounds of the cipher two at a time.
for (round = 1; round <= 6; ++round) {
// Expand the next 32 bytes of the key schedule.
KCORE(round);
KXOR(1, 0);
KXOR(2, 1);
KXOR(3, 2);
KSBOX();
KXOR(5, 4);
KXOR(6, 5);
KXOR(7, 6);
// Encrypt using the left and right halves of the key schedule.
ENCRYPT(LEFT);
ENCRYPT(RIGHT);
}
// Expand the final 16 bytes of the key schedule.
KCORE(7);
KXOR(1, 0);
KXOR(2, 1);
KXOR(3, 2);
// Perform the final round.
AESCommon::subBytesAndShiftRows(state2, state1);
for (posn = 0; posn < 16; ++posn)
output[posn] = state2[posn] ^ schedule[posn];
}
void AESTiny256::decryptBlock(uint8_t *output, const uint8_t *input)
{
// Decryption is not supported by AESTiny256.
}
void AESTiny256::clear()
{
clean(schedule);
}
/**
* \class AESSmall256 AES.h <AES.h>
* \brief AES block cipher with 256-bit keys and reduced memory usage.
*
* This class differs from the AES256 class in that the RAM requirements are
* vastly reduced. The key schedule is expanded round by round instead of
* being generated and stored by setKey(). The performance of encryption
* and decryption is slightly less because of this.
*
* This class is useful when RAM is at a premium and reduced encryption
* performance is not a hindrance to the application.
*
* The companion AESTiny256 class uses even less RAM but only supports the
* encryptBlock() operation. Block cipher modes like CTR, EAX, and GCM
* do not need the decryptBlock() operation, so AESTiny256 may be a better
* option than AESSmall256 for many applications.
*
* \sa AESTiny256, AES256
*/
/**
* \brief Constructs an AES 256-bit block cipher with no initial key.
*
* This constructor must be followed by a call to setKey() before the
* block cipher can be used for encryption or decryption.
*/
AESSmall256::AESSmall256()
{
}
AESSmall256::~AESSmall256()
{
clean(reverse);
}
bool AESSmall256::setKey(const uint8_t *key, size_t len)
{
uint8_t *schedule;
uint8_t round;
uint8_t temp[4];
// Set the encryption key first.
if (!AESTiny256::setKey(key, len))
return false;
// Expand the key schedule up to the last round which gives
// us the round keys to use for the final two rounds. We can
// then work backwards from there in decryptBlock().
schedule = reverse;
memcpy(schedule, key, 32);
for (round = 1; round <= 6; ++round) {
KCORE(round);
KXOR(1, 0);
KXOR(2, 1);
KXOR(3, 2);
KSBOX();
KXOR(5, 4);
KXOR(6, 5);
KXOR(7, 6);
}
KCORE(7);
KXOR(1, 0);
KXOR(2, 1);
KXOR(3, 2);
// Key is ready to go.
return true;
}
void AESSmall256::decryptBlock(uint8_t *output, const uint8_t *input)
{
uint8_t schedule[32];
uint8_t round;
uint8_t posn;
uint8_t state1[16];
uint8_t state2[16];
uint8_t temp[4];
// Start with the end of the decryption schedule.
memcpy(schedule, reverse, 32);
// Copy the input into the state and reverse the final round.
for (posn = 0; posn < 16; ++posn)
state1[posn] = input[posn] ^ schedule[posn];
AESCommon::inverseShiftRowsAndSubBytes(state2, state1);
KXOR(3, 2);
KXOR(2, 1);
KXOR(1, 0);
KCORE(7);
// Perform the next 12 rounds of the decryption process two at a time.
for (round = 6; round >= 1; --round) {
// Decrypt using the right and left halves of the key schedule.
DECRYPT(RIGHT);
DECRYPT(LEFT);
// Expand the next 32 bytes of the key schedule in reverse.
KXOR(7, 6);
KXOR(6, 5);
KXOR(5, 4);
KSBOX();
KXOR(3, 2);
KXOR(2, 1);
KXOR(1, 0);
KCORE(round);
}
// Reverse the initial round and create the output words.
DECRYPT(RIGHT);
for (posn = 0; posn < 16; ++posn)
output[posn] = state2[posn] ^ schedule[posn];
}
void AESSmall256::clear()
{
clean(reverse);
AESTiny256::clear();
}