1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
arduinolibs/gen/genacorn.c
2018-04-26 06:51:21 +10:00

943 lines
32 KiB
C

/*
* Copyright (C) 2018 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
// Special-purpose compiler that generates the AVR version of Acorn128.
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
static int indent = 4;
static const int temp_reg = 0; // Register number for the AVR "__tmp_reg__".
// Information about the positions and lengths of the LFSR's.
typedef struct
{
int start; // Bit position where the LFSR starts.
int len; // Length of the LFSR in bits.
int offsetl; // Offset of the low word of the LFSR in the state.
int offseth; // Offset of the high word of the LFSR in the state.
} LFSR;
#define num_lfsrs 7
static LFSR const lfsr[num_lfsrs] = {
{0, 61, 0, 4},
{61, 46, 8, 12},
{107, 47, 16, 14},
{154, 39, 20, 24},
{193, 37, 28, 26},
{230, 59, 32, 36},
{289, 4, 40, 40},
};
// LFSR byte offset for generating 32-bit versions of the code.
static int lfsr_offset = 0;
// Non-zero to generate the 32-bit version.
static int is_32bit_version = 0;
// Registers that can be used for temporary values, in the best
// order to allocate them. High registers are listed first.
static int regs[] = {
16, 17, 18, 19, 20, 21, 22, 23, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
#define num_regs (sizeof(regs) / sizeof(regs[0]))
// Which registers are currently in use?
static int reg_in_use[num_regs] = {0};
// Which registers did we use while generating the code?
static int reg_used[num_regs] = {0};
// Registers that have been allocated to specific purposes.
static int s244 = -1;
static int s235 = -1;
static int s196 = -1;
static int s160 = -1;
static int s111 = -1;
static int s66 = -1;
static int s23 = -1;
static int s12 = -1;
static int s1_l = -1;
static int s2_l = -1;
static int s3_l = -1;
static int s4_l = -1;
static int s5_l = -1;
static int s6_l = -1;
static int s7_l = -1;
static int s7_l_prev[3] = {-1, -1, -1};
static int ks = -1;
static int f = -1;
// Indent the code and print a string.
void indent_printf(const char *format, ...)
{
va_list va;
int posn;
va_start(va, format);
for (posn = 0; posn < indent; ++posn)
putc(' ', stdout);
vfprintf(stdout, format, va);
va_end(va);
}
// Print an assembler instruction within quotes.
void insn_printf(const char *format, ...)
{
va_list va;
int posn;
va_start(va, format);
for (posn = 0; posn < indent; ++posn)
putc(' ', stdout);
putc('"', stdout);
vfprintf(stdout, format, va);
putc('\\', stdout);
putc('n', stdout);
putc('"', stdout);
putc('\n', stdout);
va_end(va);
}
// Allocate an unused register, starting with high registers.
static void alloc_high_reg(int *reg)
{
unsigned index;
if (*reg != -1) {
fprintf(stderr, "Temporary register wasn't previously released\n");
exit(1);
}
for (index = 0; index < num_regs; ++index) {
if (!reg_in_use[index]) {
reg_in_use[index] = 1;
reg_used[index] = 1;
*reg = regs[index];
if (*reg < 16) {
fprintf(stderr, "Ran out of temporary high registers\n");
exit(1);
}
return;
}
}
fprintf(stderr, "Ran out of temporary registers\n");
exit(1);
}
// Allocate an unused register, starting with low registers
// because we know we won't need the value in a high reg later.
static void alloc_low_reg(int *reg)
{
unsigned index;
if (*reg != -1) {
fprintf(stderr, "Temporary register wasn't previously released\n");
exit(1);
}
for (index = num_regs; index > 0; --index) {
if (!reg_in_use[index - 1]) {
reg_in_use[index - 1] = 1;
reg_used[index - 1] = 1;
*reg = regs[index - 1];
return;
}
}
fprintf(stderr, "Ran out of temporary registers\n");
exit(1);
}
// Release a register back to the allocation pool.
static void release_reg(int *reg)
{
unsigned index;
for (index = 0; index < num_regs; ++index) {
if (regs[index] == *reg && reg_in_use[index]) {
reg_in_use[index] = 0;
*reg = -1;
return;
}
}
fprintf(stderr, "Released a register that was not in use\n");
exit(1);
}
// Check that we have a high register when we need one.
static void check_high_reg(int *reg)
{
if ((*reg) < 16) {
fprintf(stderr, "r%d is not a high register\n", *reg);
exit(1);
}
}
// Check that all temporary registers have been released.
static void check_regs(void)
{
unsigned index;
for (index = 0; index < num_regs; ++index) {
if (reg_in_use[index]) {
fprintf(stderr, "Register r%d has not been released\n",
regs[index]);
exit(1);
}
}
}
// Print the names of the temporary registers that we used.
static void temp_regs(void)
{
unsigned index;
int first = 1;
indent_printf(": ");
for (index = 0; index < num_regs; ++index) {
if (reg_used[index]) {
if (first) {
first = 0;
printf("\"r%d\"", regs[index]);
} else {
printf(", \"r%d\"", regs[index]);
}
}
}
printf(", \"memory\"\n");
}
// Find the information about a specific LFSR.
static const LFSR *find_lfsr(int bit)
{
unsigned index;
for (index = 0; index < num_lfsrs; ++index) {
if (bit >= lfsr[index].start &&
bit < (lfsr[index].start + lfsr[index].len))
return &(lfsr[index]);
}
return &(lfsr[num_lfsrs - 1]);
}
// Gets the information for a specific LFSR from 0 to 6.
static const LFSR *get_lfsr(int num)
{
return &(lfsr[num]);
}
// Shift a two-register value left by a number of bits.
static void shift_left_2_regs(int reg1, int reg2, int count)
{
while (count > 0) {
insn_printf("lsl r%d", reg2);
insn_printf("rol r%d", reg1);
--count;
}
}
// Shift a three-register value left by a number of bits.
static void shift_left_3_regs(int reg1, int reg2, int reg3, int count)
{
while (count > 0) {
insn_printf("lsl r%d", reg3);
insn_printf("rol r%d", reg2);
insn_printf("rol r%d", reg1);
--count;
}
}
// Shift a five-register value left by a number of bits.
static void shift_left_5_regs
(int reg1, int reg2, int reg3, int reg4, int reg5, int count)
{
while (count > 0) {
insn_printf("lsl r%d", reg5);
insn_printf("rol r%d", reg4);
insn_printf("rol r%d", reg3);
insn_printf("rol r%d", reg2);
insn_printf("rol r%d", reg1);
--count;
}
}
// Shift a two-register value right by a number of bits.
static void shift_right_2_regs(int reg1, int reg2, int count)
{
while (count > 0) {
insn_printf("lsr r%d", reg1);
insn_printf("ror r%d", reg2);
--count;
}
}
// Shift a five-register value right by a number of bits.
static void shift_right_5_regs
(int reg1, int reg2, int reg3, int reg4, int reg5, int count)
{
while (count > 0) {
insn_printf("lsr r%d", reg1);
insn_printf("ror r%d", reg2);
insn_printf("ror r%d", reg3);
insn_printf("ror r%d", reg4);
insn_printf("ror r%d", reg5);
--count;
}
}
// Extracts one part from the state as a byte.
static void extract_one_part(int reg, int bit)
{
const LFSR *lfsr = find_lfsr(bit);
int offset;
bit -= lfsr->start;
offset = lfsr->offsetl + lfsr_offset + (bit / 8);
bit %= 8;
if (bit < 4) {
insn_printf("ldd r%d,Z+%d", reg, offset);
insn_printf("ldd r%d,Z+%d", temp_reg, offset + 1);
shift_right_2_regs(temp_reg, reg, bit);
} else if (bit > 4) {
insn_printf("ldd r%d,Z+%d", temp_reg, offset);
insn_printf("ldd r%d,Z+%d", reg, offset + 1);
shift_left_2_regs(reg, temp_reg, 8 - bit);
} else {
int extra_reg = -1;
alloc_high_reg(&extra_reg);
insn_printf("ldd r%d,Z+%d", reg, offset);
insn_printf("ldd r%d,Z+%d", extra_reg, offset + 1);
insn_printf("swap r%d", reg);
insn_printf("swap r%d", extra_reg);
check_high_reg(&reg);
check_high_reg(&extra_reg);
insn_printf("andi r%d,0x0F", reg); // Assumes reg and extra_reg
insn_printf("andi r%d,0xF0", extra_reg); // are high registers.
insn_printf("or r%d,r%d", reg, extra_reg);
release_reg(&extra_reg);
}
}
// Extracts two parts from the state as bytes. Both parts are
// assumed to be within the same 3-byte region within the state
// and that they don't overlap. We also assume that bit1 > bit2.
static void extract_two_parts(int reg1, int reg2, int bit1, int bit2)
{
const LFSR *lfsr = find_lfsr(bit1);
int offset, count;
bit1 -= lfsr->start;
bit2 -= lfsr->start;
offset = lfsr->offsetl + lfsr_offset + (bit2 / 8);
insn_printf("ldd r%d,Z+%d", reg1, offset + 2);
insn_printf("ldd r%d,Z+%d", reg2, offset + 1);
insn_printf("ldd r%d,Z+%d", temp_reg, offset);
count = 8 - (bit1 % 8);
shift_left_3_regs(reg1, reg2, temp_reg, count);
count = bit1 - (bit2 + 8);
shift_left_2_regs(reg2, temp_reg, count);
}
// Extract out various sub-parts of the state as 8-bit bytes.
// We do this by extracting two bytes around the one we want
// and then shifting it left or right until it is byte-aligned.
// Sometimes there is overlap and we can extract 3 bytes and shift.
static void extract_sub_parts(void)
{
// LFSR6
alloc_low_reg(&s244);
alloc_low_reg(&s235);
extract_two_parts(s244, s235, 244, 235);
// LFSR5
alloc_low_reg(&s196);
extract_one_part(s196, 196);
// LFSR4
alloc_low_reg(&s160);
extract_one_part(s160, 160);
// LFSR3
alloc_high_reg(&s111);
extract_one_part(s111, 111);
// LFSR2
alloc_low_reg(&s66);
extract_one_part(s66, 66);
// LFSR1
alloc_low_reg(&s23);
alloc_low_reg(&s12);
extract_two_parts(s23, s12, 23, 12);
}
// Update the LFSR's.
static void update_lfsrs(void)
{
int offset;
// LFSR7: if the offset is non-zero then we still have the s7_l
// value from a previous shift_down_step() call in a register.
if (lfsr_offset == 0) {
alloc_low_reg(&s7_l);
insn_printf("ldd r%d,Z+%d", s7_l, get_lfsr(6)->offsetl + lfsr_offset);
}
insn_printf("eor r%d,r%d", s7_l, s235);
alloc_low_reg(&s6_l);
insn_printf("ldd r%d,Z+%d", s6_l, get_lfsr(5)->offsetl + lfsr_offset);
insn_printf("eor r%d,r%d", s7_l, s6_l);
// LFSR6
alloc_low_reg(&s5_l);
insn_printf("eor r%d,r%d", s6_l, s196);
insn_printf("ldd r%d,Z+%d", s5_l, get_lfsr(4)->offsetl + lfsr_offset);
insn_printf("eor r%d,r%d", s6_l, s5_l);
// LFSR5
alloc_low_reg(&s4_l);
insn_printf("eor r%d,r%d", s5_l, s160);
insn_printf("ldd r%d,Z+%d", s4_l, get_lfsr(3)->offsetl + lfsr_offset);
insn_printf("eor r%d,r%d", s5_l, s4_l);
// LFSR4
alloc_low_reg(&s3_l);
insn_printf("eor r%d,r%d", s4_l, s111);
insn_printf("ldd r%d,Z+%d", s3_l, get_lfsr(2)->offsetl + lfsr_offset);
insn_printf("eor r%d,r%d", s4_l, s3_l);
// LFSR3
alloc_low_reg(&s2_l);
insn_printf("eor r%d,r%d", s3_l, s66);
insn_printf("ldd r%d,Z+%d", s2_l, get_lfsr(1)->offsetl + lfsr_offset);
insn_printf("eor r%d,r%d", s3_l, s2_l);
// LFSR2
alloc_low_reg(&s1_l);
insn_printf("eor r%d,r%d", s2_l, s23);
offset = get_lfsr(0)->offsetl + lfsr_offset;
if (offset != 0)
insn_printf("ldd r%d,Z+%d", s1_l, offset);
else
insn_printf("ld r%d,Z", s1_l);
insn_printf("eor r%d,r%d", s2_l, s1_l);
}
// Generate the next 8 keystream bits.
static void generate_keystream(void)
{
// ks = s12 ^ state->s4_l ^
// maj(s235, state->s2_l, state->s5_l) ^
// ch(state->s6_l, s111, s66);
ks = s12;
s12 = -1;
insn_printf("eor r%d,r%d", ks, s4_l);
// ks ^= maj(s235, state->s2_l, state->s5_l)
insn_printf("mov r%d,r%d", temp_reg, s235); // ks ^= (s235 & s2_l)
insn_printf("and r%d,r%d", temp_reg, s2_l);
insn_printf("eor r%d,r%d", ks, temp_reg);
insn_printf("and r%d,r%d", s235, s5_l); // ks ^= (s235 & s5_l)
insn_printf("eor r%d,r%d", ks, s235);
insn_printf("mov r%d,r%d", temp_reg, s2_l); // ks ^= (s2_l & s5_l)
insn_printf("and r%d,r%d", temp_reg, s5_l);
insn_printf("eor r%d,r%d", ks, temp_reg);
release_reg(&s235);
// ks ^= ch(state->s6_l, s111, s66)
insn_printf("and r%d,r%d", s111, s6_l);
insn_printf("eor r%d,r%d", ks, s111);
insn_printf("mov r%d,r%d", temp_reg, s6_l);
insn_printf("com r%d", temp_reg);
insn_printf("and r%d,r%d", s66, temp_reg);
insn_printf("eor r%d,r%d", ks, s66);
release_reg(&s111);
release_reg(&s66);
}
// Generate the next 8 non-linear feedback bits.
static void generate_feedback(int input_is_ciphertext)
{
// f = state->s1_l ^ (~state->s3_l) ^
// maj(s244, s23, s160) ^ (ca & s196) ^ (cb & ks);
// f ^= plaintext;
alloc_high_reg(&f); // Needs to be a high register for shift_down().
insn_printf("mov r%d,r%d", f, s3_l);
insn_printf("com r%d", f);
insn_printf("eor r%d,r%d", f, s1_l);
release_reg(&s1_l); // Don't need the low byte of s1 any more.
// f ^= maj(s244, s23, s160)
insn_printf("mov r%d,r%d", temp_reg, s244); // f ^= (s244 & s23)
insn_printf("and r%d,r%d", temp_reg, s23);
insn_printf("eor r%d,r%d", f, temp_reg);
insn_printf("and r%d,r%d", s23, s160); // f ^= (s23 & s160)
insn_printf("eor r%d,r%d", f, s23);
insn_printf("and r%d,r%d", s244, s160); // f ^= (s244 & s160)
insn_printf("eor r%d,r%d", f, s244);
release_reg(&s244);
release_reg(&s23);
release_reg(&s160);
// f ^= (ca & s196). Note that when decrypting, ca is always 1.
if (!input_is_ciphertext)
insn_printf("and r%d,%%3", s196); // s196 &= ca
insn_printf("eor r%d,r%d", f, s196); // f ^= s196
release_reg(&s196);
// f ^= (cb & ks) ^ plaintext
// If we are processing the ciphertext, then we need to first
// decrypt the input with ks. We leave the plaintext in "ks".
// Note that when decrypting, cb is always 0.
if (!is_32bit_version) {
// Plaintext and ciphertext are 8-bit values in registers.
if (input_is_ciphertext) {
insn_printf("eor r%d,%%2", ks); // plaintext = ciphertext ^ ks
insn_printf("eor r%d,r%d", f, ks); // f ^= plaintext
} else {
insn_printf("mov r%d,r%d", temp_reg, ks); // f ^= (cb & ks)
insn_printf("and r%d,%%4", temp_reg);
insn_printf("eor r%d,r%d", f, temp_reg);
insn_printf("eor r%d,%%2", f); // f ^= plaintext
}
} else {
// Plaintext and ciphertext are 32-bit values in the stack frame.
static const char * const out_regs[] = {"%A0", "%B0", "%C0", "%D0"};
static const char * const in_regs[] = {"%A2", "%B2", "%C2", "%D2"};
if (input_is_ciphertext) {
insn_printf("ldd r%d,%s", temp_reg, in_regs[lfsr_offset]);
insn_printf("eor r%d,r%d", ks, temp_reg);
insn_printf("eor r%d,r%d", f, ks);
insn_printf("std %s,r%d", out_regs[lfsr_offset], ks);
} else {
insn_printf("mov r%d,r%d", temp_reg, ks);
insn_printf("and r%d,%%4", temp_reg);
insn_printf("eor r%d,r%d", f, temp_reg);
insn_printf("ldd r%d,%s", temp_reg, in_regs[lfsr_offset]);
insn_printf("eor r%d,r%d", f, temp_reg);
insn_printf("eor r%d,r%d", temp_reg, ks);
insn_printf("std %s,r%d", out_regs[lfsr_offset], temp_reg);
}
release_reg(&ks);
}
}
// Shift a LFSR downwards by 8 bits and rotate in a register.
static void shift_down_lfsr(const LFSR *lfsr, int reg)
{
int bit;
int offset1;
int offset2;
int extra = -1;
// Shift all bytes but the last down. We assume that the low byte
// is already cached in a register from the update_lfsrs() function
// so we don't need to worry about saving it away now.
for (bit = 0; bit < (lfsr->len - 16); bit += 8) {
if (bit < 32)
offset2 = lfsr->offsetl + (bit / 8);
else
offset2 = lfsr->offseth + ((bit - 32) / 8);
if ((bit + 8) < 32)
offset1 = lfsr->offsetl + ((bit + 8) / 8);
else
offset1 = lfsr->offseth + ((bit + 8 - 32) / 8);
insn_printf("ldd r%d,Z+%d", temp_reg, offset1);
if (offset2 != 0)
insn_printf("std Z+%d,r%d", offset2, temp_reg);
else
insn_printf("st Z,r%d", temp_reg);
}
// Rotate the register value from the next-higher LFSR into the high byte.
if (bit < 32)
offset2 = lfsr->offsetl + (bit / 8);
else
offset2 = lfsr->offseth + ((bit - 32) / 8);
if ((bit + 8) < 32)
offset1 = lfsr->offsetl + ((bit + 8) / 8);
else
offset1 = lfsr->offseth + ((bit + 8 - 32) / 8);
insn_printf("ldd r%d,Z+%d", temp_reg, offset1);
alloc_low_reg(&extra);
bit = lfsr->len % 8;
if (bit <= 4) {
insn_printf("clr r%d", extra);
shift_left_2_regs(extra, reg, bit);
insn_printf("or r%d,r%d", temp_reg, reg);
insn_printf("std Z+%d,r%d", offset2, temp_reg);
insn_printf("std Z+%d,r%d", offset1, extra);
} else {
insn_printf("clr r%d", extra);
shift_right_2_regs(reg, extra, 8 - bit);
insn_printf("or r%d,r%d", temp_reg, extra);
insn_printf("std Z+%d,r%d", offset2, temp_reg);
insn_printf("std Z+%d,r%d", offset1, reg);
}
release_reg(&extra);
}
// Shift the state downwards by 8 bits.
static void shift_down(void)
{
int extra = -1;
// LFSR7: s7_l ^= (f << 4), state->s7 = (f >> 4)
alloc_high_reg(&extra);
check_high_reg(&f);
insn_printf("swap r%d", f);
insn_printf("mov r%d,r%d", extra, f);
insn_printf("andi r%d,0xF0", extra); // Assumes extra is a high reg.
insn_printf("eor r%d,r%d", s7_l, extra);
insn_printf("andi r%d,0x0F", f); // Assumes f is a high reg.
insn_printf("std Z+%d,r%d", get_lfsr(6)->offsetl, f);
release_reg(&f);
release_reg(&extra);
// LFSR6 down to LFSR1
shift_down_lfsr(get_lfsr(5), s7_l);
release_reg(&s7_l);
shift_down_lfsr(get_lfsr(4), s6_l);
release_reg(&s6_l);
shift_down_lfsr(get_lfsr(3), s5_l);
release_reg(&s5_l);
shift_down_lfsr(get_lfsr(2), s4_l);
release_reg(&s4_l);
shift_down_lfsr(get_lfsr(1), s3_l);
release_reg(&s3_l);
shift_down_lfsr(get_lfsr(0), s2_l);
release_reg(&s2_l);
}
// Shift the state downwards by 8 bits as one step within a 32-bit word.
static void shift_down_step(void)
{
int extra = -1;
int s7_l_next = -1;
// LFSR7: s7_l ^= (f << 4), state->s7 = (f >> 4)
// We keep the previous s7_l in a register for now and
// make use of it during shift_down_final(). Allocate
// a new register to hold the next s7_l value.
s7_l_prev[lfsr_offset] = s7_l;
alloc_high_reg(&extra);
check_high_reg(&f);
alloc_low_reg(&s7_l_next);
insn_printf("swap r%d", f);
insn_printf("mov r%d,r%d", extra, f);
insn_printf("andi r%d,0xF0", extra); // Assumes extra is a high reg.
insn_printf("eor r%d,r%d", s7_l, extra);
insn_printf("andi r%d,0x0F", f); // Assumes f is a high reg.
insn_printf("mov r%d,r%d", s7_l_next, f);
release_reg(&f);
release_reg(&extra);
s7_l = s7_l_next;
// Write s2 to s6 back to the state. We don't need to store s1
// because shift_down_final() will be throwing the value away.
// The generate_feedback() function already released the register.
insn_printf("std Z+%d,r%d", get_lfsr(5)->offsetl + lfsr_offset, s6_l);
release_reg(&s6_l);
insn_printf("std Z+%d,r%d", get_lfsr(4)->offsetl + lfsr_offset, s5_l);
release_reg(&s5_l);
insn_printf("std Z+%d,r%d", get_lfsr(3)->offsetl + lfsr_offset, s4_l);
release_reg(&s4_l);
insn_printf("std Z+%d,r%d", get_lfsr(2)->offsetl + lfsr_offset, s3_l);
release_reg(&s3_l);
insn_printf("std Z+%d,r%d", get_lfsr(1)->offsetl + lfsr_offset, s2_l);
release_reg(&s2_l);
}
// Shift the state downwards by 8 bits as the final step within a 32-bit word.
static void shift_down_final(void)
{
int extra = -1;
int extra2 = -1;
int extra3 = -1;
int extra4 = -1;
const LFSR *lfsr;
// LFSR7: s7_l ^= (f << 4), state->s7 = (f >> 4)
alloc_high_reg(&extra);
check_high_reg(&f);
insn_printf("swap r%d", f);
insn_printf("mov r%d,r%d", extra, f);
insn_printf("andi r%d,0xF0", extra); // Assumes extra is a high reg.
insn_printf("eor r%d,r%d", s7_l, extra);
insn_printf("andi r%d,0x0F", f); // Assumes f is a high reg.
insn_printf("std Z+%d,r%d", get_lfsr(6)->offsetl, f);
release_reg(&f);
// We currently have the 32-bit s7 word in four registers:
// s7_l_prev[0], s7_l_prev[1], s7_l_prev[2], and s7_l.
// We also have the third byte of s2..s6 in the s2_l..s6_l regs.
// Everything else is stored within the Acorn128 state structure.
// LFSR1: state->s1_l = state->s1_h | (state->s2_l << 29)
// state->s1_h = state->s2_l >> 3
lfsr = get_lfsr(1);
alloc_low_reg(&extra2);
alloc_low_reg(&extra3);
alloc_low_reg(&extra4);
insn_printf("clr r%d", temp_reg);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offsetl); // load s2_l[0..2]
insn_printf("ldd r%d,Z+%d", extra2, lfsr->offsetl + 1);
insn_printf("ldd r%d,Z+%d", extra3, lfsr->offsetl + 2);
shift_right_5_regs(s2_l, extra3, extra2, extra, temp_reg, 3);
lfsr = get_lfsr(0);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth);
insn_printf("st Z,r%d", extra4); // offset is zero.
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth + 1);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 1, extra4);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth + 2);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 2, extra4);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth + 3);
insn_printf("or r%d,r%d", extra4, temp_reg);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 3, temp_reg);
insn_printf("std Z+%d,r%d", lfsr->offseth, extra);
insn_printf("std Z+%d,r%d", lfsr->offseth + 1, extra2);
insn_printf("std Z+%d,r%d", lfsr->offseth + 2, extra3);
insn_printf("std Z+%d,r%d", lfsr->offseth + 3, s2_l);
release_reg(&s2_l);
// LFSR2: state->s2_l = state->s2_h | (state->s3_l << 14)
// state->s2_h = state->s3_l >> 18
lfsr = get_lfsr(2);
insn_printf("clr r%d", temp_reg);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offsetl); // load s3_l[0..2]
insn_printf("ldd r%d,Z+%d", extra2, lfsr->offsetl + 1);
insn_printf("ldd r%d,Z+%d", extra3, lfsr->offsetl + 2);
shift_right_5_regs(s3_l, extra3, extra2, extra, temp_reg, 2);
lfsr = get_lfsr(1);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth); // s2_h[0]
insn_printf("std Z+%d,r%d", lfsr->offsetl, extra4);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth + 1); // s2_h[1]
insn_printf("or r%d,r%d", temp_reg, extra4);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 1, temp_reg);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 2, extra);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 3, extra2);
insn_printf("std Z+%d,r%d", lfsr->offseth, extra3);
insn_printf("std Z+%d,r%d", lfsr->offseth + 1, s3_l);
release_reg(&s3_l);
// LFSR3: state->s3_l = state->s3_h | (state->s4_l << 15)
// state->s3_h = state->s4_l >> 17
lfsr = get_lfsr(3);
insn_printf("clr r%d", temp_reg);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offsetl); // load s4_l[0..2]
insn_printf("ldd r%d,Z+%d", extra2, lfsr->offsetl + 1);
insn_printf("ldd r%d,Z+%d", extra3, lfsr->offsetl + 2);
shift_right_5_regs(s4_l, extra3, extra2, extra, temp_reg, 1);
lfsr = get_lfsr(2);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth); // s3_h[0]
insn_printf("std Z+%d,r%d", lfsr->offsetl, extra4);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth + 1); // s3_h[1]
insn_printf("or r%d,r%d", temp_reg, extra4);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 1, temp_reg);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 2, extra);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 3, extra2);
insn_printf("std Z+%d,r%d", lfsr->offseth, extra3);
insn_printf("std Z+%d,r%d", lfsr->offseth + 1, s4_l);
release_reg(&s4_l);
// LFSR4: state->s4_l = state->s4_h | (state->s5_l << 7)
// state->s4_h = state->s5_l >> 25
lfsr = get_lfsr(4);
insn_printf("clr r%d", temp_reg);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offsetl); // load s5_l[0..2]
insn_printf("ldd r%d,Z+%d", extra2, lfsr->offsetl + 1);
insn_printf("ldd r%d,Z+%d", extra3, lfsr->offsetl + 2);
shift_right_5_regs(s5_l, extra3, extra2, extra, temp_reg, 1);
lfsr = get_lfsr(3);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth); // s4_h
insn_printf("or r%d,r%d", temp_reg, extra4);
insn_printf("std Z+%d,r%d", lfsr->offsetl, temp_reg);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 1, extra);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 2, extra2);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 3, extra3);
insn_printf("std Z+%d,r%d", lfsr->offseth, s5_l);
release_reg(&s5_l);
// LFSR5: state->s5_l = state->s5_h | (state->s6_l << 5)
// state->s5_h = state->s6_l >> 27
lfsr = get_lfsr(5);
insn_printf("clr r%d", temp_reg);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offsetl); // load s6_l[0..2]
insn_printf("ldd r%d,Z+%d", extra2, lfsr->offsetl + 1);
insn_printf("ldd r%d,Z+%d", extra3, lfsr->offsetl + 2);
shift_right_5_regs(s6_l, extra3, extra2, extra, temp_reg, 3);
lfsr = get_lfsr(4);
insn_printf("ldd r%d,Z+%d", extra4, lfsr->offseth); // s5_h
insn_printf("or r%d,r%d", temp_reg, extra4);
insn_printf("std Z+%d,r%d", lfsr->offsetl, temp_reg);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 1, extra);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 2, extra2);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 3, extra3);
insn_printf("std Z+%d,r%d", lfsr->offseth, s6_l);
release_reg(&s6_l);
// LFSR6: state->s6_l = state->s6_h | (s7_l << 27)
// state->s6_h = s7_l >> 5
lfsr = get_lfsr(5);
insn_printf("clr r%d", temp_reg);
shift_left_5_regs
(temp_reg, s7_l, s7_l_prev[2], s7_l_prev[1], s7_l_prev[0], 3);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offseth);
insn_printf("std Z+%d,r%d", lfsr->offsetl, extra);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offseth + 1);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 1, extra);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offseth + 2);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 2, extra);
insn_printf("ldd r%d,Z+%d", extra, lfsr->offseth + 3);
insn_printf("or r%d,r%d", extra, s7_l_prev[0]);
insn_printf("std Z+%d,r%d", lfsr->offsetl + 3, extra);
insn_printf("std Z+%d,r%d", lfsr->offseth, s7_l_prev[1]);
insn_printf("std Z+%d,r%d", lfsr->offseth + 1, s7_l_prev[2]);
insn_printf("std Z+%d,r%d", lfsr->offseth + 2, s7_l);
insn_printf("std Z+%d,r%d", lfsr->offseth + 3, temp_reg);
release_reg(&s7_l_prev[0]);
release_reg(&s7_l_prev[1]);
release_reg(&s7_l_prev[2]);
release_reg(&s7_l);
// Release temporary registers.
release_reg(&extra);
release_reg(&extra2);
release_reg(&extra3);
release_reg(&extra4);
}
static void encrypt8(void)
{
// Print the function header.
printf("static uint8_t acornEncrypt8\n");
printf(" (Acorn128State *state, uint8_t plaintext, uint8_t ca, uint8_t cb)\n");
printf("{\n");
indent_printf("// Automatically generated by the genacorn tool.\n");
indent_printf("uint8_t ciphertext;\n");
indent_printf("__asm__ __volatile__ (\n");
indent += 4;
// Output the body of the function.
extract_sub_parts();
update_lfsrs();
generate_keystream();
generate_feedback(0);
shift_down();
// Generate the final ciphertext.
insn_printf("mov %%0,%%2");
insn_printf("eor %%0,r%d", ks);
release_reg(&ks);
// Declare the registers that we need.
indent_printf(": \"=r\"(ciphertext)\n");
indent_printf(": \"z\"(&state->s1_l), \"r\"(plaintext), \"r\"((uint8_t)ca), \"r\"((uint8_t)cb)\n");
temp_regs();
indent -= 4;
indent_printf(");\n");
indent_printf("return ciphertext;\n");
printf("}\n\n");
check_regs();
}
static void decrypt8(void)
{
// Print the function header.
printf("static uint8_t acornDecrypt8(Acorn128State *state, uint8_t ciphertext)\n");
printf("{\n");
indent_printf("// Automatically generated by the genacorn tool.\n");
indent_printf("uint8_t plaintext;\n");
indent_printf("__asm__ __volatile__ (\n");
indent += 4;
// Output the body of the function.
extract_sub_parts();
update_lfsrs();
generate_keystream();
generate_feedback(1);
shift_down();
// Generate the final plaintext.
insn_printf("mov %%0,r%d", ks);
release_reg(&ks);
// Declare the registers that we need.
indent_printf(": \"=r\"(plaintext)\n");
indent_printf(": \"z\"(&state->s1_l), \"r\"(ciphertext)\n");
temp_regs();
indent -= 4;
indent_printf(");\n");
indent_printf("return plaintext;\n");
printf("}\n\n");
check_regs();
}
static void encrypt32(void)
{
// Print the function header.
printf("uint32_t acornEncrypt32\n");
printf(" (Acorn128State *state, uint32_t plaintext, uint32_t ca, uint32_t cb)\n");
printf("{\n");
indent_printf("// Automatically generated by the genacorn tool.\n");
indent_printf("uint32_t ciphertext;\n");
indent_printf("__asm__ __volatile__ (\n");
indent += 4;
// Output the body of the function as 4 rounds for each byte in the word.
// The shift-down step is delayed until after all 4 rounds are complete.
lfsr_offset = 0;
is_32bit_version = 1;
extract_sub_parts();
update_lfsrs();
generate_keystream();
generate_feedback(0);
shift_down_step();
lfsr_offset = 1;
extract_sub_parts();
update_lfsrs();
generate_keystream();
generate_feedback(0);
shift_down_step();
lfsr_offset = 2;
extract_sub_parts();
update_lfsrs();
generate_keystream();
generate_feedback(0);
shift_down_step();
lfsr_offset = 3;
extract_sub_parts();
update_lfsrs();
generate_keystream();
generate_feedback(0);
shift_down_final();
lfsr_offset = 0;
is_32bit_version = 0;
// Declare the registers that we need.
indent_printf(": \"=Q\"(ciphertext)\n");
indent_printf(": \"z\"(&state->s1_l), \"Q\"(plaintext), \"r\"((uint8_t)ca), \"r\"((uint8_t)cb)\n");
temp_regs();
indent -= 4;
indent_printf(");\n");
indent_printf("return ciphertext;\n");
printf("}\n\n");
check_regs();
}
int main(int argc, char *argv[])
{
encrypt8();
decrypt8();
encrypt32();
return 0;
}