mirror of
https://github.com/taigrr/arduinolibs
synced 2025-01-18 04:33:12 -08:00
402 lines
11 KiB
C++
402 lines
11 KiB
C++
/*
|
|
* Copyright (C) 2015,2018 Southern Storm Software, Pty Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "AES.h"
|
|
#include "Crypto.h"
|
|
#include <string.h>
|
|
|
|
#if defined(CRYPTO_AES_DEFAULT) || defined(CRYPTO_DOC)
|
|
|
|
/**
|
|
* \class AES256 AES.h <AES.h>
|
|
* \brief AES block cipher with 256-bit keys.
|
|
*
|
|
* \sa AES128, AES192, AESTiny256, AESSmall256
|
|
*/
|
|
|
|
/**
|
|
* \brief Constructs an AES 256-bit block cipher with no initial key.
|
|
*
|
|
* This constructor must be followed by a call to setKey() before the
|
|
* block cipher can be used for encryption or decryption.
|
|
*/
|
|
AES256::AES256()
|
|
{
|
|
rounds = 14;
|
|
schedule = sched;
|
|
}
|
|
|
|
AES256::~AES256()
|
|
{
|
|
clean(sched);
|
|
}
|
|
|
|
/**
|
|
* \brief Size of a 256-bit AES key in bytes.
|
|
* \return Always returns 32.
|
|
*/
|
|
size_t AES256::keySize() const
|
|
{
|
|
return 32;
|
|
}
|
|
|
|
bool AES256::setKey(const uint8_t *key, size_t len)
|
|
{
|
|
if (len != 32)
|
|
return false;
|
|
|
|
// Copy the key itself into the first 32 bytes of the schedule.
|
|
uint8_t *schedule = sched;
|
|
memcpy(schedule, key, 32);
|
|
|
|
// Expand the key schedule until we have 240 bytes of expanded key.
|
|
uint8_t iteration = 1;
|
|
uint8_t n = 32;
|
|
uint8_t w = 8;
|
|
while (n < 240) {
|
|
if (w == 8) {
|
|
// Every 32 bytes (8 words) we need to apply the key schedule core.
|
|
keyScheduleCore(schedule + 32, schedule + 28, iteration);
|
|
schedule[32] ^= schedule[0];
|
|
schedule[33] ^= schedule[1];
|
|
schedule[34] ^= schedule[2];
|
|
schedule[35] ^= schedule[3];
|
|
++iteration;
|
|
w = 0;
|
|
} else if (w == 4) {
|
|
// At the 16 byte mark we need to apply the S-box.
|
|
applySbox(schedule + 32, schedule + 28);
|
|
schedule[32] ^= schedule[0];
|
|
schedule[33] ^= schedule[1];
|
|
schedule[34] ^= schedule[2];
|
|
schedule[35] ^= schedule[3];
|
|
} else {
|
|
// Otherwise just XOR the word with the one 32 bytes previous.
|
|
schedule[32] = schedule[28] ^ schedule[0];
|
|
schedule[33] = schedule[29] ^ schedule[1];
|
|
schedule[34] = schedule[30] ^ schedule[2];
|
|
schedule[35] = schedule[31] ^ schedule[3];
|
|
}
|
|
|
|
// Advance to the next word in the schedule.
|
|
schedule += 4;
|
|
n += 4;
|
|
++w;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* \class AESTiny256 AES.h <AES.h>
|
|
* \brief AES block cipher with 256-bit keys and tiny memory usage.
|
|
*
|
|
* This class differs from the AES256 class in the following ways:
|
|
*
|
|
* \li RAM requirements are vastly reduced. The key is stored directly
|
|
* and then expanded to the full key schedule round by round. The setKey()
|
|
* method is very fast because of this.
|
|
* \li Performance of encryptBlock() is slower than for AES256 due to
|
|
* expanding the key on the fly rather than ahead of time.
|
|
* \li The decryptBlock() function is not supported, which means that CBC
|
|
* mode cannot be used but the CTR, CFB, OFB, EAX, and GCM modes can be used.
|
|
*
|
|
* This class is useful when RAM is at a premium, CBC mode is not required,
|
|
* and reduced encryption performance is not a hindrance to the application.
|
|
*
|
|
* The companion AESSmall256 class supports decryptBlock() at the cost of
|
|
* some additional memory and slower setKey() times.
|
|
*
|
|
* \sa AESSmall256, AES256
|
|
*/
|
|
|
|
/** @cond */
|
|
|
|
// Helper macros.
|
|
#define LEFT 0
|
|
#define RIGHT 16
|
|
#define ENCRYPT(phase) \
|
|
do { \
|
|
AESCommon::subBytesAndShiftRows(state2, state1); \
|
|
AESCommon::mixColumn(state1, state2); \
|
|
AESCommon::mixColumn(state1 + 4, state2 + 4); \
|
|
AESCommon::mixColumn(state1 + 8, state2 + 8); \
|
|
AESCommon::mixColumn(state1 + 12, state2 + 12); \
|
|
for (posn = 0; posn < 16; ++posn) \
|
|
state1[posn] ^= schedule[posn + (phase)]; \
|
|
} while (0)
|
|
#define DECRYPT(phase) \
|
|
do { \
|
|
for (posn = 0; posn < 16; ++posn) \
|
|
state2[posn] ^= schedule[posn + (phase)]; \
|
|
AESCommon::inverseMixColumn(state1, state2); \
|
|
AESCommon::inverseMixColumn(state1 + 4, state2 + 4); \
|
|
AESCommon::inverseMixColumn(state1 + 8, state2 + 8); \
|
|
AESCommon::inverseMixColumn(state1 + 12, state2 + 12); \
|
|
AESCommon::inverseShiftRowsAndSubBytes(state2, state1); \
|
|
} while (0)
|
|
#define KCORE(n) \
|
|
do { \
|
|
AESCommon::keyScheduleCore(temp, schedule + 28, (n)); \
|
|
schedule[0] ^= temp[0]; \
|
|
schedule[1] ^= temp[1]; \
|
|
schedule[2] ^= temp[2]; \
|
|
schedule[3] ^= temp[3]; \
|
|
} while (0)
|
|
#define KXOR(a, b) \
|
|
do { \
|
|
schedule[(a) * 4] ^= schedule[(b) * 4]; \
|
|
schedule[(a) * 4 + 1] ^= schedule[(b) * 4 + 1]; \
|
|
schedule[(a) * 4 + 2] ^= schedule[(b) * 4 + 2]; \
|
|
schedule[(a) * 4 + 3] ^= schedule[(b) * 4 + 3]; \
|
|
} while (0)
|
|
#define KSBOX() \
|
|
do { \
|
|
AESCommon::applySbox(temp, schedule + 12); \
|
|
schedule[16] ^= temp[0]; \
|
|
schedule[17] ^= temp[1]; \
|
|
schedule[18] ^= temp[2]; \
|
|
schedule[19] ^= temp[3]; \
|
|
} while (0)
|
|
|
|
/** @endcond */
|
|
|
|
/**
|
|
* \brief Constructs an AES 256-bit block cipher with no initial key.
|
|
*
|
|
* This constructor must be followed by a call to setKey() before the
|
|
* block cipher can be used for encryption or decryption.
|
|
*/
|
|
AESTiny256::AESTiny256()
|
|
{
|
|
}
|
|
|
|
AESTiny256::~AESTiny256()
|
|
{
|
|
clean(schedule);
|
|
}
|
|
|
|
/**
|
|
* \brief Size of an AES block in bytes.
|
|
* \return Always returns 16.
|
|
*/
|
|
size_t AESTiny256::blockSize() const
|
|
{
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* \brief Size of a 256-bit AES key in bytes.
|
|
* \return Always returns 32.
|
|
*/
|
|
size_t AESTiny256::keySize() const
|
|
{
|
|
return 32;
|
|
}
|
|
|
|
bool AESTiny256::setKey(const uint8_t *key, size_t len)
|
|
{
|
|
if (len == 32) {
|
|
// Make a copy of the key - it will be expanded in encryptBlock().
|
|
memcpy(schedule, key, 32);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void AESTiny256::encryptBlock(uint8_t *output, const uint8_t *input)
|
|
{
|
|
uint8_t schedule[32];
|
|
uint8_t posn;
|
|
uint8_t round;
|
|
uint8_t state1[16];
|
|
uint8_t state2[16];
|
|
uint8_t temp[4];
|
|
|
|
// Start with the key in the schedule buffer.
|
|
memcpy(schedule, this->schedule, 32);
|
|
|
|
// Copy the input into the state and perform the first round.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
state1[posn] = input[posn] ^ schedule[posn];
|
|
ENCRYPT(RIGHT);
|
|
|
|
// Perform the next 12 rounds of the cipher two at a time.
|
|
for (round = 1; round <= 6; ++round) {
|
|
// Expand the next 32 bytes of the key schedule.
|
|
KCORE(round);
|
|
KXOR(1, 0);
|
|
KXOR(2, 1);
|
|
KXOR(3, 2);
|
|
KSBOX();
|
|
KXOR(5, 4);
|
|
KXOR(6, 5);
|
|
KXOR(7, 6);
|
|
|
|
// Encrypt using the left and right halves of the key schedule.
|
|
ENCRYPT(LEFT);
|
|
ENCRYPT(RIGHT);
|
|
}
|
|
|
|
// Expand the final 16 bytes of the key schedule.
|
|
KCORE(7);
|
|
KXOR(1, 0);
|
|
KXOR(2, 1);
|
|
KXOR(3, 2);
|
|
|
|
// Perform the final round.
|
|
AESCommon::subBytesAndShiftRows(state2, state1);
|
|
for (posn = 0; posn < 16; ++posn)
|
|
output[posn] = state2[posn] ^ schedule[posn];
|
|
}
|
|
|
|
void AESTiny256::decryptBlock(uint8_t *output, const uint8_t *input)
|
|
{
|
|
// Decryption is not supported by AESTiny256.
|
|
}
|
|
|
|
void AESTiny256::clear()
|
|
{
|
|
clean(schedule);
|
|
}
|
|
|
|
/**
|
|
* \class AESSmall256 AES.h <AES.h>
|
|
* \brief AES block cipher with 256-bit keys and reduced memory usage.
|
|
*
|
|
* This class differs from the AES256 class in that the RAM requirements are
|
|
* vastly reduced. The key schedule is expanded round by round instead of
|
|
* being generated and stored by setKey(). The performance of encryption
|
|
* and decryption is slightly less because of this.
|
|
*
|
|
* This class is useful when RAM is at a premium and reduced encryption
|
|
* performance is not a hindrance to the application.
|
|
*
|
|
* The companion AESTiny256 class uses even less RAM but only supports the
|
|
* encryptBlock() operation. Block cipher modes like CTR, EAX, and GCM
|
|
* do not need the decryptBlock() operation, so AESTiny256 may be a better
|
|
* option than AESSmall256 for many applications.
|
|
*
|
|
* \sa AESTiny256, AES256
|
|
*/
|
|
|
|
/**
|
|
* \brief Constructs an AES 256-bit block cipher with no initial key.
|
|
*
|
|
* This constructor must be followed by a call to setKey() before the
|
|
* block cipher can be used for encryption or decryption.
|
|
*/
|
|
AESSmall256::AESSmall256()
|
|
{
|
|
}
|
|
|
|
AESSmall256::~AESSmall256()
|
|
{
|
|
clean(reverse);
|
|
}
|
|
|
|
bool AESSmall256::setKey(const uint8_t *key, size_t len)
|
|
{
|
|
uint8_t *schedule;
|
|
uint8_t round;
|
|
uint8_t temp[4];
|
|
|
|
// Set the encryption key first.
|
|
if (!AESTiny256::setKey(key, len))
|
|
return false;
|
|
|
|
// Expand the key schedule up to the last round which gives
|
|
// us the round keys to use for the final two rounds. We can
|
|
// then work backwards from there in decryptBlock().
|
|
schedule = reverse;
|
|
memcpy(schedule, key, 32);
|
|
for (round = 1; round <= 6; ++round) {
|
|
KCORE(round);
|
|
KXOR(1, 0);
|
|
KXOR(2, 1);
|
|
KXOR(3, 2);
|
|
KSBOX();
|
|
KXOR(5, 4);
|
|
KXOR(6, 5);
|
|
KXOR(7, 6);
|
|
}
|
|
KCORE(7);
|
|
KXOR(1, 0);
|
|
KXOR(2, 1);
|
|
KXOR(3, 2);
|
|
|
|
// Key is ready to go.
|
|
return true;
|
|
}
|
|
|
|
void AESSmall256::decryptBlock(uint8_t *output, const uint8_t *input)
|
|
{
|
|
uint8_t schedule[32];
|
|
uint8_t round;
|
|
uint8_t posn;
|
|
uint8_t state1[16];
|
|
uint8_t state2[16];
|
|
uint8_t temp[4];
|
|
|
|
// Start with the end of the decryption schedule.
|
|
memcpy(schedule, reverse, 32);
|
|
|
|
// Copy the input into the state and reverse the final round.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
state1[posn] = input[posn] ^ schedule[posn];
|
|
AESCommon::inverseShiftRowsAndSubBytes(state2, state1);
|
|
KXOR(3, 2);
|
|
KXOR(2, 1);
|
|
KXOR(1, 0);
|
|
KCORE(7);
|
|
|
|
// Perform the next 12 rounds of the decryption process two at a time.
|
|
for (round = 6; round >= 1; --round) {
|
|
// Decrypt using the right and left halves of the key schedule.
|
|
DECRYPT(RIGHT);
|
|
DECRYPT(LEFT);
|
|
|
|
// Expand the next 32 bytes of the key schedule in reverse.
|
|
KXOR(7, 6);
|
|
KXOR(6, 5);
|
|
KXOR(5, 4);
|
|
KSBOX();
|
|
KXOR(3, 2);
|
|
KXOR(2, 1);
|
|
KXOR(1, 0);
|
|
KCORE(round);
|
|
}
|
|
|
|
// Reverse the initial round and create the output words.
|
|
DECRYPT(RIGHT);
|
|
for (posn = 0; posn < 16; ++posn)
|
|
output[posn] = state2[posn] ^ schedule[posn];
|
|
}
|
|
|
|
void AESSmall256::clear()
|
|
{
|
|
clean(reverse);
|
|
AESTiny256::clear();
|
|
}
|
|
|
|
#endif // CRYPTO_AES_DEFAULT
|