1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
2016-03-16 19:19:11 +10:00

340 lines
9.9 KiB
C++

/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "GCM.h"
#include "Crypto.h"
#include "utility/EndianUtil.h"
#include <string.h>
/**
* \class GCMCommon GCM.h <GCM.h>
* \brief Concrete base class to assist with implementing GCM for
* 128-bit block ciphers.
*
* References: <a href="http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf">NIST SP 800-38D</a>,
* http://en.wikipedia.org/wiki/Galois/Counter_Mode
*
* \sa GCM
*/
/**
* \brief Constructs a new cipher in GCM mode.
*
* This constructor must be followed by a call to setBlockCipher().
*/
GCMCommon::GCMCommon()
: blockCipher(0)
{
state.authSize = 0;
state.dataSize = 0;
state.dataStarted = false;
state.posn = 16;
}
/**
* \brief Destroys this cipher object after clearing sensitive information.
*/
GCMCommon::~GCMCommon()
{
clean(state);
}
size_t GCMCommon::keySize() const
{
return blockCipher->keySize();
}
size_t GCMCommon::ivSize() const
{
// The GCM specification recommends an IV size of 96 bits.
return 12;
}
size_t GCMCommon::tagSize() const
{
return 16;
}
bool GCMCommon::setKey(const uint8_t *key, size_t len)
{
// Set the encryption key for the block cipher.
if (!blockCipher->setKey(key, len))
return false;
// Construct the hashing key by encrypting a zero block.
memset(state.nonce, 0, 16);
blockCipher->encryptBlock(state.nonce, state.nonce);
ghash.reset(state.nonce);
return true;
}
bool GCMCommon::setIV(const uint8_t *iv, size_t len)
{
// Note: We assume that setKey() has already been called to
// set the hashing key in the "ghash" object and that the
// hashing key itself is still stored in "state.nonce".
// Format the counter block from the IV.
if (len == 12) {
// IV's of exactly 96 bits are used directly as the counter block.
memcpy(state.counter, iv, 12);
state.counter[12] = 0;
state.counter[13] = 0;
state.counter[14] = 0;
state.counter[15] = 1;
} else {
// IV's of other sizes are hashed to produce the counter block.
ghash.update(iv, len);
ghash.pad();
uint64_t sizes[2] = {0, htobe64(((uint64_t)len) * 8)};
ghash.update(sizes, sizeof(sizes));
clean(sizes);
ghash.finalize(state.counter, 16);
ghash.reset(state.nonce);
}
// Reset the GCM object ready to process auth or payload data.
state.authSize = 0;
state.dataSize = 0;
state.dataStarted = false;
state.posn = 16;
// Replace the hash key in "nonce" with the encrypted counter.
// This value will be XOR'ed with the final authentication hash
// value in computeTag().
blockCipher->encryptBlock(state.nonce, state.counter);
return true;
}
/**
* \brief Increments the least significant 32 bits of the counter block.
*
* \param counter The counter block to increment.
*/
static inline void increment(uint8_t counter[16])
{
uint16_t carry = 1;
carry += counter[15];
counter[15] = (uint8_t)carry;
carry = (carry >> 8) + counter[14];
counter[14] = (uint8_t)carry;
carry = (carry >> 8) + counter[13];
counter[13] = (uint8_t)carry;
carry = (carry >> 8) + counter[12];
counter[12] = (uint8_t)carry;
}
void GCMCommon::encrypt(uint8_t *output, const uint8_t *input, size_t len)
{
// Finalize the authenticated data if necessary.
if (!state.dataStarted) {
ghash.pad();
state.dataStarted = true;
}
// Encrypt the plaintext using the block cipher in counter mode.
uint8_t *out = output;
size_t size = len;
while (size > 0) {
// Create a new keystream block if necessary.
if (state.posn >= 16) {
increment(state.counter);
blockCipher->encryptBlock(state.stream, state.counter);
state.posn = 0;
}
// Encrypt as many bytes as we can using the keystream block.
uint8_t temp = 16 - state.posn;
if (temp > size)
temp = size;
uint8_t *stream = state.stream + state.posn;
state.posn += temp;
size -= temp;
while (temp > 0) {
*out++ = *input++ ^ *stream++;
--temp;
}
}
// Feed the ciphertext into the hash.
ghash.update(output, len);
state.dataSize += len;
}
void GCMCommon::decrypt(uint8_t *output, const uint8_t *input, size_t len)
{
// Finalize the authenticated data if necessary.
if (!state.dataStarted) {
ghash.pad();
state.dataStarted = true;
}
// Feed the ciphertext into the hash before we decrypt it.
ghash.update(input, len);
state.dataSize += len;
// Decrypt the plaintext using the block cipher in counter mode.
while (len > 0) {
// Create a new keystream block if necessary.
if (state.posn >= 16) {
increment(state.counter);
blockCipher->encryptBlock(state.stream, state.counter);
state.posn = 0;
}
// Decrypt as many bytes as we can using the keystream block.
uint8_t temp = 16 - state.posn;
if (temp > len)
temp = len;
uint8_t *stream = state.stream + state.posn;
state.posn += temp;
len -= temp;
while (temp > 0) {
*output++ = *input++ ^ *stream++;
--temp;
}
}
}
void GCMCommon::addAuthData(const void *data, size_t len)
{
if (!state.dataStarted) {
ghash.update(data, len);
state.authSize += len;
}
}
void GCMCommon::computeTag(void *tag, size_t len)
{
// Pad the hashed data and add the sizes.
ghash.pad();
uint64_t sizes[2] = {
htobe64(state.authSize * 8),
htobe64(state.dataSize * 8)
};
ghash.update(sizes, sizeof(sizes));
clean(sizes);
// Get the finalized hash, encrypt it with the nonce, and return the tag.
ghash.finalize(state.stream, 16);
for (uint8_t posn = 0; posn < 16; ++posn)
state.stream[posn] ^= state.nonce[posn];
if (len > 16)
len = 16;
memcpy(tag, state.stream, len);
}
bool GCMCommon::checkTag(const void *tag, size_t len)
{
// Can never match if the expected tag length is too long.
if (len > 16)
return false;
// Compute the tag and check it.
computeTag(state.counter, 16);
return secure_compare(state.counter, tag, len);
}
void GCMCommon::clear()
{
blockCipher->clear();
ghash.clear();
clean(state);
state.posn = 16;
}
/**
* \fn void GCMCommon::setBlockCipher(BlockCipher *cipher)
* \brief Sets the block cipher to use for this GCM object.
*
* \param cipher The block cipher to use to implement GCM mode.
* This object must have a block size of 128 bits (16 bytes).
*/
/**
* \class GCM GCM.h <GCM.h>
* \brief Implementation of the Galois Counter Mode (GCM).
*
* GCM mode converts a block cipher into an authenticated cipher
* that uses the block cipher T to encrypt and GHASH to authenticate.
*
* The size of the key is determined by the underlying block cipher T.
* The IV is recommended to be 96 bits (12 bytes) in length, but other
* lengths are supported as well. The default tagSize() is 128 bits
* (16 bytes) but the GCM specification does allow other tag sizes:
* 32, 64, 96, 104, 112, 120, or 128 bits (4, 8, 12, 13, 14, 15, or 16 bytes).
*
* The template parameter T must be a concrete subclass of BlockCipher
* indicating the specific block cipher to use. The block cipher must
* have a block size of 128 bits. For example, the following creates a
* GCM object using AES256 as the underlying cipher and then uses it
* to encrypt and authenticate a \c plaintext block:
*
* \code
* GCM<AES256> gcm;
* gcm.setKey(key, sizeof(key));
* gcm.setIV(iv, sizeof(iv));
* gcm.addAuthData(adata, sizeof(adata));
* gcm.encrypt(ciphertext, plaintext, sizeof(plaintext));
* gcm.computeTag(tag, sizeof(tag));
* \endcode
*
* The decryption process is almost identical to convert a \c ciphertext and
* \a tag back into plaintext and then check the tag:
*
* \code
* GCM<AES256> gcm;
* gcm.setKey(key, sizeof(key));
* gcm.setIV(iv, sizeof(iv));
* gcm.addAuthData(adata, sizeof(adata));
* gcm.decrypt(ciphertext, plaintext, sizeof(plaintext));
* if (!gcm.checkTag(tag, sizeof(tag))) {
* // The data was invalid - do not use it.
* ...
* }
* \endcode
*
* The GCM class can also be used to implement GMAC message authentication
* by omitting the plaintext:
*
* \code
* GCM<AES256> gcm;
* gcm.setKey(key, sizeof(key));
* gcm.setIV(iv, sizeof(iv));
* gcm.addAuthData(adata1, sizeof(adata1));
* gcm.addAuthData(adata2, sizeof(adata1));
* ...
* gcm.addAuthData(adataN, sizeof(adataN));
* gcm.computeTag(tag, sizeof(tag));
* \endcode
*
* References: <a href="http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf">NIST SP 800-38D</a>,
* http://en.wikipedia.org/wiki/Galois/Counter_Mode
*
* \sa GCMCommon, GHASH
*/
/**
* \fn GCM::GCM()
* \brief Constructs a new GCM object for the block cipher T.
*/