mirror of
https://github.com/taigrr/arduinolibs
synced 2025-01-18 04:33:12 -08:00
357 lines
10 KiB
C++
357 lines
10 KiB
C++
/*
|
|
* Copyright (C) 2015,2018 Southern Storm Software, Pty Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "AES.h"
|
|
#include "Crypto.h"
|
|
#include <string.h>
|
|
|
|
#if defined(CRYPTO_AES_DEFAULT) || defined(CRYPTO_DOC)
|
|
|
|
/**
|
|
* \class AES128 AES.h <AES.h>
|
|
* \brief AES block cipher with 128-bit keys.
|
|
*
|
|
* \sa AES192, AES256, AESTiny128, AESSmall128
|
|
*/
|
|
|
|
/**
|
|
* \brief Constructs an AES 128-bit block cipher with no initial key.
|
|
*
|
|
* This constructor must be followed by a call to setKey() before the
|
|
* block cipher can be used for encryption or decryption.
|
|
*/
|
|
AES128::AES128()
|
|
{
|
|
rounds = 10;
|
|
schedule = sched;
|
|
}
|
|
|
|
AES128::~AES128()
|
|
{
|
|
clean(sched);
|
|
}
|
|
|
|
/**
|
|
* \brief Size of a 128-bit AES key in bytes.
|
|
* \return Always returns 16.
|
|
*/
|
|
size_t AES128::keySize() const
|
|
{
|
|
return 16;
|
|
}
|
|
|
|
bool AES128::setKey(const uint8_t *key, size_t len)
|
|
{
|
|
if (len != 16)
|
|
return false;
|
|
|
|
// Copy the key itself into the first 16 bytes of the schedule.
|
|
uint8_t *schedule = sched;
|
|
memcpy(schedule, key, 16);
|
|
|
|
// Expand the key schedule until we have 176 bytes of expanded key.
|
|
uint8_t iteration = 1;
|
|
uint8_t n = 16;
|
|
uint8_t w = 4;
|
|
while (n < 176) {
|
|
if (w == 4) {
|
|
// Every 16 bytes (4 words) we need to apply the key schedule core.
|
|
keyScheduleCore(schedule + 16, schedule + 12, iteration);
|
|
schedule[16] ^= schedule[0];
|
|
schedule[17] ^= schedule[1];
|
|
schedule[18] ^= schedule[2];
|
|
schedule[19] ^= schedule[3];
|
|
++iteration;
|
|
w = 0;
|
|
} else {
|
|
// Otherwise just XOR the word with the one 16 bytes previous.
|
|
schedule[16] = schedule[12] ^ schedule[0];
|
|
schedule[17] = schedule[13] ^ schedule[1];
|
|
schedule[18] = schedule[14] ^ schedule[2];
|
|
schedule[19] = schedule[15] ^ schedule[3];
|
|
}
|
|
|
|
// Advance to the next word in the schedule.
|
|
schedule += 4;
|
|
n += 4;
|
|
++w;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* \class AESTiny128 AES.h <AES.h>
|
|
* \brief AES block cipher with 128-bit keys and tiny memory usage.
|
|
*
|
|
* This class differs from the AES128 class in the following ways:
|
|
*
|
|
* \li RAM requirements are vastly reduced. The key is stored directly
|
|
* and then expanded to the full key schedule round by round. The setKey()
|
|
* method is very fast because of this.
|
|
* \li Performance of encryptBlock() is slower than for AES128 due to
|
|
* expanding the key on the fly rather than ahead of time.
|
|
* \li The decryptBlock() function is not supported, which means that CBC
|
|
* mode cannot be used but the CTR, CFB, OFB, EAX, and GCM modes can be used.
|
|
*
|
|
* This class is useful when RAM is at a premium, CBC mode is not required,
|
|
* and reduced encryption performance is not a hindrance to the application.
|
|
*
|
|
* The companion AESSmall128 class supports decryptBlock() at the cost of
|
|
* some additional memory and slower setKey() times.
|
|
*
|
|
* \sa AESSmall128, AES128
|
|
*/
|
|
|
|
/** @cond */
|
|
|
|
// Helper macros.
|
|
#define KCORE(n) \
|
|
do { \
|
|
AESCommon::keyScheduleCore(temp, schedule + 12, (n)); \
|
|
schedule[0] ^= temp[0]; \
|
|
schedule[1] ^= temp[1]; \
|
|
schedule[2] ^= temp[2]; \
|
|
schedule[3] ^= temp[3]; \
|
|
} while (0)
|
|
#define KXOR(a, b) \
|
|
do { \
|
|
schedule[(a) * 4] ^= schedule[(b) * 4]; \
|
|
schedule[(a) * 4 + 1] ^= schedule[(b) * 4 + 1]; \
|
|
schedule[(a) * 4 + 2] ^= schedule[(b) * 4 + 2]; \
|
|
schedule[(a) * 4 + 3] ^= schedule[(b) * 4 + 3]; \
|
|
} while (0)
|
|
|
|
/** @endcond */
|
|
|
|
/**
|
|
* \brief Constructs an AES 128-bit block cipher with no initial key.
|
|
*
|
|
* This constructor must be followed by a call to setKey() before the
|
|
* block cipher can be used for encryption or decryption.
|
|
*/
|
|
AESTiny128::AESTiny128()
|
|
{
|
|
}
|
|
|
|
AESTiny128::~AESTiny128()
|
|
{
|
|
clean(schedule);
|
|
}
|
|
|
|
/**
|
|
* \brief Size of an AES block in bytes.
|
|
* \return Always returns 16.
|
|
*/
|
|
size_t AESTiny128::blockSize() const
|
|
{
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* \brief Size of a 128-bit AES key in bytes.
|
|
* \return Always returns 16.
|
|
*/
|
|
size_t AESTiny128::keySize() const
|
|
{
|
|
return 16;
|
|
}
|
|
|
|
bool AESTiny128::setKey(const uint8_t *key, size_t len)
|
|
{
|
|
if (len == 16) {
|
|
// Make a copy of the key - it will be expanded in encryptBlock().
|
|
memcpy(schedule, key, 16);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void AESTiny128::encryptBlock(uint8_t *output, const uint8_t *input)
|
|
{
|
|
uint8_t schedule[16];
|
|
uint8_t posn;
|
|
uint8_t round;
|
|
uint8_t state1[16];
|
|
uint8_t state2[16];
|
|
uint8_t temp[4];
|
|
|
|
// Start with the key in the schedule buffer.
|
|
memcpy(schedule, this->schedule, 16);
|
|
|
|
// Copy the input into the state and XOR with the key schedule.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
state1[posn] = input[posn] ^ schedule[posn];
|
|
|
|
// Perform the first 9 rounds of the cipher.
|
|
for (round = 1; round <= 9; ++round) {
|
|
// Expand the next 16 bytes of the key schedule.
|
|
KCORE(round);
|
|
KXOR(1, 0);
|
|
KXOR(2, 1);
|
|
KXOR(3, 2);
|
|
|
|
// Encrypt using the key schedule.
|
|
AESCommon::subBytesAndShiftRows(state2, state1);
|
|
AESCommon::mixColumn(state1, state2);
|
|
AESCommon::mixColumn(state1 + 4, state2 + 4);
|
|
AESCommon::mixColumn(state1 + 8, state2 + 8);
|
|
AESCommon::mixColumn(state1 + 12, state2 + 12);
|
|
for (posn = 0; posn < 16; ++posn)
|
|
state1[posn] ^= schedule[posn];
|
|
}
|
|
|
|
// Expand the final 16 bytes of the key schedule.
|
|
KCORE(10);
|
|
KXOR(1, 0);
|
|
KXOR(2, 1);
|
|
KXOR(3, 2);
|
|
|
|
// Perform the final round.
|
|
AESCommon::subBytesAndShiftRows(state2, state1);
|
|
for (posn = 0; posn < 16; ++posn)
|
|
output[posn] = state2[posn] ^ schedule[posn];
|
|
}
|
|
|
|
void AESTiny128::decryptBlock(uint8_t *output, const uint8_t *input)
|
|
{
|
|
// Decryption is not supported by AESTiny128.
|
|
}
|
|
|
|
void AESTiny128::clear()
|
|
{
|
|
clean(schedule);
|
|
}
|
|
|
|
/**
|
|
* \class AESSmall128 AES.h <AES.h>
|
|
* \brief AES block cipher with 128-bit keys and reduced memory usage.
|
|
*
|
|
* This class differs from the AES128 class in that the RAM requirements are
|
|
* vastly reduced. The key schedule is expanded round by round instead of
|
|
* being generated and stored by setKey(). The performance of encryption
|
|
* and decryption is slightly less because of this.
|
|
*
|
|
* This class is useful when RAM is at a premium and reduced encryption
|
|
* performance is not a hindrance to the application.
|
|
*
|
|
* The companion AESTiny128 class uses even less RAM but only supports the
|
|
* encryptBlock() operation. Block cipher modes like CTR, EAX, and GCM
|
|
* do not need the decryptBlock() operation, so AESTiny128 may be a better
|
|
* option than AESSmall128 for many applications.
|
|
*
|
|
* \sa AESTiny128, AES128
|
|
*/
|
|
|
|
/**
|
|
* \brief Constructs an AES 128-bit block cipher with no initial key.
|
|
*
|
|
* This constructor must be followed by a call to setKey() before the
|
|
* block cipher can be used for encryption or decryption.
|
|
*/
|
|
AESSmall128::AESSmall128()
|
|
{
|
|
}
|
|
|
|
AESSmall128::~AESSmall128()
|
|
{
|
|
clean(reverse);
|
|
}
|
|
|
|
bool AESSmall128::setKey(const uint8_t *key, size_t len)
|
|
{
|
|
uint8_t *schedule;
|
|
uint8_t round;
|
|
uint8_t temp[4];
|
|
|
|
// Set the encryption key first.
|
|
if (!AESTiny128::setKey(key, len))
|
|
return false;
|
|
|
|
// Expand the key schedule up to the last round which gives
|
|
// us the round keys to use for the final two rounds. We can
|
|
// then work backwards from there in decryptBlock().
|
|
schedule = reverse;
|
|
memcpy(schedule, key, 16);
|
|
for (round = 1; round <= 10; ++round) {
|
|
KCORE(round);
|
|
KXOR(1, 0);
|
|
KXOR(2, 1);
|
|
KXOR(3, 2);
|
|
}
|
|
|
|
// Key is ready to go.
|
|
return true;
|
|
}
|
|
|
|
void AESSmall128::decryptBlock(uint8_t *output, const uint8_t *input)
|
|
{
|
|
uint8_t schedule[16];
|
|
uint8_t round;
|
|
uint8_t posn;
|
|
uint8_t state1[16];
|
|
uint8_t state2[16];
|
|
uint8_t temp[4];
|
|
|
|
// Start with the end of the decryption schedule.
|
|
memcpy(schedule, reverse, 16);
|
|
|
|
// Copy the input into the state and reverse the final round.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
state1[posn] = input[posn] ^ schedule[posn];
|
|
AESCommon::inverseShiftRowsAndSubBytes(state2, state1);
|
|
KXOR(3, 2);
|
|
KXOR(2, 1);
|
|
KXOR(1, 0);
|
|
KCORE(10);
|
|
|
|
// Perform the next 9 rounds of the decryption process.
|
|
for (round = 9; round >= 1; --round) {
|
|
// Decrypt using the key schedule.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
state2[posn] ^= schedule[posn];
|
|
AESCommon::inverseMixColumn(state1, state2);
|
|
AESCommon::inverseMixColumn(state1 + 4, state2 + 4);
|
|
AESCommon::inverseMixColumn(state1 + 8, state2 + 8);
|
|
AESCommon::inverseMixColumn(state1 + 12, state2 + 12);
|
|
AESCommon::inverseShiftRowsAndSubBytes(state2, state1);
|
|
|
|
// Expand the next 16 bytes of the key schedule in reverse.
|
|
KXOR(3, 2);
|
|
KXOR(2, 1);
|
|
KXOR(1, 0);
|
|
KCORE(round);
|
|
}
|
|
|
|
// Reverse the initial round and create the output words.
|
|
for (posn = 0; posn < 16; ++posn)
|
|
output[posn] = state2[posn] ^ schedule[posn];
|
|
}
|
|
|
|
void AESSmall128::clear()
|
|
{
|
|
clean(reverse);
|
|
AESTiny128::clear();
|
|
}
|
|
|
|
#endif // CRYPTO_AES_DEFAULT
|