1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
Rhys Weatherley 2decb74161 Remove SHA1 from the library
SHA1 is on the cusp of being utterly broken so no new
software should be making use of it for any reason.
2016-01-16 09:08:28 +10:00

259 lines
7.9 KiB
C++

/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "SHA256.h"
#include "Crypto.h"
#include "utility/RotateUtil.h"
#include "utility/EndianUtil.h"
#include "utility/ProgMemUtil.h"
#include <string.h>
/**
* \class SHA256 SHA256.h <SHA256.h>
* \brief SHA-256 hash algorithm.
*
* Reference: http://en.wikipedia.org/wiki/SHA-2
*
* \sa SHA512, SHA3_256, BLAKE2s
*/
/**
* \brief Constructs a SHA-256 hash object.
*/
SHA256::SHA256()
{
reset();
}
/**
* \brief Destroys this SHA-256 hash object after clearing
* sensitive information.
*/
SHA256::~SHA256()
{
clean(state);
}
size_t SHA256::hashSize() const
{
return 32;
}
size_t SHA256::blockSize() const
{
return 64;
}
void SHA256::reset()
{
state.h[0] = 0x6a09e667;
state.h[1] = 0xbb67ae85;
state.h[2] = 0x3c6ef372;
state.h[3] = 0xa54ff53a,
state.h[4] = 0x510e527f;
state.h[5] = 0x9b05688c;
state.h[6] = 0x1f83d9ab;
state.h[7] = 0x5be0cd19;
state.chunkSize = 0;
state.length = 0;
}
void SHA256::update(const void *data, size_t len)
{
// Update the total length (in bits, not bytes).
state.length += ((uint64_t)len) << 3;
// Break the input up into 512-bit chunks and process each in turn.
const uint8_t *d = (const uint8_t *)data;
while (len > 0) {
uint8_t size = 64 - state.chunkSize;
if (size > len)
size = len;
memcpy(((uint8_t *)state.w) + state.chunkSize, d, size);
state.chunkSize += size;
len -= size;
d += size;
if (state.chunkSize == 64) {
processChunk();
state.chunkSize = 0;
}
}
}
void SHA256::finalize(void *hash, size_t len)
{
// Pad the last chunk. We may need two padding chunks if there
// isn't enough room in the first for the padding and length.
uint8_t *wbytes = (uint8_t *)state.w;
if (state.chunkSize <= (64 - 9)) {
wbytes[state.chunkSize] = 0x80;
memset(wbytes + state.chunkSize + 1, 0x00, 64 - 8 - (state.chunkSize + 1));
state.w[14] = htobe32((uint32_t)(state.length >> 32));
state.w[15] = htobe32((uint32_t)state.length);
processChunk();
} else {
wbytes[state.chunkSize] = 0x80;
memset(wbytes + state.chunkSize + 1, 0x00, 64 - (state.chunkSize + 1));
processChunk();
memset(wbytes, 0x00, 64 - 8);
state.w[14] = htobe32((uint32_t)(state.length >> 32));
state.w[15] = htobe32((uint32_t)state.length);
processChunk();
}
// Convert the result into big endian and return it.
for (uint8_t posn = 0; posn < 8; ++posn)
state.w[posn] = htobe32(state.h[posn]);
// Copy the hash to the caller's return buffer.
if (len > 32)
len = 32;
memcpy(hash, state.w, len);
}
void SHA256::clear()
{
clean(state);
reset();
}
void SHA256::resetHMAC(const void *key, size_t keyLen)
{
formatHMACKey(state.w, key, keyLen, 0x36);
state.length += 64 * 8;
processChunk();
}
void SHA256::finalizeHMAC(const void *key, size_t keyLen, void *hash, size_t hashLen)
{
uint8_t temp[32];
finalize(temp, sizeof(temp));
formatHMACKey(state.w, key, keyLen, 0x5C);
state.length += 64 * 8;
processChunk();
update(temp, sizeof(temp));
finalize(hash, hashLen);
clean(temp);
}
/**
* \brief Processes a single 512-bit chunk with the core SHA-256 algorithm.
*
* Reference: http://en.wikipedia.org/wiki/SHA-2
*/
void SHA256::processChunk()
{
// Round constants for SHA-256.
static uint32_t const k[64] PROGMEM = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
// Convert the first 16 words from big endian to host byte order.
uint8_t index;
for (index = 0; index < 16; ++index)
state.w[index] = be32toh(state.w[index]);
// Initialise working variables to the current hash value.
uint32_t a = state.h[0];
uint32_t b = state.h[1];
uint32_t c = state.h[2];
uint32_t d = state.h[3];
uint32_t e = state.h[4];
uint32_t f = state.h[5];
uint32_t g = state.h[6];
uint32_t h = state.h[7];
// Perform the first 16 rounds of the compression function main loop.
uint32_t temp1, temp2;
for (index = 0; index < 16; ++index) {
temp1 = h + pgm_read_dword(k + index) + state.w[index] +
(rightRotate6(e) ^ rightRotate11(e) ^ rightRotate25(e)) +
((e & f) ^ ((~e) & g));
temp2 = (rightRotate2(a) ^ rightRotate13(a) ^ rightRotate22(a)) +
((a & b) ^ (a & c) ^ (b & c));
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
// Perform the 48 remaining rounds. We expand the first 16 words to
// 64 in-place in the "w" array. This saves 192 bytes of memory
// that would have otherwise need to be allocated to the "w" array.
for (; index < 64; ++index) {
// Expand the next word.
temp1 = state.w[(index - 15) & 0x0F];
temp2 = state.w[(index - 2) & 0x0F];
temp1 = state.w[index & 0x0F] =
state.w[(index - 16) & 0x0F] + state.w[(index - 7) & 0x0F] +
(rightRotate7(temp1) ^ rightRotate18(temp1) ^ (temp1 >> 3)) +
(rightRotate17(temp2) ^ rightRotate19(temp2) ^ (temp2 >> 10));
// Perform the round.
temp1 = h + pgm_read_dword(k + index) + temp1 +
(rightRotate6(e) ^ rightRotate11(e) ^ rightRotate25(e)) +
((e & f) ^ ((~e) & g));
temp2 = (rightRotate2(a) ^ rightRotate13(a) ^ rightRotate22(a)) +
((a & b) ^ (a & c) ^ (b & c));
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
// Add the compressed chunk to the current hash value.
state.h[0] += a;
state.h[1] += b;
state.h[2] += c;
state.h[3] += d;
state.h[4] += e;
state.h[5] += f;
state.h[6] += g;
state.h[7] += h;
// Attempt to clean up the stack.
a = b = c = d = e = f = g = h = temp1 = temp2 = 0;
}