1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00
2018-04-02 15:02:42 +10:00

430 lines
12 KiB
C++

/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the BLAKE2s implementation to verify correct behaviour.
*/
#include <Crypto.h>
#include <BLAKE2s.h>
#include <string.h>
#if defined(ESP8266) || defined(ESP32)
#include <pgmspace.h>
#else
#include <avr/pgmspace.h>
#endif
#define HASH_SIZE 32
#define BLOCK_SIZE 64
struct TestHashVector
{
const char *name;
const char *data;
uint8_t hash[HASH_SIZE];
};
// Test vectors generated with the reference implementation of BLAKE2s.
static TestHashVector const testVectorBLAKE2s_1 = {
"BLAKE2s #1",
"",
{0x69, 0x21, 0x7a, 0x30, 0x79, 0x90, 0x80, 0x94,
0xe1, 0x11, 0x21, 0xd0, 0x42, 0x35, 0x4a, 0x7c,
0x1f, 0x55, 0xb6, 0x48, 0x2c, 0xa1, 0xa5, 0x1e,
0x1b, 0x25, 0x0d, 0xfd, 0x1e, 0xd0, 0xee, 0xf9}
};
static TestHashVector const testVectorBLAKE2s_2 = {
"BLAKE2s #2",
"abc",
{0x50, 0x8c, 0x5e, 0x8c, 0x32, 0x7c, 0x14, 0xe2,
0xe1, 0xa7, 0x2b, 0xa3, 0x4e, 0xeb, 0x45, 0x2f,
0x37, 0x45, 0x8b, 0x20, 0x9e, 0xd6, 0x3a, 0x29,
0x4d, 0x99, 0x9b, 0x4c, 0x86, 0x67, 0x59, 0x82}
};
static TestHashVector const testVectorBLAKE2s_3 = {
"BLAKE2s #3",
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{0x6f, 0x4d, 0xf5, 0x11, 0x6a, 0x6f, 0x33, 0x2e,
0xda, 0xb1, 0xd9, 0xe1, 0x0e, 0xe8, 0x7d, 0xf6,
0x55, 0x7b, 0xea, 0xb6, 0x25, 0x9d, 0x76, 0x63,
0xf3, 0xbc, 0xd5, 0x72, 0x2c, 0x13, 0xf1, 0x89}
};
static TestHashVector const testVectorBLAKE2s_4 = {
"BLAKE2s #4",
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
{0x35, 0x8d, 0xd2, 0xed, 0x07, 0x80, 0xd4, 0x05,
0x4e, 0x76, 0xcb, 0x6f, 0x3a, 0x5b, 0xce, 0x28,
0x41, 0xe8, 0xe2, 0xf5, 0x47, 0x43, 0x1d, 0x4d,
0x09, 0xdb, 0x21, 0xb6, 0x6d, 0x94, 0x1f, 0xc7}
};
BLAKE2s blake2s;
byte buffer[128];
bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc)
{
size_t size = strlen(test->data);
size_t posn, len;
uint8_t value[HASH_SIZE];
hash->reset();
for (posn = 0; posn < size; posn += inc) {
len = size - posn;
if (len > inc)
len = inc;
hash->update(test->data + posn, len);
}
hash->finalize(value, sizeof(value));
if (memcmp(value, test->hash, sizeof(value)) != 0)
return false;
return true;
}
void testHash(Hash *hash, const struct TestHashVector *test)
{
bool ok;
Serial.print(test->name);
Serial.print(" ... ");
ok = testHash_N(hash, test, strlen(test->data));
ok &= testHash_N(hash, test, 1);
ok &= testHash_N(hash, test, 2);
ok &= testHash_N(hash, test, 5);
ok &= testHash_N(hash, test, 8);
ok &= testHash_N(hash, test, 13);
ok &= testHash_N(hash, test, 16);
ok &= testHash_N(hash, test, 24);
ok &= testHash_N(hash, test, 63);
ok &= testHash_N(hash, test, 64);
if (ok)
Serial.println("Passed");
else
Serial.println("Failed");
}
void perfHash(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("Hashing ... ");
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
buffer[posn] = (uint8_t)posn;
hash->reset();
start = micros();
for (count = 0; count < 1000; ++count) {
hash->update(buffer, sizeof(buffer));
}
elapsed = micros() - start;
Serial.print(elapsed / (sizeof(buffer) * 1000.0));
Serial.print("us per byte, ");
Serial.print((sizeof(buffer) * 1000.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
// Very simple method for hashing a HMAC inner or outer key.
void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad)
{
size_t posn;
uint8_t buf;
uint8_t result[HASH_SIZE];
if (keyLen <= BLOCK_SIZE) {
hash->reset();
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
if (posn < keyLen)
buf = key[posn] ^ pad;
else
buf = pad;
hash->update(&buf, 1);
}
} else {
hash->reset();
hash->update(key, keyLen);
hash->finalize(result, HASH_SIZE);
hash->reset();
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
if (posn < HASH_SIZE)
buf = result[posn] ^ pad;
else
buf = pad;
hash->update(&buf, 1);
}
}
}
void testHMAC(Hash *hash, size_t keyLen)
{
uint8_t result[HASH_SIZE];
Serial.print("HMAC-BLAKE2s keysize=");
Serial.print(keyLen);
Serial.print(" ... ");
// Construct the expected result with a simple HMAC implementation.
memset(buffer, (uint8_t)keyLen, keyLen);
hashKey(hash, buffer, keyLen, 0x36);
memset(buffer, 0xBA, sizeof(buffer));
hash->update(buffer, sizeof(buffer));
hash->finalize(result, HASH_SIZE);
memset(buffer, (uint8_t)keyLen, keyLen);
hashKey(hash, buffer, keyLen, 0x5C);
hash->update(result, HASH_SIZE);
hash->finalize(result, HASH_SIZE);
// Now use the library to compute the HMAC.
hash->resetHMAC(buffer, keyLen);
memset(buffer, 0xBA, sizeof(buffer));
hash->update(buffer, sizeof(buffer));
memset(buffer, (uint8_t)keyLen, keyLen);
hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE);
// Check the result.
if (!memcmp(result, buffer, HASH_SIZE))
Serial.println("Passed");
else
Serial.println("Failed");
}
// Deterministic sequences (Fibonacci generator). From RFC 7693.
static void selftest_seq(uint8_t *out, size_t len, uint32_t seed)
{
size_t i;
uint32_t t, a , b;
a = 0xDEAD4BAD * seed; // prime
b = 1;
for (i = 0; i < len; i++) { // fill the buf
t = a + b;
a = b;
b = t;
out[i] = (t >> 24) & 0xFF;
}
}
// Incremental version of above to save memory.
static void selftest_seq_incremental(BLAKE2s *blake, size_t len, uint32_t seed)
{
size_t i;
uint32_t t, a , b;
a = 0xDEAD4BAD * seed; // prime
b = 1;
for (i = 0; i < len; i++) { // fill the buf
t = a + b;
a = b;
b = t;
buffer[i % 128] = (t >> 24) & 0xFF;
if ((i % 128) == 127)
blake->update(buffer, sizeof(buffer));
}
blake->update(buffer, len % 128);
}
// Run the self-test from Appendix E of RFC 7693. Most of this code
// is from RFC 7693, with modifications to use the Crypto library.
void testRFC7693()
{
// Grand hash of hash results.
static const uint8_t blake2s_res[32] PROGMEM = {
0x6A, 0x41, 0x1F, 0x08, 0xCE, 0x25, 0xAD, 0xCD,
0xFB, 0x02, 0xAB, 0xA6, 0x41, 0x45, 0x1C, 0xEC,
0x53, 0xC5, 0x98, 0xB2, 0x4F, 0x4F, 0xC7, 0x87,
0xFB, 0xDC, 0x88, 0x79, 0x7F, 0x4C, 0x1D, 0xFE
};
// Parameter sets.
static const uint8_t b2s_md_len[4] PROGMEM = { 16, 20, 28, 32 };
static const uint16_t b2s_in_len[6] PROGMEM = { 0, 3, 64, 65, 255, 1024 };
size_t i, j, outlen, inlen;
uint8_t md[32], key[32];
BLAKE2s inner;
Serial.print("BLAKE2s RFC 7693 ... ");
// 256-bit hash for testing.
blake2s.reset(32);
for (i = 0; i < 4; i++) {
outlen = pgm_read_byte(&(b2s_md_len[i]));
for (j = 0; j < 6; j++) {
inlen = pgm_read_word(&(b2s_in_len[j]));
inner.reset(outlen); // unkeyed hash
selftest_seq_incremental(&inner, inlen, inlen);
inner.finalize(md, outlen);
blake2s.update(md, outlen); // hash the hash
selftest_seq(key, outlen, outlen); // keyed hash
inner.reset(key, outlen, outlen);
selftest_seq_incremental(&inner, inlen, inlen);
inner.finalize(md, outlen);
blake2s.update(md, outlen); // hash the hash
}
}
// Compute and compare the hash of hashes.
bool ok = true;
blake2s.finalize(md, 32);
for (i = 0; i < 32; i++) {
if (md[i] != pgm_read_byte(&(blake2s_res[i])))
ok = false;
}
// Report the results.
if (ok)
Serial.println("Passed");
else
Serial.println("Failed");
}
void perfFinalize(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("Finalizing ... ");
hash->reset();
hash->update("abc", 3);
start = micros();
for (count = 0; count < 1000; ++count) {
hash->finalize(buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
}
void perfKeyed(BLAKE2s *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("Keyed Reset ... ");
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
buffer[posn] = (uint8_t)posn;
start = micros();
for (count = 0; count < 1000; ++count) {
hash->reset(buffer, hash->hashSize());
hash->update(buffer, 1); // To flush the key chunk.
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
}
void perfHMAC(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("HMAC Reset ... ");
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
buffer[posn] = (uint8_t)posn;
start = micros();
for (count = 0; count < 1000; ++count) {
hash->resetHMAC(buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
Serial.print("HMAC Finalize ... ");
hash->resetHMAC(buffer, hash->hashSize());
hash->update("abc", 3);
start = micros();
for (count = 0; count < 1000; ++count) {
hash->finalizeHMAC(buffer, hash->hashSize(), buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
}
void setup()
{
Serial.begin(9600);
Serial.println();
Serial.print("State Size ... ");
Serial.println(sizeof(BLAKE2s));
Serial.println();
Serial.println("Test Vectors:");
testHash(&blake2s, &testVectorBLAKE2s_1);
testHash(&blake2s, &testVectorBLAKE2s_2);
testHash(&blake2s, &testVectorBLAKE2s_3);
testHash(&blake2s, &testVectorBLAKE2s_4);
testHMAC(&blake2s, (size_t)0);
testHMAC(&blake2s, 1);
testHMAC(&blake2s, HASH_SIZE);
testHMAC(&blake2s, BLOCK_SIZE);
testHMAC(&blake2s, BLOCK_SIZE + 1);
testHMAC(&blake2s, sizeof(buffer));
testRFC7693();
Serial.println();
Serial.println("Performance Tests:");
perfHash(&blake2s);
perfFinalize(&blake2s);
perfKeyed(&blake2s);
perfHMAC(&blake2s);
}
void loop()
{
}