1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

324 lines
8.9 KiB
C++

/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the SHA256 implementation to verify correct behaviour.
*/
#include <Crypto.h>
#include <SHA256.h>
#include <string.h>
#define HASH_SIZE 32
#define BLOCK_SIZE 64
struct TestHashVector
{
const char *name;
const char *key;
const char *data;
uint8_t hash[HASH_SIZE];
};
static TestHashVector const testVectorSHA256_1 = {
"SHA-256 #1",
0,
"abc",
{0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad}
};
static TestHashVector const testVectorSHA256_2 = {
"SHA-256 #2",
0,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1}
};
static TestHashVector const testVectorHMAC_SHA256_1 = {
"HMAC-SHA-256 #1",
"",
"",
{0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad}
};
static TestHashVector const testVectorHMAC_SHA256_2 = {
"HMAC-SHA-256 #2",
"key",
"The quick brown fox jumps over the lazy dog",
{0xf7, 0xbc, 0x83, 0xf4, 0x30, 0x53, 0x84, 0x24,
0xb1, 0x32, 0x98, 0xe6, 0xaa, 0x6f, 0xb1, 0x43,
0xef, 0x4d, 0x59, 0xa1, 0x49, 0x46, 0x17, 0x59,
0x97, 0x47, 0x9d, 0xbc, 0x2d, 0x1a, 0x3c, 0xd8}
};
SHA256 sha256;
byte buffer[128];
bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc)
{
size_t size = strlen(test->data);
size_t posn, len;
uint8_t value[HASH_SIZE];
hash->reset();
for (posn = 0; posn < size; posn += inc) {
len = size - posn;
if (len > inc)
len = inc;
hash->update(test->data + posn, len);
}
hash->finalize(value, sizeof(value));
if (memcmp(value, test->hash, sizeof(value)) != 0)
return false;
return true;
}
void testHash(Hash *hash, const struct TestHashVector *test)
{
bool ok;
Serial.print(test->name);
Serial.print(" ... ");
ok = testHash_N(hash, test, strlen(test->data));
ok &= testHash_N(hash, test, 1);
ok &= testHash_N(hash, test, 2);
ok &= testHash_N(hash, test, 5);
ok &= testHash_N(hash, test, 8);
ok &= testHash_N(hash, test, 13);
ok &= testHash_N(hash, test, 16);
ok &= testHash_N(hash, test, 24);
ok &= testHash_N(hash, test, 63);
ok &= testHash_N(hash, test, 64);
if (ok)
Serial.println("Passed");
else
Serial.println("Failed");
}
// Very simple method for hashing a HMAC inner or outer key.
void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad)
{
size_t posn;
uint8_t buf;
uint8_t result[HASH_SIZE];
if (keyLen <= BLOCK_SIZE) {
hash->reset();
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
if (posn < keyLen)
buf = key[posn] ^ pad;
else
buf = pad;
hash->update(&buf, 1);
}
} else {
hash->reset();
hash->update(key, keyLen);
hash->finalize(result, HASH_SIZE);
hash->reset();
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
if (posn < HASH_SIZE)
buf = result[posn] ^ pad;
else
buf = pad;
hash->update(&buf, 1);
}
}
}
void testHMAC(Hash *hash, size_t keyLen)
{
uint8_t result[HASH_SIZE];
Serial.print("HMAC-SHA-256 keysize=");
Serial.print(keyLen);
Serial.print(" ... ");
// Construct the expected result with a simple HMAC implementation.
memset(buffer, (uint8_t)keyLen, keyLen);
hashKey(hash, buffer, keyLen, 0x36);
memset(buffer, 0xBA, sizeof(buffer));
hash->update(buffer, sizeof(buffer));
hash->finalize(result, HASH_SIZE);
memset(buffer, (uint8_t)keyLen, keyLen);
hashKey(hash, buffer, keyLen, 0x5C);
hash->update(result, HASH_SIZE);
hash->finalize(result, HASH_SIZE);
// Now use the library to compute the HMAC.
hash->resetHMAC(buffer, keyLen);
memset(buffer, 0xBA, sizeof(buffer));
hash->update(buffer, sizeof(buffer));
memset(buffer, (uint8_t)keyLen, keyLen);
hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE);
// Check the result.
if (!memcmp(result, buffer, HASH_SIZE))
Serial.println("Passed");
else
Serial.println("Failed");
}
void testHMAC(Hash *hash, const struct TestHashVector *test)
{
uint8_t result[HASH_SIZE];
Serial.print(test->name);
Serial.print(" ... ");
hash->resetHMAC(test->key, strlen(test->key));
hash->update(test->data, strlen(test->data));
hash->finalizeHMAC(test->key, strlen(test->key), result, sizeof(result));
if (!memcmp(result, test->hash, HASH_SIZE))
Serial.println("Passed");
else
Serial.println("Failed");
}
void perfHash(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("Hashing ... ");
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
buffer[posn] = (uint8_t)posn;
hash->reset();
start = micros();
for (count = 0; count < 500; ++count) {
hash->update(buffer, sizeof(buffer));
}
elapsed = micros() - start;
Serial.print(elapsed / (sizeof(buffer) * 500.0));
Serial.print("us per byte, ");
Serial.print((sizeof(buffer) * 500.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
void perfFinalize(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("Finalizing ... ");
hash->reset();
hash->update("abc", 3);
start = micros();
for (count = 0; count < 1000; ++count) {
hash->finalize(buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
}
void perfHMAC(Hash *hash)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print("HMAC Reset ... ");
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
buffer[posn] = (uint8_t)posn;
start = micros();
for (count = 0; count < 1000; ++count) {
hash->resetHMAC(buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
Serial.print("HMAC Finalize ... ");
hash->resetHMAC(buffer, hash->hashSize());
hash->update("abc", 3);
start = micros();
for (count = 0; count < 1000; ++count) {
hash->finalizeHMAC(buffer, hash->hashSize(), buffer, hash->hashSize());
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per op, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" ops per second");
}
void setup()
{
Serial.begin(9600);
Serial.println();
Serial.print("State Size ...");
Serial.println(sizeof(SHA256));
Serial.println();
Serial.println("Test Vectors:");
testHash(&sha256, &testVectorSHA256_1);
testHash(&sha256, &testVectorSHA256_2);
testHMAC(&sha256, &testVectorHMAC_SHA256_1);
testHMAC(&sha256, &testVectorHMAC_SHA256_2);
testHMAC(&sha256, (size_t)0);
testHMAC(&sha256, 1);
testHMAC(&sha256, HASH_SIZE);
testHMAC(&sha256, BLOCK_SIZE);
testHMAC(&sha256, BLOCK_SIZE + 1);
testHMAC(&sha256, sizeof(buffer));
Serial.println();
Serial.println("Performance Tests:");
perfHash(&sha256);
perfFinalize(&sha256);
perfHMAC(&sha256);
}
void loop()
{
}