1
0
mirror of https://github.com/taigrr/gopher-os synced 2025-01-18 04:43:13 -08:00

Merge pull request #53 from achilleasa/implement-aml-parser

Implement AML parser
This commit is contained in:
Achilleas Anagnostopoulos 2017-09-30 16:44:09 +01:00 committed by GitHub
commit 0f85d4be53
13 changed files with 3707 additions and 0 deletions

View File

@ -0,0 +1,492 @@
package aml
import (
"gopheros/kernel/kfmt"
"io"
)
type resolver interface {
Resolve(io.Writer, ScopeEntity) bool
}
// Entity is an interface implemented by all AML entities.
type Entity interface {
Name() string
Parent() ScopeEntity
TableHandle() uint8
setTableHandle(uint8)
getOpcode() opcode
setOpcode(opcode)
setParent(ScopeEntity)
getArgs() []interface{}
setArg(uint8, interface{}) bool
}
// ScopeEntity is an interface that is implemented by entities that define an
// AML scope.
type ScopeEntity interface {
Entity
Children() []Entity
Append(Entity) bool
removeChild(Entity)
lastChild() Entity
}
// unnamedEntity defines an unnamed entity that can be attached to a parent scope.
type unnamedEntity struct {
tableHandle uint8
op opcode
args []interface{}
parent ScopeEntity
}
func (ent *unnamedEntity) getOpcode() opcode { return ent.op }
func (ent *unnamedEntity) setOpcode(op opcode) { ent.op = op }
func (ent *unnamedEntity) Name() string { return "" }
func (ent *unnamedEntity) Parent() ScopeEntity { return ent.parent }
func (ent *unnamedEntity) setParent(parent ScopeEntity) { ent.parent = parent }
func (ent *unnamedEntity) getArgs() []interface{} { return ent.args }
func (ent *unnamedEntity) setArg(_ uint8, arg interface{}) bool {
ent.args = append(ent.args, arg)
return true
}
func (ent *unnamedEntity) TableHandle() uint8 { return ent.tableHandle }
func (ent *unnamedEntity) setTableHandle(h uint8) { ent.tableHandle = h }
// namedEntity is a named entity that can be attached to the parent scope. The
// setArg() implementation for this type expects arg at index 0 to contain the
// entity name.
type namedEntity struct {
tableHandle uint8
op opcode
args []interface{}
parent ScopeEntity
name string
}
func (ent *namedEntity) getOpcode() opcode { return ent.op }
func (ent *namedEntity) setOpcode(op opcode) { ent.op = op }
func (ent *namedEntity) Name() string { return ent.name }
func (ent *namedEntity) Parent() ScopeEntity { return ent.parent }
func (ent *namedEntity) setParent(parent ScopeEntity) { ent.parent = parent }
func (ent *namedEntity) getArgs() []interface{} { return ent.args }
func (ent *namedEntity) setArg(argIndex uint8, arg interface{}) bool {
// arg 0 is the entity name
if argIndex == 0 {
var ok bool
ent.name, ok = arg.(string)
return ok
}
ent.args = append(ent.args, arg)
return true
}
func (ent *namedEntity) TableHandle() uint8 { return ent.tableHandle }
func (ent *namedEntity) setTableHandle(h uint8) { ent.tableHandle = h }
// constEntity is an unnamedEntity which always evaluates to a constant value.
// Calls to setArg for argument index 0 will memoize the argument value that is
// stored inside this entity.
type constEntity struct {
tableHandle uint8
op opcode
args []interface{}
parent ScopeEntity
val interface{}
}
func (ent *constEntity) getOpcode() opcode { return ent.op }
func (ent *constEntity) setOpcode(op opcode) {
ent.op = op
// special const opcode cases that have an implicit value
switch ent.op {
case opZero:
ent.val = uint64(0)
case opOne:
ent.val = uint64(1)
case opOnes:
ent.val = uint64(1<<64 - 1)
}
}
func (ent *constEntity) Name() string { return "" }
func (ent *constEntity) Parent() ScopeEntity { return ent.parent }
func (ent *constEntity) setParent(parent ScopeEntity) { ent.parent = parent }
func (ent *constEntity) getArgs() []interface{} { return ent.args }
func (ent *constEntity) setArg(argIndex uint8, arg interface{}) bool {
ent.val = arg
return argIndex == 0
}
func (ent *constEntity) TableHandle() uint8 { return ent.tableHandle }
func (ent *constEntity) setTableHandle(h uint8) { ent.tableHandle = h }
// scopeEntity is an optionally named entity that defines a scope.
type scopeEntity struct {
tableHandle uint8
op opcode
args []interface{}
parent ScopeEntity
name string
children []Entity
}
func (ent *scopeEntity) getOpcode() opcode { return ent.op }
func (ent *scopeEntity) setOpcode(op opcode) { ent.op = op }
func (ent *scopeEntity) Name() string { return ent.name }
func (ent *scopeEntity) Parent() ScopeEntity { return ent.parent }
func (ent *scopeEntity) setParent(parent ScopeEntity) { ent.parent = parent }
func (ent *scopeEntity) getArgs() []interface{} { return ent.args }
func (ent *scopeEntity) setArg(argIndex uint8, arg interface{}) bool {
// arg 0 *may* be the entity name. If it's not a string just add it to
// the arg list.
if argIndex == 0 {
var ok bool
if ent.name, ok = arg.(string); ok {
return true
}
}
ent.args = append(ent.args, arg)
return true
}
func (ent *scopeEntity) Children() []Entity { return ent.children }
func (ent *scopeEntity) Append(child Entity) bool {
child.setParent(ent)
ent.children = append(ent.children, child)
return true
}
func (ent *scopeEntity) lastChild() Entity { return ent.children[len(ent.children)-1] }
func (ent *scopeEntity) removeChild(child Entity) {
for index := 0; index < len(ent.children); index++ {
if ent.children[index] == child {
ent.children = append(ent.children[:index], ent.children[index+1:]...)
return
}
}
}
func (ent *scopeEntity) TableHandle() uint8 { return ent.tableHandle }
func (ent *scopeEntity) setTableHandle(h uint8) { ent.tableHandle = h }
// bufferEntity defines a buffer object.
type bufferEntity struct {
unnamedEntity
size interface{}
data []byte
}
func (ent *bufferEntity) setArg(argIndex uint8, arg interface{}) bool {
switch argIndex {
case 0: // size
ent.size = arg
return true
case 1: // data
if byteSlice, ok := arg.([]byte); ok {
ent.data = byteSlice
return true
}
}
return false
}
// bufferFieldEntity describes a bit/byte/word/dword/qword or arbitrary length
// buffer field.
type bufferFieldEntity struct {
namedEntity
}
func (ent *bufferFieldEntity) setArg(argIndex uint8, arg interface{}) bool {
// opCreateField specifies the name using the arg at index 3 while
// opCreateXXXField (byte, word e.t.c) specifies the name using the
// arg at index 2
if (ent.op == opCreateField && argIndex == 3) || argIndex == 2 {
var ok bool
ent.name, ok = arg.(string)
return ok
}
ent.args = append(ent.args, arg)
return true
}
// RegionSpace describes the memory space where a region is located.
type RegionSpace uint8
// The list of supported RegionSpace values.
const (
RegionSpaceSystemMemory RegionSpace = iota
RegionSpaceSystemIO
RegionSpacePCIConfig
RegionSpaceEmbeddedControl
RegionSpaceSMBus
RegionSpacePCIBarTarget
RegionSpaceIPMI
)
// regionEntity defines a region located at a particular space (e.g in memory,
// an embedded controller, the SMBus e.t.c).
type regionEntity struct {
namedEntity
space RegionSpace
}
func (ent *regionEntity) setArg(argIndex uint8, arg interface{}) bool {
var ok bool
switch argIndex {
case 0:
ok = ent.namedEntity.setArg(argIndex, arg)
case 1:
// the parser will convert ByteData types to uint64
var space uint64
space, ok = arg.(uint64)
ent.space = RegionSpace(space)
case 2, 3:
ent.args = append(ent.args, arg)
ok = true
}
return ok
}
// FieldAccessType specifies the type of access (byte, word, e.t.c) used to
// read/write to a field.
type FieldAccessType uint8
// The list of supported FieldAccessType values.
const (
FieldAccessTypeAny FieldAccessType = iota
FieldAccessTypeByte
FieldAccessTypeWord
FieldAccessTypeDword
FieldAccessTypeQword
FieldAccessTypeBuffer
)
// FieldUpdateRule specifies how a field value is updated when a write uses
// a value with a smaller width than the field.
type FieldUpdateRule uint8
// The list of supported FieldUpdateRule values.
const (
FieldUpdateRulePreserve FieldUpdateRule = iota
FieldUpdateRuleWriteAsOnes
FieldUpdateRuleWriteAsZeros
)
// FieldAccessAttrib specifies additional information about a particular field
// access.
type FieldAccessAttrib uint8
// The list of supported FieldAccessAttrib values.
const (
FieldAccessAttribQuick FieldAccessAttrib = 0x02
FieldAccessAttribSendReceive = 0x04
FieldAccessAttribByte = 0x06
FieldAccessAttribWord = 0x08
FieldAccessAttribBlock = 0x0a
FieldAccessAttribBytes = 0x0b // byteCount contains the number of bytes
FieldAccessAttribProcessCall = 0x0c
FieldAccessAttribBlockProcessCall = 0x0d
FieldAccessAttribRawBytes = 0x0e // byteCount contains the number of bytes
FieldAccessAttribRawProcessBytes = 0x0f // byteCount contains the number of bytes
)
// fieldEntity is a named object that encapsulates the data shared between regular
// fields and index fields.
type fieldEntity struct {
namedEntity
bitOffset uint32
bitWidth uint32
lock bool
updateRule FieldUpdateRule
// accessAttrib is valid if accessType is BufferAcc
// for the SMB or GPIO OpRegions.
accessAttrib FieldAccessAttrib
accessType FieldAccessType
// byteCount is valid when accessAttrib is one of:
// Bytes, RawBytes or RawProcessBytes
byteCount uint8
}
// fieldUnitEntity is a field defined inside an operating region.
type fieldUnitEntity struct {
fieldEntity
// The connection which this field references.
connectionName string
resolvedConnection Entity
// The region which this field references.
regionName string
resolvedRegion *regionEntity
}
func (ent *fieldUnitEntity) Resolve(errWriter io.Writer, rootNs ScopeEntity) bool {
var ok bool
if ent.connectionName != "" && ent.resolvedConnection == nil {
if ent.resolvedConnection = scopeFind(ent.parent, rootNs, ent.connectionName); ent.resolvedConnection == nil {
kfmt.Fprintf(errWriter, "[field %s] could not resolve connection reference: %s\n", ent.name, ent.connectionName)
return false
}
}
if ent.resolvedRegion == nil {
if ent.resolvedRegion, ok = scopeFind(ent.parent, rootNs, ent.regionName).(*regionEntity); !ok {
kfmt.Fprintf(errWriter, "[field %s] could not resolve referenced region: %s\n", ent.name, ent.regionName)
}
}
return ent.resolvedRegion != nil
}
// indexFieldEntity is a special field that groups together two field units so a
// index/data register pattern can be implemented. To write a value to an
// indexField, the interpreter must first write the appropriate offset to
// the indexRegister (using the alignment specifid by accessType) and then
// write the actual value to the dataRegister.
type indexFieldEntity struct {
fieldEntity
// The connection which this field references.
connectionName string
resolvedConnection Entity
indexRegName string
indexReg *fieldUnitEntity
dataRegName string
dataReg *fieldUnitEntity
}
func (ent *indexFieldEntity) Resolve(errWriter io.Writer, rootNs ScopeEntity) bool {
var ok bool
if ent.connectionName != "" && ent.resolvedConnection == nil {
if ent.resolvedConnection = scopeFind(ent.parent, rootNs, ent.connectionName); ent.resolvedConnection == nil {
kfmt.Fprintf(errWriter, "[field %s] could not resolve connection reference: %s\n", ent.name, ent.connectionName)
return false
}
}
if ent.indexReg == nil {
if ent.indexReg, ok = scopeFind(ent.parent, rootNs, ent.indexRegName).(*fieldUnitEntity); !ok {
kfmt.Fprintf(errWriter, "[indexField %s] could not resolve referenced index register: %s\n", ent.name, ent.indexRegName)
}
}
if ent.dataReg == nil {
if ent.dataReg, ok = scopeFind(ent.parent, rootNs, ent.dataRegName).(*fieldUnitEntity); !ok {
kfmt.Fprintf(errWriter, "[dataField %s] could not resolve referenced data register: %s\n", ent.name, ent.dataRegName)
}
}
return ent.indexReg != nil && ent.dataReg != nil
}
// namedReference holds a named reference to an AML symbol. The spec allows
// the symbol not to be defined at the time when the reference is parsed. In
// such a case (forward reference) it will be resolved after the entire AML
// stream has successfully been parsed.
type namedReference struct {
unnamedEntity
targetName string
target Entity
}
func (ref *namedReference) Resolve(errWriter io.Writer, rootNs ScopeEntity) bool {
if ref.target == nil {
ref.target = scopeFind(ref.parent, rootNs, ref.targetName)
}
if ref.target == nil {
kfmt.Fprintf(errWriter, "could not resolve referenced symbol: %s (parent: %s)\n", ref.targetName, ref.parent.Name())
}
return ref.target != nil
}
// methodInvocationEntity describes an AML method invocation.
type methodInvocationEntity struct {
unnamedEntity
methodDef *Method
}
// Method defines an invocable AML method.
type Method struct {
scopeEntity
tableHandle uint8
argCount uint8
serialized bool
syncLevel uint8
}
func (m *Method) getOpcode() opcode { return opMethod }
// Device defines a device.
type Device struct {
scopeEntity
tableHandle uint8
// The methodMap keeps track of all methods exposed by this device.
methodMap map[string]*Method
}
func (d *Device) getOpcode() opcode { return opDevice }
func (d *Device) setTableHandle(h uint8) { d.tableHandle = h }
// TableHandle returns the handle of the ACPI table that defines this device.
func (d *Device) TableHandle() uint8 { return d.tableHandle }
// mutexEntity represents a named mutex object
type mutexEntity struct {
parent ScopeEntity
// isGlobal is set to true for the pre-defined global mutex (\_GL object)
isGlobal bool
name string
syncLevel uint8
tableHandle uint8
}
func (ent *mutexEntity) getOpcode() opcode { return opMutex }
func (ent *mutexEntity) setOpcode(op opcode) {}
func (ent *mutexEntity) Name() string { return ent.name }
func (ent *mutexEntity) Parent() ScopeEntity { return ent.parent }
func (ent *mutexEntity) setParent(parent ScopeEntity) { ent.parent = parent }
func (ent *mutexEntity) getArgs() []interface{} { return nil }
func (ent *mutexEntity) setArg(argIndex uint8, arg interface{}) bool {
var ok bool
switch argIndex {
case 0:
// arg 0 is the mutex name
ent.name, ok = arg.(string)
case 1:
// arg1 is the sync level (bits 0:3)
var syncLevel uint64
syncLevel, ok = arg.(uint64)
ent.syncLevel = uint8(syncLevel) & 0xf
}
return ok
}
func (ent *mutexEntity) TableHandle() uint8 { return ent.tableHandle }
func (ent *mutexEntity) setTableHandle(h uint8) { ent.tableHandle = h }
// eventEntity represents a named ACPI sync event.
type eventEntity struct {
namedEntity
}

View File

@ -0,0 +1,143 @@
package aml
import (
"io/ioutil"
"reflect"
"testing"
)
func TestEntityMethods(t *testing.T) {
specs := []Entity{
&unnamedEntity{},
&constEntity{},
&scopeEntity{},
&bufferEntity{},
&fieldUnitEntity{},
&indexFieldEntity{},
&namedReference{},
&methodInvocationEntity{},
&Method{},
&Device{},
&mutexEntity{},
&eventEntity{},
}
t.Run("table handle methods", func(t *testing.T) {
exp := uint8(42)
for specIndex, spec := range specs {
spec.setTableHandle(exp)
if got := spec.TableHandle(); got != exp {
t.Errorf("[spec %d] expected to get back handle %d; got %d", specIndex, exp, got)
}
}
})
t.Run("append/remove/get parent methods", func(t *testing.T) {
parent := &scopeEntity{name: `\`}
for specIndex, spec := range specs {
parent.Append(spec)
if got := spec.Parent(); got != parent {
t.Errorf("[spec %d] expected to get back parent %v; got %v", specIndex, parent, got)
}
parent.removeChild(spec)
}
if got := len(parent.Children()); got != 0 {
t.Fatalf("expected parent not to have any child nodes; got %d", got)
}
})
}
func TestEntityArgAssignment(t *testing.T) {
specs := []struct {
ent Entity
argList []interface{}
expArgList []interface{}
limitedArgs bool
}{
{
&unnamedEntity{},
[]interface{}{"foo", 1, "bar"},
[]interface{}{"foo", 1, "bar"},
false,
},
{
&constEntity{},
[]interface{}{"foo"},
nil, // constEntity populates its internal state using the 1st arg
true,
},
{
&scopeEntity{},
[]interface{}{"foo", 1, 2, 3},
[]interface{}{1, 2, 3}, // scopeEntity will treat arg0 as the scope name if it is a string
false,
},
{
&bufferEntity{},
[]interface{}{1, []byte{}},
nil, // bufferEntity populates its internal state using the first 2 args
true,
},
{
&regionEntity{},
[]interface{}{"REG0", uint64(0x4), 0, 10},
[]interface{}{0, 10}, // region populates its internal state using the first 2 args
true,
},
{
&mutexEntity{},
[]interface{}{"MUT0", uint64(1)},
nil, // mutexEntity populates its internal state using the first 2 args
true,
},
}
nextSpec:
for specIndex, spec := range specs {
for i, arg := range spec.argList {
if !spec.ent.setArg(uint8(i), arg) {
t.Errorf("[spec %d] error setting arg %d", specIndex, i)
continue nextSpec
}
}
if spec.limitedArgs {
if spec.ent.setArg(uint8(len(spec.argList)), nil) {
t.Errorf("[spec %d] expected additional calls to setArg to return false", specIndex)
continue nextSpec
}
}
if got := spec.ent.getArgs(); !reflect.DeepEqual(got, spec.expArgList) {
t.Errorf("[spec %d] expected to get back arg list %v; got %v", specIndex, spec.expArgList, got)
}
}
}
func TestEntityResolveErrors(t *testing.T) {
scope := &scopeEntity{name: `\`}
specs := []resolver{
// Unknown connection entity
&fieldUnitEntity{connectionName: "CON0"},
// Unknown region
&fieldUnitEntity{connectionName: `\`, regionName: "REG0"},
// Unknown connection entity
&indexFieldEntity{connectionName: "CON0"},
// Unknown index register
&indexFieldEntity{connectionName: `\`, indexRegName: "IND0"},
// Unknown data register
&indexFieldEntity{connectionName: `\`, indexRegName: `\`, dataRegName: "DAT0"},
// Unknown reference
&namedReference{unnamedEntity: unnamedEntity{parent: scope}, targetName: "TRG0"},
}
for specIndex, spec := range specs {
if spec.Resolve(ioutil.Discard, scope) {
t.Errorf("[spec %d] expected Resolve() to fail", specIndex)
}
}
}

View File

@ -0,0 +1,269 @@
package aml
// opcode describes an AML opcode. While AML supports 256 opcodes, some of them
// are specified using a combination of an extension prefix and a code. To map
// each opcode into a single unique value the parser uses an uint16
// representation of the opcode values.
type opcode uint16
// String implements fmt.Stringer for opcode.
func (op opcode) String() string {
for _, entry := range opcodeTable {
if entry.op == op {
return entry.name
}
}
return "unknown"
}
// opIsLocalArg returns true if this opcode represents any of the supported local
// function args 0 to 7.
func opIsLocalArg(op opcode) bool {
return op >= opLocal0 && op <= opLocal7
}
// opIsMethodArg returns true if this opcode represents any of the supported
// input function args 0 to 6.
func opIsMethodArg(op opcode) bool {
return op >= opArg0 && op <= opArg6
}
// opIsArg returns true if this opcode is either a local or a method arg.
func opIsArg(op opcode) bool {
return opIsLocalArg(op) || opIsMethodArg(op)
}
// opIsDataObject returns true if this opcode is part of a DataObject definition
//
// Grammar:
// DataObject := ComputationalData | DefPackage | DefVarPackage
// ComputationalData := ByteConst | WordConst | DWordConst | QWordConst | String | ConstObj | RevisionOp | DefBuffer
// ConstObj := ZeroOp | OneOp | OnesOp
func opIsDataObject(op opcode) bool {
switch op {
case opBytePrefix, opWordPrefix, opDwordPrefix, opQwordPrefix, opStringPrefix,
opZero, opOne, opOnes, opRevision, opBuffer, opPackage, opVarPackage:
return true
default:
return false
}
}
// opIsType2 returns true if this is a Type2Opcode.
//
// Grammar:
// Type2Opcode := DefAcquire | DefAdd | DefAnd | DefBuffer | DefConcat |
// DefConcatRes | DefCondRefOf | DefCopyObject | DefDecrement |
// DefDerefOf | DefDivide | DefFindSetLeftBit | DefFindSetRightBit |
// DefFromBCD | DefIncrement | DefIndex | DefLAnd | DefLEqual |
// DefLGreater | DefLGreaterEqual | DefLLess | DefLLessEqual | DefMid |
// DefLNot | DefLNotEqual | DefLoadTable | DefLOr | DefMatch | DefMod |
// DefMultiply | DefNAnd | DefNOr | DefNot | DefObjectType | DefOr |
// DefPackage | DefVarPackage | DefRefOf | DefShiftLeft | DefShiftRight |
// DefSizeOf | DefStore | DefSubtract | DefTimer | DefToBCD | DefToBuffer |
// DefToDecimalString | DefToHexString | DefToInteger | DefToString |
// DefWait | DefXOr
func opIsType2(op opcode) bool {
switch op {
case opAcquire, opAdd, opAnd, opBuffer, opConcat,
opConcatRes, opCondRefOf, opCopyObject, opDecrement,
opDerefOf, opDivide, opFindSetLeftBit, opFindSetRightBit,
opFromBCD, opIncrement, opIndex, opLand, opLEqual,
opLGreater, opLLess, opMid,
opLnot, opLoadTable, opLor, opMatch, opMod,
opMultiply, opNand, opNor, opNot, opObjectType, opOr,
opPackage, opVarPackage, opRefOf, opShiftLeft, opShiftRight,
opSizeOf, opStore, opSubtract, opTimer, opToBCD, opToBuffer,
opToDecimalString, opToHexString, opToInteger, opToString,
opWait, opXor:
return true
default:
return false
}
}
// opIsBufferField returens true if this opcode describes a
// buffer field creation operation.
func opIsBufferField(op opcode) bool {
switch op {
case opCreateField, opCreateBitField, opCreateByteField, opCreateWordField, opCreateDWordField, opCreateQWordField:
return true
default:
return false
}
}
// objType represents the object types that are supported by the AML parser.
type objType uint8
// The list of AML object types.
const (
objTypeAny objType = iota
objTypeInteger
objTypeString
objTypeBuffer
objTypePackage
objTypeDevice
objTypeEvent
objTypeMethod
objTypeMutex
objTypeRegion
objTypePower
objTypeProcessor
objTypeThermal
objTypeBufferField
objTypeLocalRegionField
objTypeLocalBankField
objTypeLocalReference
objTypeLocalAlias
objTypeLocalScope
objTypeLocalVariable
objTypeMethodArgument
)
// opFlag specifies a list of OR-able flags that describe the object
// type/attributes generated by a particular opcode.
type opFlag uint16
const (
opFlagNone opFlag = 1 << iota
opFlagHasPkgLen
opFlagNamed
opFlagConstant
opFlagReference
opFlagArithmetic
opFlagCreate
opFlagReturn
opFlagExecutable
opFlagNoOp
opFlagScoped
)
// is returns true if f is set in this opFlag.
func (fl opFlag) is(f opFlag) bool {
return (fl & f) != 0
}
// opArgFlags encodes up to 7 opArgFlag values in a uint64 value.
type opArgFlags uint64
// argCount returns the number of encoded args in the given flag.
func (fl opArgFlags) argCount() (count uint8) {
// Each argument is specified using 8 bits with 0x0 indicating the end of the
// argument list
for ; fl&0xf != 0; fl, count = fl>>8, count+1 {
}
return count
}
// arg returns the arg flags for argument "num" where num is the 0-based index
// of the argument to return. The allowed values for num are 0-6.
func (fl opArgFlags) arg(num uint8) opArgFlag {
return opArgFlag((fl >> (num * 8)) & 0xf)
}
// contains returns true if the arg flags contain any argument with type x.
func (fl opArgFlags) contains(x opArgFlag) bool {
// Each argument is specified using 8 bits with 0x0 indicating the end of the
// argument list
for ; fl&0xf != 0; fl >>= 8 {
if opArgFlag(fl&0xf) == x {
return true
}
}
return false
}
// opArgFlag represents the type of an argument expected by a particular opcode.
type opArgFlag uint8
// The list of supported opArgFlag values.
const (
_ opArgFlag = iota
opArgTermList
opArgTermObj
opArgByteList
opArgPackage
opArgString
opArgByteData
opArgWord
opArgDword
opArgQword
opArgNameString
opArgSuperName
opArgSimpleName
opArgDataRefObj
opArgTarget
opArgFieldList
)
// String implements fmt.Stringer for opArgFlag.
func (fl opArgFlag) String() string {
switch fl {
case opArgTermList:
return "opArgTermList"
case opArgTermObj:
return "opArgTermObj"
case opArgByteList:
return "opArgByteList"
case opArgPackage:
return "opArgPackage"
case opArgString:
return "opArgString"
case opArgByteData:
return "opArgByteData"
case opArgWord:
return "opArgWord"
case opArgDword:
return "opArgDword"
case opArgQword:
return "opArgQword"
case opArgNameString:
return "opArgNameString"
case opArgSuperName:
return "opArgSuperName"
case opArgSimpleName:
return "opArgSimpleName"
case opArgDataRefObj:
return "opArgDataRefObj"
case opArgTarget:
return "opArgTarget"
case opArgFieldList:
return "opArgFieldList"
}
return ""
}
func makeArg0() opArgFlags { return 0 }
func makeArg1(arg0 opArgFlag) opArgFlags { return opArgFlags(arg0) }
func makeArg2(arg0, arg1 opArgFlag) opArgFlags { return opArgFlags(arg1)<<8 | opArgFlags(arg0) }
func makeArg3(arg0, arg1, arg2 opArgFlag) opArgFlags {
return opArgFlags(arg2)<<16 | opArgFlags(arg1)<<8 | opArgFlags(arg0)
}
func makeArg4(arg0, arg1, arg2, arg3 opArgFlag) opArgFlags {
return opArgFlags(arg3)<<24 | opArgFlags(arg2)<<16 | opArgFlags(arg1)<<8 | opArgFlags(arg0)
}
func makeArg5(arg0, arg1, arg2, arg3, arg4 opArgFlag) opArgFlags {
return opArgFlags(arg4)<<32 | opArgFlags(arg3)<<24 | opArgFlags(arg2)<<16 | opArgFlags(arg1)<<8 | opArgFlags(arg0)
}
func makeArg6(arg0, arg1, arg2, arg3, arg4, arg5 opArgFlag) opArgFlags {
return opArgFlags(arg5)<<40 | opArgFlags(arg4)<<32 | opArgFlags(arg3)<<24 | opArgFlags(arg2)<<16 | opArgFlags(arg1)<<8 | opArgFlags(arg0)
}
func makeArg7(arg0, arg1, arg2, arg3, arg4, arg5, arg6 opArgFlag) opArgFlags {
return opArgFlags(arg6)<<48 | opArgFlags(arg5)<<40 | opArgFlags(arg4)<<32 | opArgFlags(arg3)<<24 | opArgFlags(arg2)<<16 | opArgFlags(arg1)<<8 | opArgFlags(arg0)
}
// opcodeInfo contains all known information about an opcode,
// its argument count and types as well as the type of object
// represented by it.
type opcodeInfo struct {
op opcode
name string
objType objType
flags opFlag
argFlags opArgFlags
}

View File

@ -0,0 +1,317 @@
package aml
const (
badOpcode = 0xff
extOpPrefix = 0x5b
// Regular opcode list
opZero = opcode(0x00)
opOne = opcode(0x01)
opAlias = opcode(0x06)
opName = opcode(0x08)
opBytePrefix = opcode(0x0a)
opWordPrefix = opcode(0x0b)
opDwordPrefix = opcode(0x0c)
opStringPrefix = opcode(0x0d)
opQwordPrefix = opcode(0x0e)
opScope = opcode(0x10)
opBuffer = opcode(0x11)
opPackage = opcode(0x12)
opVarPackage = opcode(0x13)
opMethod = opcode(0x14)
opExternal = opcode(0x15)
opLocal0 = opcode(0x60)
opLocal1 = opcode(0x61)
opLocal2 = opcode(0x62)
opLocal3 = opcode(0x63)
opLocal4 = opcode(0x64)
opLocal5 = opcode(0x65)
opLocal6 = opcode(0x66)
opLocal7 = opcode(0x67)
opArg0 = opcode(0x68)
opArg1 = opcode(0x69)
opArg2 = opcode(0x6a)
opArg3 = opcode(0x6b)
opArg4 = opcode(0x6c)
opArg5 = opcode(0x6d)
opArg6 = opcode(0x6e)
opStore = opcode(0x70)
opRefOf = opcode(0x71)
opAdd = opcode(0x72)
opConcat = opcode(0x73)
opSubtract = opcode(0x74)
opIncrement = opcode(0x75)
opDecrement = opcode(0x76)
opMultiply = opcode(0x77)
opDivide = opcode(0x78)
opShiftLeft = opcode(0x79)
opShiftRight = opcode(0x7a)
opAnd = opcode(0x7b)
opNand = opcode(0x7c)
opOr = opcode(0x7d)
opNor = opcode(0x7e)
opXor = opcode(0x7f)
opNot = opcode(0x80)
opFindSetLeftBit = opcode(0x81)
opFindSetRightBit = opcode(0x82)
opDerefOf = opcode(0x83)
opConcatRes = opcode(0x84)
opMod = opcode(0x85)
opNotify = opcode(0x86)
opSizeOf = opcode(0x87)
opIndex = opcode(0x88)
opMatch = opcode(0x89)
opCreateDWordField = opcode(0x8a)
opCreateWordField = opcode(0x8b)
opCreateByteField = opcode(0x8c)
opCreateBitField = opcode(0x8d)
opObjectType = opcode(0x8e)
opCreateQWordField = opcode(0x8f)
opLand = opcode(0x90)
opLor = opcode(0x91)
opLnot = opcode(0x92)
opLEqual = opcode(0x93)
opLGreater = opcode(0x94)
opLLess = opcode(0x95)
opToBuffer = opcode(0x96)
opToDecimalString = opcode(0x97)
opToHexString = opcode(0x98)
opToInteger = opcode(0x99)
opToString = opcode(0x9c)
opCopyObject = opcode(0x9d)
opMid = opcode(0x9e)
opContinue = opcode(0x9f)
opIf = opcode(0xa0)
opElse = opcode(0xa1)
opWhile = opcode(0xa2)
opNoop = opcode(0xa3)
opReturn = opcode(0xa4)
opBreak = opcode(0xa5)
opBreakPoint = opcode(0xcc)
opOnes = opcode(0xff)
// Extended opcodes
opMutex = opcode(0xff + 0x01)
opEvent = opcode(0xff + 0x02)
opCondRefOf = opcode(0xff + 0x12)
opCreateField = opcode(0xff + 0x13)
opLoadTable = opcode(0xff + 0x1f)
opLoad = opcode(0xff + 0x20)
opStall = opcode(0xff + 0x21)
opSleep = opcode(0xff + 0x22)
opAcquire = opcode(0xff + 0x23)
opSignal = opcode(0xff + 0x24)
opWait = opcode(0xff + 0x25)
opReset = opcode(0xff + 0x26)
opRelease = opcode(0xff + 0x27)
opFromBCD = opcode(0xff + 0x28)
opToBCD = opcode(0xff + 0x29)
opUnload = opcode(0xff + 0x2a)
opRevision = opcode(0xff + 0x30)
opDebug = opcode(0xff + 0x31)
opFatal = opcode(0xff + 0x32)
opTimer = opcode(0xff + 0x33)
opOpRegion = opcode(0xff + 0x80)
opField = opcode(0xff + 0x81)
opDevice = opcode(0xff + 0x82)
opProcessor = opcode(0xff + 0x83)
opPowerRes = opcode(0xff + 0x84)
opThermalZone = opcode(0xff + 0x85)
opIndexField = opcode(0xff + 0x86)
opBankField = opcode(0xff + 0x87)
opDataRegion = opcode(0xff + 0x88)
)
// The opcode table contains all opcode-related information that the parser knows.
// This table is modeled after a similar table used in the acpica implementation.
var opcodeTable = []opcodeInfo{
/*0x00*/ {opZero, "Zero", objTypeInteger, opFlagConstant, makeArg0()},
/*0x01*/ {opOne, "One", objTypeInteger, opFlagConstant, makeArg0()},
/*0x02*/ {opAlias, "Alias", objTypeLocalAlias, opFlagNamed, makeArg2(opArgNameString, opArgNameString)},
/*0x03*/ {opName, "Name", objTypeAny, opFlagNamed, makeArg2(opArgNameString, opArgDataRefObj)},
/*0x04*/ {opBytePrefix, "Byte", objTypeInteger, opFlagConstant, makeArg1(opArgByteData)},
/*0x05*/ {opWordPrefix, "Word", objTypeInteger, opFlagConstant, makeArg1(opArgWord)},
/*0x06*/ {opDwordPrefix, "Dword", objTypeInteger, opFlagConstant, makeArg1(opArgDword)},
/*0x07*/ {opStringPrefix, "String", objTypeString, opFlagConstant, makeArg1(opArgString)},
/*0x08*/ {opQwordPrefix, "Qword", objTypeInteger, opFlagConstant, makeArg1(opArgQword)},
/*0x09*/ {opScope, "Scope", objTypeLocalScope, opFlagNamed, makeArg2(opArgNameString, opArgTermList)},
/*0x0a*/ {opBuffer, "Buffer", objTypeBuffer, opFlagHasPkgLen, makeArg2(opArgTermObj, opArgByteList)},
/*0x0b*/ {opPackage, "Package", objTypePackage, opFlagNone, makeArg2(opArgByteData, opArgTermList)},
/*0x0c*/ {opVarPackage, "VarPackage", objTypePackage, opFlagNone, makeArg2(opArgByteData, opArgTermList)},
/*0x0d*/ {opMethod, "Method", objTypeMethod, opFlagNamed | opFlagScoped, makeArg3(opArgNameString, opArgByteData, opArgTermList)},
/*0x0e*/ {opExternal, "External", objTypeAny, opFlagNamed, makeArg3(opArgNameString, opArgByteData, opArgByteData)},
/*0x0f*/ {opLocal0, "Local0", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0x10*/ {opLocal1, "Local1", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0x11*/ {opLocal2, "Local2", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0x12*/ {opLocal3, "Local3", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0x13*/ {opLocal4, "Local4", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0120*/ {opLocal5, "Local5", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0x15*/ {opLocal6, "Local6", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0x16*/ {opLocal7, "Local7", objTypeLocalVariable, opFlagExecutable, makeArg0()},
/*0x17*/ {opArg0, "Arg0", objTypeMethodArgument, opFlagExecutable, makeArg0()},
/*0x18*/ {opArg1, "Arg1", objTypeMethodArgument, opFlagExecutable, makeArg0()},
/*0x19*/ {opArg2, "Arg2", objTypeMethodArgument, opFlagExecutable, makeArg0()},
/*0x1a*/ {opArg3, "Arg3", objTypeMethodArgument, opFlagExecutable, makeArg0()},
/*0x1b*/ {opArg4, "Arg4", objTypeMethodArgument, opFlagExecutable, makeArg0()},
/*0x1c*/ {opArg5, "Arg5", objTypeMethodArgument, opFlagExecutable, makeArg0()},
/*0x1d*/ {opArg6, "Arg6", objTypeMethodArgument, opFlagExecutable, makeArg0()},
/*0x1e*/ {opStore, "Store", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgSuperName)},
/*0x1f*/ {opRefOf, "RefOf", objTypeAny, opFlagReference | opFlagExecutable, makeArg1(opArgSuperName)},
/*0x20*/ {opAdd, "Add", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x21*/ {opConcat, "Concat", objTypeAny, opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x22*/ {opSubtract, "Subtract", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x23*/ {opIncrement, "Increment", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg1(opArgSuperName)},
/*0x24*/ {opDecrement, "Decrement", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg1(opArgSuperName)},
/*0x25*/ {opMultiply, "Multiply", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x26*/ {opDivide, "Divide", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg4(opArgTermObj, opArgTermObj, opArgTarget, opArgTarget)},
/*0x27*/ {opShiftLeft, "ShiftLeft", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x28*/ {opShiftRight, "ShiftRight", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x29*/ {opAnd, "And", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x2a*/ {opNand, "Nand", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x2b*/ {opOr, "Or", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x2c*/ {opNor, "Nor", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x2d*/ {opXor, "Xor", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x2e*/ {opNot, "Not", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x2f*/ {opFindSetLeftBit, "FindSetLeftBit", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x30*/ {opFindSetRightBit, "FindSetRightBit", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x31*/ {opDerefOf, "DerefOf", objTypeAny, opFlagExecutable, makeArg1(opArgTermObj)},
/*0x32*/ {opConcatRes, "ConcatRes", objTypeAny, opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x33*/ {opMod, "Mod", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x34*/ {opNotify, "Notify", objTypeAny, opFlagExecutable, makeArg2(opArgSuperName, opArgTermObj)},
/*0x35*/ {opSizeOf, "SizeOf", objTypeAny, opFlagExecutable, makeArg1(opArgSuperName)},
/*0x36*/ {opIndex, "Index", objTypeAny, opFlagExecutable, makeArg3(opArgTermObj, opArgTermObj, opArgTarget)},
/*0x37*/ {opMatch, "Match", objTypeAny, opFlagExecutable, makeArg6(opArgTermObj, opArgByteData, opArgTermObj, opArgByteData, opArgTermObj, opArgTermObj)},
/*0x38*/ {opCreateDWordField, "CreateDWordField", objTypeBufferField, opFlagNamed | opFlagCreate, makeArg3(opArgTermObj, opArgTermObj, opArgNameString)},
/*0x39*/ {opCreateWordField, "CreateWordField", objTypeBufferField, opFlagNamed | opFlagCreate, makeArg3(opArgTermObj, opArgTermObj, opArgNameString)},
/*0x3a*/ {opCreateByteField, "CreateByteField", objTypeBufferField, opFlagNamed | opFlagCreate, makeArg3(opArgTermObj, opArgTermObj, opArgNameString)},
/*0x3b*/ {opCreateBitField, "CreateBitField", objTypeBufferField, opFlagNamed | opFlagCreate, makeArg3(opArgTermObj, opArgTermObj, opArgNameString)},
/*0x3c*/ {opObjectType, "ObjectType", objTypeAny, opFlagNone, makeArg1(opArgSuperName)},
/*0x3d*/ {opCreateQWordField, "CreateQWordField", objTypeBufferField, opFlagNamed | opFlagCreate, makeArg3(opArgTermObj, opArgTermObj, opArgNameString)},
/*0x3e*/ {opLand, "Land", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTermObj)},
/*0x3f*/ {opLor, "Lor", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTermObj)},
/*0x40*/ {opLnot, "Lnot", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg1(opArgTermObj)},
/*0x41*/ {opLEqual, "LEqual", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTermObj)},
/*0x42*/ {opLGreater, "LGreater", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTermObj)},
/*0x43*/ {opLLess, "LLess", objTypeAny, opFlagArithmetic | opFlagExecutable, makeArg2(opArgTermObj, opArgTermObj)},
/*0x44*/ {opToBuffer, "ToBuffer", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x45*/ {opToDecimalString, "ToDecimalString", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x46*/ {opToHexString, "ToHexString", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x47*/ {opToInteger, "ToInteger", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x48*/ {opToString, "ToString", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x49*/ {opCopyObject, "CopyObject", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgSimpleName)},
/*0x4a*/ {opMid, "Mid", objTypeAny, opFlagExecutable, makeArg4(opArgTermObj, opArgTermObj, opArgTermObj, opArgTarget)},
/*0x4b*/ {opContinue, "Continue", objTypeAny, opFlagExecutable, makeArg0()},
/*0x4c*/ {opIf, "If", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTermList)},
/*0x4d*/ {opElse, "Else", objTypeAny, opFlagExecutable | opFlagScoped, makeArg1(opArgTermList)},
/*0x4e*/ {opWhile, "While", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTermList)},
/*0x4f*/ {opNoop, "Noop", objTypeAny, opFlagNoOp, makeArg0()},
/*0x50*/ {opReturn, "Return", objTypeAny, opFlagReturn, makeArg1(opArgTermObj)},
/*0x51*/ {opBreak, "Break", objTypeAny, opFlagExecutable, makeArg0()},
/*0x52*/ {opBreakPoint, "BreakPoint", objTypeAny, opFlagNoOp, makeArg0()},
/*0x53*/ {opOnes, "Ones", objTypeInteger, opFlagConstant, makeArg0()},
/*0x54*/ {opMutex, "Mutex", objTypeMutex, opFlagNamed, makeArg2(opArgNameString, opArgByteData)},
/*0x55*/ {opEvent, "Event", objTypeEvent, opFlagNamed, makeArg1(opArgNameString)},
/*0x56*/ {opCondRefOf, "CondRefOf", objTypeAny, opFlagExecutable, makeArg2(opArgSuperName, opArgSuperName)},
/*0x57*/ {opCreateField, "CreateField", objTypeBufferField, opFlagExecutable, makeArg4(opArgTermObj, opArgTermObj, opArgTermObj, opArgNameString)},
/*0x58*/ {opLoadTable, "LoadTable", objTypeAny, opFlagExecutable, makeArg7(opArgTermObj, opArgTermObj, opArgTermObj, opArgTermObj, opArgTermObj, opArgTermObj, opArgTermObj)},
/*0x59*/ {opLoad, "Load", objTypeAny, opFlagExecutable, makeArg2(opArgNameString, opArgSuperName)},
/*0x5a*/ {opStall, "Stall", objTypeAny, opFlagExecutable, makeArg1(opArgTermObj)},
/*0x5b*/ {opSleep, "Sleep", objTypeAny, opFlagExecutable, makeArg1(opArgTermObj)},
/*0x5c*/ {opAcquire, "Acquire", objTypeAny, opFlagExecutable, makeArg2(opArgNameString, opArgSuperName)},
/*0x5d*/ {opSignal, "Signal", objTypeAny, opFlagExecutable, makeArg1(opArgTermObj)},
/*0x5e*/ {opWait, "Wait", objTypeAny, opFlagExecutable, makeArg2(opArgSuperName, opArgTermObj)},
/*0x5f*/ {opReset, "Reset", objTypeAny, opFlagExecutable, makeArg1(opArgSuperName)},
/*0x60*/ {opRelease, "Release", objTypeAny, opFlagExecutable, makeArg1(opArgSuperName)},
/*0x61*/ {opFromBCD, "FromBCD", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x62*/ {opToBCD, "ToBCD", objTypeAny, opFlagExecutable, makeArg2(opArgTermObj, opArgTarget)},
/*0x63*/ {opUnload, "Unload", objTypeAny, opFlagExecutable, makeArg1(opArgSuperName)},
/*0x64*/ {opRevision, "Revision", objTypeInteger, opFlagConstant | opFlagExecutable, makeArg0()},
/*0x65*/ {opDebug, "Debug", objTypeLocalReference, opFlagExecutable, makeArg0()},
/*0x66*/ {opFatal, "Fatal", objTypeAny, opFlagExecutable, makeArg3(opArgByteData, opArgDword, opArgTermObj)},
/*0x67*/ {opTimer, "Timer", objTypeAny, opFlagNone, makeArg0()},
/*0x68*/ {opOpRegion, "OpRegion", objTypeRegion, opFlagNamed, makeArg4(opArgNameString, opArgByteData, opArgTermObj, opArgTermObj)},
/*0x69*/ {opField, "Field", objTypeAny, opFlagNone, makeArg3(opArgNameString, opArgByteData, opArgFieldList)},
/*0x6a*/ {opDevice, "Device", objTypeDevice, opFlagNamed | opFlagScoped, makeArg2(opArgNameString, opArgTermList)},
/*0x6b*/ {opProcessor, "Processor", objTypeProcessor, opFlagNamed | opFlagScoped, makeArg5(opArgNameString, opArgByteData, opArgDword, opArgByteData, opArgTermList)},
/*0x6c*/ {opPowerRes, "PowerRes", objTypePower, opFlagNamed | opFlagScoped, makeArg4(opArgNameString, opArgByteData, opArgWord, opArgTermList)},
/*0x6d*/ {opThermalZone, "ThermalZone", objTypeThermal, opFlagNamed | opFlagScoped, makeArg2(opArgNameString, opArgTermList)},
/*0x6e*/ {opIndexField, "IndexField", objTypeAny, opFlagNone, makeArg4(opArgNameString, opArgNameString, opArgByteData, opArgFieldList)},
/*0x6f*/ {opBankField, "BankField", objTypeLocalBankField, opFlagNamed, makeArg5(opArgNameString, opArgNameString, opArgTermObj, opArgByteData, opArgFieldList)},
/*0x70*/ {opDataRegion, "DataRegion", objTypeLocalRegionField, opFlagNamed, makeArg4(opArgNameString, opArgTermObj, opArgTermObj, opArgTermObj)},
}
// opcodeMap maps an AML opcode to an entry in the opcode table. Entries with
// the value 0xff indicate an invalid/unsupported opcode.
var opcodeMap = [256]uint8{
/* 0 1 2 3 4 5 6 7*/
/*0x00 - 0x07*/ 0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0x02, 0xff,
/*0x08 - 0x0f*/ 0x03, 0xff, 0x04, 0x05, 0x06, 0x07, 0x08, 0xff,
/*0x10 - 0x17*/ 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0xff, 0xff,
/*0x18 - 0x1f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x20 - 0x27*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x28 - 0x2f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x30 - 0x37*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x38 - 0x3f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x40 - 0x47*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x48 - 0x4f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x50 - 0x57*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x58 - 0x5f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x60 - 0x67*/ 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
/*0x68 - 0x6f*/ 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0xff,
/*0x70 - 0x77*/ 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
/*0x78 - 0x7f*/ 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
/*0x80 - 0x87*/ 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
/*0x88 - 0x8f*/ 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d,
/*0x90 - 0x97*/ 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45,
/*0x98 - 0x9f*/ 0x46, 0x47, 0x48, 0x49, 0x4a, 0x49, 0x4a, 0x4b,
/*0xa0 - 0xa7*/ 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0xff, 0xff,
/*0xa8 - 0xaf*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xb0 - 0xb7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xb8 - 0xbf*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xc0 - 0xc7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xc8 - 0xcf*/ 0xff, 0xff, 0xff, 0xff, 0x52, 0xff, 0xff, 0xff,
/*0xd0 - 0xd7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xd8 - 0xdf*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xe0 - 0xe7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xe8 - 0xef*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xf0 - 0xf7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xf8 - 0xff*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x53,
}
// extendedOpcodeMap maps an AML extended opcode (extOpPrefix + code) to an
// entry in the opcode table. Entries with the value 0xff indicate an
// invalid/unsupported opcode.
var extendedOpcodeMap = [256]uint8{
/* 0 1 2 3 4 5 6 7*/
/*0x00 - 0x07*/ 0xff, 0x54, 0x55, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x08 - 0x0f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x10 - 0x17*/ 0xff, 0xff, 0x56, 0x57, 0xff, 0xff, 0xff, 0xff,
/*0x18 - 0x1f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x58,
/*0x20 - 0x27*/ 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60,
/*0x28 - 0x2f*/ 0x61, 0x62, 0x63, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x30 - 0x37*/ 0x64, 0x65, 0x66, 0x67, 0xff, 0xff, 0xff, 0xff,
/*0x38 - 0x3f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x40 - 0x47*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x48 - 0x4f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x50 - 0x57*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x58 - 0x5f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x60 - 0x67*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x68 - 0x6f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x70 - 0x77*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x78 - 0x7f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x80 - 0x87*/ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
/*0x88 - 0x8f*/ 0x70, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x90 - 0x97*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0x98 - 0x9f*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xa0 - 0xa7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xa8 - 0xaf*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xb0 - 0xb7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xb8 - 0xbf*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xc0 - 0xc7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xc8 - 0xcf*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xd0 - 0xd7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xd8 - 0xdf*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xe0 - 0xe7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xe8 - 0xef*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xf0 - 0xf7*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
/*0xf8 - 0xff*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x53,
}

View File

@ -0,0 +1,187 @@
package aml
import "testing"
func TestOpcodeToString(t *testing.T) {
if exp, got := "Acquire", opAcquire.String(); got != exp {
t.Fatalf("expected opAcquire.toString() to return %q; got %q", exp, got)
}
if exp, got := "unknown", opcode(0xffff).String(); got != exp {
t.Fatalf("expected opcode.String() to return %q; got %q", exp, got)
}
}
func TestOpcodeIsX(t *testing.T) {
specs := []struct {
op opcode
testFn func(opcode) bool
want bool
}{
// opIsLocalArg
{opLocal0, opIsLocalArg, true},
{opLocal1, opIsLocalArg, true},
{opLocal2, opIsLocalArg, true},
{opLocal3, opIsLocalArg, true},
{opLocal4, opIsLocalArg, true},
{opLocal5, opIsLocalArg, true},
{opLocal6, opIsLocalArg, true},
{opLocal7, opIsLocalArg, true},
{opArg0, opIsLocalArg, false},
{opDivide, opIsLocalArg, false},
// opIsMethodArg
{opArg0, opIsMethodArg, true},
{opArg1, opIsMethodArg, true},
{opArg2, opIsMethodArg, true},
{opArg3, opIsMethodArg, true},
{opArg4, opIsMethodArg, true},
{opArg5, opIsMethodArg, true},
{opArg6, opIsMethodArg, true},
{opLocal7, opIsMethodArg, false},
{opIf, opIsMethodArg, false},
// opIsArg
{opLocal5, opIsArg, true},
{opArg1, opIsArg, true},
{opDivide, opIsArg, false},
// opIsType2
{opAcquire, opIsType2, true},
{opAdd, opIsType2, true},
{opAnd, opIsType2, true},
{opBuffer, opIsType2, true},
{opConcat, opIsType2, true},
{opConcatRes, opIsType2, true},
{opCondRefOf, opIsType2, true},
{opCopyObject, opIsType2, true},
{opDecrement, opIsType2, true},
{opDerefOf, opIsType2, true},
{opDivide, opIsType2, true},
{opFindSetLeftBit, opIsType2, true},
{opFindSetRightBit, opIsType2, true},
{opFromBCD, opIsType2, true},
{opIncrement, opIsType2, true},
{opIndex, opIsType2, true},
{opLand, opIsType2, true},
{opLEqual, opIsType2, true},
{opLGreater, opIsType2, true},
{opLLess, opIsType2, true},
{opMid, opIsType2, true},
{opLnot, opIsType2, true},
{opLoadTable, opIsType2, true},
{opLor, opIsType2, true},
{opMatch, opIsType2, true},
{opMod, opIsType2, true},
{opMultiply, opIsType2, true},
{opNand, opIsType2, true},
{opNor, opIsType2, true},
{opNot, opIsType2, true},
{opObjectType, opIsType2, true},
{opOr, opIsType2, true},
{opPackage, opIsType2, true},
{opVarPackage, opIsType2, true},
{opRefOf, opIsType2, true},
{opShiftLeft, opIsType2, true},
{opShiftRight, opIsType2, true},
{opSizeOf, opIsType2, true},
{opStore, opIsType2, true},
{opSubtract, opIsType2, true},
{opTimer, opIsType2, true},
{opToBCD, opIsType2, true},
{opToBuffer, opIsType2, true},
{opToDecimalString, opIsType2, true},
{opToHexString, opIsType2, true},
{opToInteger, opIsType2, true},
{opToString, opIsType2, true},
{opWait, opIsType2, true},
{opXor, opIsType2, true},
{opBytePrefix, opIsType2, false},
// opIsDataObject
{opBytePrefix, opIsDataObject, true},
{opWordPrefix, opIsDataObject, true},
{opDwordPrefix, opIsDataObject, true},
{opQwordPrefix, opIsDataObject, true},
{opStringPrefix, opIsDataObject, true},
{opZero, opIsDataObject, true},
{opOne, opIsDataObject, true},
{opOnes, opIsDataObject, true},
{opRevision, opIsDataObject, true},
{opBuffer, opIsDataObject, true},
{opPackage, opIsDataObject, true},
{opVarPackage, opIsDataObject, true},
{opLor, opIsDataObject, false},
// opIsBufferField
{opCreateField, opIsBufferField, true},
{opCreateBitField, opIsBufferField, true},
{opCreateByteField, opIsBufferField, true},
{opCreateWordField, opIsBufferField, true},
{opCreateDWordField, opIsBufferField, true},
{opCreateQWordField, opIsBufferField, true},
{opRevision, opIsBufferField, false},
}
for specIndex, spec := range specs {
if got := spec.testFn(spec.op); got != spec.want {
t.Errorf("[spec %d] opcode %q: expected to get %t; got %t", specIndex, spec.op, spec.want, got)
}
}
}
func TestOpArgFlagToString(t *testing.T) {
specs := map[opArgFlag]string{
opArgTermList: "opArgTermList",
opArgTermObj: "opArgTermObj",
opArgByteList: "opArgByteList",
opArgPackage: "opArgPackage",
opArgString: "opArgString",
opArgByteData: "opArgByteData",
opArgWord: "opArgWord",
opArgDword: "opArgDword",
opArgQword: "opArgQword",
opArgNameString: "opArgNameString",
opArgSuperName: "opArgSuperName",
opArgSimpleName: "opArgSimpleName",
opArgDataRefObj: "opArgDataRefObj",
opArgTarget: "opArgTarget",
opArgFieldList: "opArgFieldList",
opArgFlag(0xff): "",
}
for flag, want := range specs {
if got := flag.String(); got != want {
t.Errorf("expected %q; got %q", want, got)
}
}
}
// TestFindUnmappedOpcodes is a helper test that pinpoints opcodes that have
// not yet been mapped via an opcode table. This test will be removed once all
// opcodes are supported.
func TestFindUnmappedOpcodes(t *testing.T) {
//t.SkipNow()
for opIndex, opRef := range opcodeMap {
if opRef != badOpcode {
continue
}
for tabIndex, info := range opcodeTable {
if uint16(info.op) == uint16(opIndex) {
t.Errorf("set opcodeMap[0x%02x] = 0x%02x // %s\n", opIndex, tabIndex, info.op.String())
break
}
}
}
for opIndex, opRef := range extendedOpcodeMap {
// 0xff (opOnes) is defined in opcodeTable
if opRef != badOpcode || opIndex == 0 {
continue
}
opIndex += 0xff
for tabIndex, info := range opcodeTable {
if uint16(info.op) == uint16(opIndex) {
t.Errorf("set extendedOpcodeMap[0x%02x] = 0x%02x // %s\n", opIndex-0xff, tabIndex, info.op.String())
break
}
}
}
}

View File

@ -0,0 +1,937 @@
package aml
import (
"gopheros/device/acpi/table"
"gopheros/kernel"
"gopheros/kernel/kfmt"
"io"
"unsafe"
)
var (
errParsingAML = &kernel.Error{Module: "acpi_aml_parser", Message: "could not parse AML bytecode"}
errResolvingEntities = &kernel.Error{Module: "acpi_aml_parser", Message: "AML bytecode contains unresolvable entities"}
)
// Parser implements an AML parser.
type Parser struct {
r amlStreamReader
errWriter io.Writer
root ScopeEntity
scopeStack []ScopeEntity
tableName string
tableHandle uint8
}
// NewParser returns a new AML parser instance.
func NewParser(errWriter io.Writer, rootEntity ScopeEntity) *Parser {
return &Parser{
errWriter: errWriter,
root: rootEntity,
}
}
// ParseAML attempts to parse the AML byte-code contained in the supplied ACPI
// table tagging each scoped entity with the supplied table handle. The parser
// emits any encountered errors to the specified errWriter.
func (p *Parser) ParseAML(tableHandle uint8, tableName string, header *table.SDTHeader) *kernel.Error {
p.tableHandle = tableHandle
p.tableName = tableName
p.r.Init(
uintptr(unsafe.Pointer(header)),
header.Length,
uint32(unsafe.Sizeof(table.SDTHeader{})),
)
// Pass 1: decode bytecode and build entitites
p.scopeStack = nil
p.scopeEnter(p.root)
if !p.parseObjList(header.Length) {
lastOp, _ := p.r.LastByte()
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d] error parsing AML bytecode (last op 0x%x)\n", p.tableName, p.r.Offset()-1, lastOp)
return errParsingAML
}
p.scopeExit()
// Pass 2: resolve forward references
var resolveFailed bool
scopeVisit(0, p.root, EntityTypeAny, func(_ int, ent Entity) bool {
if res, ok := ent.(resolver); ok && !res.Resolve(p.errWriter, p.root) {
resolveFailed = true
}
return true
})
if resolveFailed {
return errResolvingEntities
}
return nil
}
// parseObjList tries to parse an AML object list. Object lists are usually
// specified together with a pkgLen block which is used to calculate the max
// read offset that the parser may reach.
func (p *Parser) parseObjList(maxOffset uint32) bool {
for !p.r.EOF() && p.r.Offset() < maxOffset {
if !p.parseObj() {
return false
}
}
return true
}
func (p *Parser) parseObj() bool {
var (
curOffset uint32
pkgLen uint32
info *opcodeInfo
ok bool
)
// If we cannot decode the next opcode then this may be a method
// invocation or a name reference. If neither is the case, we need to
// rewind the stream and parse a method invocation before giving up.
curOffset = p.r.Offset()
if info, ok = p.nextOpcode(); !ok {
p.r.SetOffset(curOffset)
return p.parseMethodInvocationOrNameRef()
}
hasPkgLen := info.flags.is(opFlagHasPkgLen) || info.argFlags.contains(opArgTermList) || info.argFlags.contains(opArgFieldList)
if hasPkgLen {
curOffset = p.r.Offset()
if pkgLen, ok = p.parsePkgLength(); !ok {
return false
}
}
// If we encounter a named scope we need to look it up and parse the arg list relative to it
switch info.op {
case opScope:
return p.parseScope(curOffset + pkgLen)
case opDevice, opMethod:
return p.parseNamespacedObj(info.op, curOffset+pkgLen)
}
// Create appropriate object for opcode type and attach it to current scope unless it is
// a device named scope in which case it may define a relative scope name
obj := p.makeObjForOpcode(info)
p.scopeCurrent().Append(obj)
if argCount := info.argFlags.argCount(); argCount > 0 {
for argIndex := uint8(0); argIndex < argCount; argIndex++ {
if !p.parseArg(
info,
obj,
argIndex,
info.argFlags.arg(argIndex),
curOffset+pkgLen,
) {
return false
}
}
}
return p.finalizeObj(info.op, obj)
}
// finalizeObj applies post-parse logic for special object types.
func (p *Parser) finalizeObj(op opcode, obj Entity) bool {
obj.setTableHandle(p.tableHandle)
switch op {
case opElse:
// If this is an else block we need to append it as an argument to the
// If block
// Pop Else block of the current scope
curScope := p.scopeCurrent()
curScope.removeChild(curScope.lastChild())
prevObj := curScope.lastChild()
if prevObj.getOpcode() != opIf {
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d] encountered else block without a matching if block\n", p.tableName, p.r.Offset())
return false
}
// If predicate(0) then(1) else(2)
prevObj.setArg(2, obj)
case opDevice:
// Build method map
dev := obj.(*Device)
dev.methodMap = make(map[string]*Method)
scopeVisit(0, dev, EntityTypeMethod, func(_ int, ent Entity) bool {
method := ent.(*Method)
dev.methodMap[method.name] = method
return false
})
}
return true
}
// parseScope reads a scope name from the AML bytestream, enters it and parses
// an objlist relative to it. The referenced scope must be one of:
// - one of the pre-defined scopes
// - device
// - processor
// - thermal zone
// - power resource
func (p *Parser) parseScope(maxReadOffset uint32) bool {
name, ok := p.parseNameString()
if !ok {
return false
}
target := scopeFind(p.scopeCurrent(), p.root, name)
if target == nil {
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d] undefined scope: %s\n", p.tableName, p.r.Offset(), name)
return false
}
switch target.getOpcode() {
case opDevice, opProcessor, opThermalZone, opPowerRes:
// ok
default:
// Only allow if this is a named scope
if target.Name() == "" {
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d] %s does not refer to a scoped object\n", p.tableName, p.r.Offset(), name)
return false
}
}
p.scopeEnter(target.(ScopeEntity))
ok = p.parseObjList(maxReadOffset)
p.scopeExit()
return ok
}
// parseNamespacedObj reads a scope target name from the AML bytestream,
// attaches the device or method (depending on the opcode) object to the
// correct parent scope, enters the device scope and parses the object list
// contained in the device definition.
func (p *Parser) parseNamespacedObj(op opcode, maxReadOffset uint32) bool {
scopeExpr, ok := p.parseNameString()
if !ok {
return false
}
parent, name := scopeResolvePath(p.scopeCurrent(), p.root, scopeExpr)
if parent == nil {
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d] undefined scope target: %s (current scope: %s)\n", p.tableName, p.r.Offset(), scopeExpr, p.scopeCurrent().Name())
return false
}
var obj ScopeEntity
switch op {
case opDevice:
obj = &Device{scopeEntity: scopeEntity{name: name}}
case opMethod:
m := &Method{scopeEntity: scopeEntity{name: name}}
flags, flagOk := p.parseNumConstant(1)
if !flagOk {
return false
}
m.argCount = (uint8(flags) & 0x7) // bits[0:2]
m.serialized = (uint8(flags)>>3)&0x1 == 0x1 // bit 3
m.syncLevel = (uint8(flags) >> 4) & 0xf // bits[4:7]
obj = m
}
parent.Append(obj)
p.scopeEnter(obj)
ok = p.parseObjList(maxReadOffset)
p.scopeExit()
return ok && p.finalizeObj(op, obj)
}
func (p *Parser) parseArg(info *opcodeInfo, obj Entity, argIndex uint8, argType opArgFlag, maxReadOffset uint32) bool {
var (
arg interface{}
ok bool
)
switch argType {
case opArgNameString:
arg, ok = p.parseNameString()
case opArgByteData:
arg, ok = p.parseNumConstant(1)
case opArgWord:
arg, ok = p.parseNumConstant(2)
case opArgDword:
arg, ok = p.parseNumConstant(4)
case opArgQword:
arg, ok = p.parseNumConstant(8)
case opArgString:
arg, ok = p.parseString()
case opArgTermObj, opArgDataRefObj:
arg, ok = p.parseArgObj()
case opArgSimpleName:
arg, ok = p.parseSimpleName()
case opArgSuperName:
arg, ok = p.parseSuperName()
case opArgTarget:
arg, ok = p.parseTarget()
case opArgTermList:
// If object is a scoped entity enter it's scope before parsing
// the term list. Otherwise, create an unnamed scope, attach it
// as the next argument to obj and enter that.
if s, isScopeEnt := obj.(ScopeEntity); isScopeEnt {
p.scopeEnter(s)
} else {
ns := &scopeEntity{op: opScope}
p.scopeEnter(ns)
obj.setArg(argIndex, ns)
}
ok = p.parseObjList(maxReadOffset)
p.scopeExit()
return ok
case opArgFieldList:
return p.parseFieldList(info.op, obj.getArgs(), maxReadOffset)
case opArgByteList:
var bl []byte
for p.r.Offset() < maxReadOffset {
b, err := p.r.ReadByte()
if err != nil {
return false
}
bl = append(bl, b)
}
arg, ok = bl, true
}
if !ok {
return false
}
return obj.setArg(argIndex, arg)
}
func (p *Parser) parseArgObj() (Entity, bool) {
if ok := p.parseObj(); !ok {
return nil, false
}
curScope := p.scopeCurrent()
obj := curScope.lastChild()
curScope.removeChild(obj)
return obj, true
}
func (p *Parser) makeObjForOpcode(info *opcodeInfo) Entity {
var obj Entity
switch {
case info.op == opOpRegion:
obj = new(regionEntity)
case info.op == opBuffer:
obj = new(bufferEntity)
case info.op == opMutex:
obj = new(mutexEntity)
case info.op == opEvent:
obj = new(eventEntity)
case opIsBufferField(info.op):
obj = new(bufferFieldEntity)
case info.flags.is(opFlagConstant):
obj = new(constEntity)
case info.flags.is(opFlagScoped):
obj = new(scopeEntity)
case info.flags.is(opFlagNamed):
obj = new(namedEntity)
default:
obj = new(unnamedEntity)
}
obj.setOpcode(info.op)
return obj
}
// parseMethodInvocationOrNameRef attempts to parse a method invocation and its term
// args. This method first scans the NameString and performs a lookup. If the
// lookup returns a method definition then we consult it to figure out how many
// arguments we need to parse.
//
// Grammar:
// MethodInvocation := NameString TermArgList
// TermArgList = Nothing | TermArg TermArgList
// TermArg = Type2Opcode | DataObject | ArgObj | LocalObj | MethodInvocation
func (p *Parser) parseMethodInvocationOrNameRef() bool {
invocationStartOffset := p.r.Offset()
name, ok := p.parseNameString()
if !ok {
return false
}
// Lookup Name and try matching it to a function definition
if methodDef, ok := scopeFind(p.scopeCurrent(), p.root, name).(*Method); ok {
var (
invocation = &methodInvocationEntity{
methodDef: methodDef,
}
curOffset uint32
argIndex uint8
arg Entity
)
for argIndex < methodDef.argCount && !p.r.EOF() {
// Peek next opcode
curOffset = p.r.Offset()
nextOpcode, ok := p.nextOpcode()
p.r.SetOffset(curOffset)
switch {
case ok && (opIsType2(nextOpcode.op) || opIsArg(nextOpcode.op) || opIsDataObject(nextOpcode.op)):
arg, ok = p.parseArgObj()
default:
// It may be a nested invocation or named ref
ok = p.parseMethodInvocationOrNameRef()
if ok {
arg = p.scopeCurrent().lastChild()
p.scopeCurrent().removeChild(arg)
}
}
// No more TermArgs to parse
if !ok {
p.r.SetOffset(curOffset)
break
}
invocation.setArg(argIndex, arg)
argIndex++
}
if argIndex != methodDef.argCount {
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d] argument mismatch (exp: %d, got %d) for invocation of method: %s\n", p.tableName, invocationStartOffset, methodDef.argCount, argIndex, name)
return false
}
p.scopeCurrent().Append(invocation)
return true
}
// This is a name reference; assume it's a forward reference for now
// and delegate its resolution to a post-parse step.
p.scopeCurrent().Append(&namedReference{targetName: name})
return true
}
func (p *Parser) nextOpcode() (*opcodeInfo, bool) {
next, err := p.r.ReadByte()
if err != nil {
return nil, false
}
if next != extOpPrefix {
index := opcodeMap[next]
if index == badOpcode {
return nil, false
}
return &opcodeTable[index], true
}
// Scan next byte to figure out the opcode
if next, err = p.r.ReadByte(); err != nil {
return nil, false
}
index := extendedOpcodeMap[next]
if index == badOpcode {
return nil, false
}
return &opcodeTable[index], true
}
// parseFieldList parses a list of FieldElements until the reader reaches
// maxReadOffset and appends them to the current scope. Depending on the opcode
// this method will emit either fieldUnit objects or indexField objects
//
// Grammar:
// FieldElement := NamedField | ReservedField | AccessField | ExtendedAccessField | ConnectField
// NamedField := NameSeg PkgLength
// ReservedField := 0x00 PkgLength
// AccessField := 0x1 AccessType AccessAttrib
// ConnectField := 0x02 NameString | 0x02 BufferData
// ExtendedAccessField := 0x3 AccessType ExtendedAccessType AccessLength
func (p *Parser) parseFieldList(op opcode, args []interface{}, maxReadOffset uint32) bool {
var (
// for fieldUnit, name0 is the region name and name1 is not used;
// for indexField,
name0, name1 string
flags uint64
ok bool
bitWidth uint32
curBitOffset uint32
accessAttrib FieldAccessAttrib
accessByteCount uint8
unitName string
)
switch op {
case opField: // Field := PkgLength Region AccessFlags FieldList
if len(args) != 2 {
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d, opcode 0x%2x] invalid arg count: %d\n", p.tableName, p.r.Offset(), uint32(op), len(args))
return false
}
name0, ok = args[0].(string)
if !ok {
return false
}
flags, ok = args[1].(uint64)
if !ok {
return false
}
case opIndexField: // Field := PkgLength IndexFieldName DataFieldName AccessFlags FieldList
if len(args) != 3 {
kfmt.Fprintf(p.errWriter, "[table: %s, offset: %d, opcode 0x%2x] invalid arg count: %d\n", p.tableName, p.r.Offset(), uint32(op), len(args))
return false
}
name0, ok = args[0].(string)
if !ok {
return false
}
name1, ok = args[1].(string)
if !ok {
return false
}
flags, ok = args[2].(uint64)
if !ok {
return false
}
}
// Decode flags
accessType := FieldAccessType(flags & 0xf) // access type; bits[0:3]
lock := (flags>>4)&0x1 == 0x1 // lock; bit 4
updateRule := FieldUpdateRule((flags >> 5) & 0x3) // update rule; bits[5:6]
var (
connectionName string
resolvedConnection Entity
)
for p.r.Offset() < maxReadOffset {
next, err := p.r.ReadByte()
if err != nil {
return false
}
switch next {
case 0x00: // ReservedField; generated by the Offset() command
bitWidth, ok = p.parsePkgLength()
if !ok {
return false
}
curBitOffset += bitWidth
continue
case 0x1: // AccessField; set access attributes for following fields
next, err := p.r.ReadByte()
if err != nil {
return false
}
accessType = FieldAccessType(next & 0xf) // access type; bits[0:3]
attrib, err := p.r.ReadByte()
if err != nil {
return false
}
// To specify AccessAttribBytes, RawBytes and RawProcessBytes
// the ASL compiler will emit an ExtendedAccessField opcode.
accessByteCount = 0
accessAttrib = FieldAccessAttrib(attrib)
continue
case 0x2: // ConnectField => <0x2> NameString> | <0x02> TermObj => Buffer
curOffset := p.r.Offset()
if connectionName, ok = p.parseNameString(); !ok {
// Rewind and try parsing it as an object
p.r.SetOffset(curOffset)
if resolvedConnection, ok = p.parseArgObj(); !ok {
return false
}
}
case 0x3: // ExtendedAccessField => <0x03> AccessType ExtendedAccessAttrib AccessLength
next, err := p.r.ReadByte()
if err != nil {
return false
}
accessType = FieldAccessType(next & 0xf) // access type; bits[0:3]
extAccessAttrib, err := p.r.ReadByte()
if err != nil {
return false
}
accessByteCount, err = p.r.ReadByte()
if err != nil {
return false
}
switch extAccessAttrib {
case 0x0b:
accessAttrib = FieldAccessAttribBytes
case 0xe:
accessAttrib = FieldAccessAttribRawBytes
case 0x0f:
accessAttrib = FieldAccessAttribRawProcessBytes
}
default: // NamedField
p.r.UnreadByte()
if unitName, ok = p.parseNameString(); !ok {
return false
}
bitWidth, ok = p.parsePkgLength()
if !ok {
return false
}
// According to the spec, the field elements are should
// be visible at the same scope as the Field/IndexField
switch op {
case opField:
p.scopeCurrent().Append(&fieldUnitEntity{
fieldEntity: fieldEntity{
namedEntity: namedEntity{
tableHandle: p.tableHandle,
op: op,
name: unitName,
},
bitOffset: curBitOffset,
bitWidth: bitWidth,
lock: lock,
updateRule: updateRule,
accessType: accessType,
accessAttrib: accessAttrib,
byteCount: accessByteCount,
},
connectionName: connectionName,
resolvedConnection: resolvedConnection,
regionName: name0,
})
case opIndexField:
p.scopeCurrent().Append(&indexFieldEntity{
fieldEntity: fieldEntity{
namedEntity: namedEntity{
tableHandle: p.tableHandle,
op: op,
name: unitName,
},
bitOffset: curBitOffset,
bitWidth: bitWidth,
lock: lock,
updateRule: updateRule,
accessType: accessType,
accessAttrib: accessAttrib,
byteCount: accessByteCount,
},
connectionName: connectionName,
resolvedConnection: resolvedConnection,
indexRegName: name0,
dataRegName: name1,
})
}
curBitOffset += bitWidth
}
}
return ok && p.r.Offset() == maxReadOffset
}
// parsePkgLength parses a PkgLength value from the AML bytestream.
func (p *Parser) parsePkgLength() (uint32, bool) {
lead, err := p.r.ReadByte()
if err != nil {
return 0, false
}
// The high 2 bits of the lead byte indicate how many bytes follow.
var pkgLen uint32
switch lead >> 6 {
case 0:
pkgLen = uint32(lead)
case 1:
b1, err := p.r.ReadByte()
if err != nil {
return 0, false
}
// lead bits 0-3 are the lsb of the length nybble
pkgLen = uint32(b1)<<4 | uint32(lead&0xf)
case 2:
b1, err := p.r.ReadByte()
if err != nil {
return 0, false
}
b2, err := p.r.ReadByte()
if err != nil {
return 0, false
}
// lead bits 0-3 are the lsb of the length nybble
pkgLen = uint32(b2)<<12 | uint32(b1)<<4 | uint32(lead&0xf)
case 3:
b1, err := p.r.ReadByte()
if err != nil {
return 0, false
}
b2, err := p.r.ReadByte()
if err != nil {
return 0, false
}
b3, err := p.r.ReadByte()
if err != nil {
return 0, false
}
// lead bits 0-3 are the lsb of the length nybble
pkgLen = uint32(b3)<<20 | uint32(b2)<<12 | uint32(b1)<<4 | uint32(lead&0xf)
}
return pkgLen, true
}
// parseNumConstant parses a byte/word/dword or qword value from the AML bytestream.
func (p *Parser) parseNumConstant(numBytes uint8) (uint64, bool) {
var (
next byte
err error
res uint64
)
for c := uint8(0); c < numBytes; c++ {
if next, err = p.r.ReadByte(); err != nil {
return 0, false
}
res = res | (uint64(next) << (8 * c))
}
return res, true
}
// parseString parses a string from the AML bytestream.
func (p *Parser) parseString() (string, bool) {
// Read ASCII chars till we reach a null byte
var (
next byte
err error
str []byte
)
for {
next, err = p.r.ReadByte()
if err != nil {
return "", false
}
if next == 0x00 {
break
} else if next >= 0x01 && next <= 0x7f { // AsciiChar
str = append(str, next)
} else {
return "", false
}
}
return string(str), true
}
// parseSuperName attempts to pass a SuperName from the AML bytestream.
//
// Grammar:
// SuperName := SimpleName | DebugObj | Type6Opcode
// SimpleName := NameString | ArgObj | LocalObj
func (p *Parser) parseSuperName() (interface{}, bool) {
// Try parsing as SimpleName
curOffset := p.r.Offset()
if obj, ok := p.parseSimpleName(); ok {
return obj, ok
}
// Rewind and try parsing as object
p.r.SetOffset(curOffset)
return p.parseArgObj()
}
// parseSimpleName attempts to pass a SimpleName from the AML bytestream.
//
// Grammar:
// SimpleName := NameString | ArgObj | LocalObj
func (p *Parser) parseSimpleName() (interface{}, bool) {
// Peek next opcode
curOffset := p.r.Offset()
nextOpcode, ok := p.nextOpcode()
var obj interface{}
switch {
case ok && nextOpcode.op >= opLocal0 && nextOpcode.op <= opLocal7:
obj, ok = &unnamedEntity{op: nextOpcode.op}, true
case ok && nextOpcode.op >= opArg0 && nextOpcode.op <= opArg6:
obj, ok = &unnamedEntity{op: nextOpcode.op}, true
default:
// Rewind and try parsing as NameString
p.r.SetOffset(curOffset)
obj, ok = p.parseNameString()
}
return obj, ok
}
// parseTarget attempts to pass a Target from the AML bytestream.
//
// Grammar:
// Target := SuperName | NullName
// NullName := 0x00
// SuperName := SimpleName | DebugObj | Type6Opcode
// Type6Opcode := DefRefOf | DefDerefOf | DefIndex | UserTermObj
// SimpleName := NameString | ArgObj | LocalObj
//
// UserTermObj is a control method invocation.
func (p *Parser) parseTarget() (interface{}, bool) {
// Peek next opcode
curOffset := p.r.Offset()
nextOpcode, ok := p.nextOpcode()
p.r.SetOffset(curOffset)
if ok {
switch {
case nextOpcode.op == opZero: // this is actually a NullName
p.r.SetOffset(curOffset + 1)
return &constEntity{op: opStringPrefix, val: ""}, true
case opIsArg(nextOpcode.op) || nextOpcode.op == opRefOf || nextOpcode.op == opDerefOf || nextOpcode.op == opIndex || nextOpcode.op == opDebug: // LocalObj | ArgObj | Type6 | DebugObj
default:
// Unexpected opcode
return nil, false
}
// We can use parseObj for parsing
return p.parseArgObj()
}
// In this case, this is either a NameString or a control method invocation.
if ok := p.parseMethodInvocationOrNameRef(); ok {
obj := p.scopeCurrent().lastChild()
p.scopeCurrent().removeChild(obj)
return obj, ok
}
return nil, false
}
// parseNameString parses a NameString from the AML bytestream.
//
// Grammar:
// NameString := RootChar NamePath | PrefixPath NamePath
// PrefixPath := Nothing | '^' PrefixPath
// NamePath := NameSeg | DualNamePath | MultiNamePath | NullName
func (p *Parser) parseNameString() (string, bool) {
var str []byte
// NameString := RootChar NamePath | PrefixPath NamePath
next, err := p.r.PeekByte()
if err != nil {
return "", false
}
switch next {
case '\\': // RootChar
str = append(str, next)
p.r.ReadByte()
case '^': // PrefixPath := Nothing | '^' PrefixPath
str = append(str, next)
p.r.ReadByte()
for {
next, err = p.r.PeekByte()
if err != nil {
return "", false
}
if next != '^' {
break
}
str = append(str, next)
p.r.ReadByte()
}
}
// NamePath := NameSeg | DualNamePath | MultiNamePath | NullName
next, err = p.r.ReadByte()
if err != nil {
return "", false
}
var readCount int
switch next {
case 0x00: // NullName
case 0x2e: // DualNamePath := DualNamePrefix NameSeg NameSeg
readCount = 8 // NameSeg x 2
case 0x2f: // MultiNamePath := MultiNamePrefix SegCount NameSeg(SegCount)
segCount, err := p.r.ReadByte()
if segCount == 0 || err != nil {
return "", false
}
readCount = int(segCount) * 4
default: // NameSeg := LeadNameChar NameChar NameChar NameChar
// LeadNameChar := 'A' - 'Z' | '_'
if (next < 'A' || next > 'Z') && next != '_' {
return "", false
}
str = append(str, next) // LeadNameChar
readCount = 3 // NameChar x 3
}
for index := 0; readCount > 0; readCount, index = readCount-1, index+1 {
next, err := p.r.ReadByte()
if err != nil {
return "", false
}
// Inject a '.' every 4 chars except for the last segment so
// scoped lookups can work properly.
if index > 0 && index%4 == 0 && readCount > 1 {
str = append(str, '.')
}
str = append(str, next)
}
return string(str), true
}
// scopeCurrent returns the currently active scope.
func (p *Parser) scopeCurrent() ScopeEntity {
return p.scopeStack[len(p.scopeStack)-1]
}
// scopeEnter enters the given scope.
func (p *Parser) scopeEnter(s ScopeEntity) {
p.scopeStack = append(p.scopeStack, s)
}
// scopeExit exits the current scope.
func (p *Parser) scopeExit() {
p.scopeStack = p.scopeStack[:len(p.scopeStack)-1]
}

View File

@ -0,0 +1,611 @@
package aml
import (
"gopheros/device/acpi/table"
"io/ioutil"
"path/filepath"
"runtime"
"strings"
"testing"
"unsafe"
)
func TestParser(t *testing.T) {
specs := [][]string{
[]string{"DSDT.aml", "SSDT.aml"},
[]string{"parser-testsuite-DSDT.aml"},
}
for specIndex, spec := range specs {
var resolver = mockResolver{
tableFiles: spec,
}
// Create default scopes
rootNS := &scopeEntity{op: opScope, name: `\`}
rootNS.Append(&scopeEntity{op: opScope, name: `_GPE`}) // General events in GPE register block
rootNS.Append(&scopeEntity{op: opScope, name: `_PR_`}) // ACPI 1.0 processor namespace
rootNS.Append(&scopeEntity{op: opScope, name: `_SB_`}) // System bus with all device objects
rootNS.Append(&scopeEntity{op: opScope, name: `_SI_`}) // System indicators
rootNS.Append(&scopeEntity{op: opScope, name: `_TZ_`}) // ACPI 1.0 thermal zone namespace
p := NewParser(ioutil.Discard, rootNS)
for _, tableName := range spec {
tableName = strings.Replace(tableName, ".aml", "", -1)
if err := p.ParseAML(0, tableName, resolver.LookupTable(tableName)); err != nil {
t.Errorf("[spec %d] [%s]: %v", specIndex, tableName, err)
break
}
}
}
}
func TestTableHandleAssignment(t *testing.T) {
var resolver = mockResolver{tableFiles: []string{"parser-testsuite-DSDT.aml"}}
// Create default scopes
rootNS := &scopeEntity{op: opScope, name: `\`}
rootNS.Append(&scopeEntity{op: opScope, name: `_GPE`}) // General events in GPE register block
rootNS.Append(&scopeEntity{op: opScope, name: `_PR_`}) // ACPI 1.0 processor namespace
rootNS.Append(&scopeEntity{op: opScope, name: `_SB_`}) // System bus with all device objects
rootNS.Append(&scopeEntity{op: opScope, name: `_SI_`}) // System indicators
rootNS.Append(&scopeEntity{op: opScope, name: `_TZ_`}) // ACPI 1.0 thermal zone namespace
p := NewParser(ioutil.Discard, rootNS)
expHandle := uint8(42)
tableName := "parser-testsuite-DSDT"
if err := p.ParseAML(expHandle, tableName, resolver.LookupTable(tableName)); err != nil {
t.Error(err)
}
// Drop all entities that were assigned the handle value
var unloadList []Entity
scopeVisit(0, p.root, EntityTypeAny, func(_ int, ent Entity) bool {
if ent.TableHandle() == expHandle {
unloadList = append(unloadList, ent)
return false
}
return true
})
for _, ent := range unloadList {
if p := ent.Parent(); p != nil {
p.removeChild(ent)
}
}
// We should end up with the original tree
var visitedNodes int
scopeVisit(0, p.root, EntityTypeAny, func(_ int, ent Entity) bool {
visitedNodes++
if ent.TableHandle() == expHandle {
t.Errorf("encountered entity that should have been pruned: %#+v", ent)
}
return true
})
if exp := len(rootNS.Children()) + 1; visitedNodes != exp {
t.Errorf("expected to visit %d nodes; visited %d", exp, visitedNodes)
}
}
func TestParsePkgLength(t *testing.T) {
specs := []struct {
payload []byte
exp uint32
}{
// lead byte bits (6:7) indicate 1 extra byte for the len. The
// parsed length will use bits 0:3 from the lead byte plus
// the full 8 bits of the following byte.
{
[]byte{1<<6 | 7, 255},
4087,
},
// lead byte bits (6:7) indicate 2 extra bytes for the len. The
// parsed length will use bits 0:3 from the lead byte plus
// the full 8 bits of the following bytes.
{
[]byte{2<<6 | 8, 255, 128},
528376,
},
// lead byte bits (6:7) indicate 3 extra bytes for the len. The
// parsed length will use bits 0:3 from the lead byte plus
// the full 8 bits of the following bytes.
{
[]byte{3<<6 | 6, 255, 128, 42},
44568566,
},
}
p := &Parser{errWriter: ioutil.Discard}
for specIndex, spec := range specs {
mockParserPayload(p, spec.payload)
got, ok := p.parsePkgLength()
if !ok {
t.Errorf("[spec %d] parsePkgLength returned false", specIndex)
continue
}
if got != spec.exp {
t.Errorf("[spec %d] expected parsePkgLength to return %d; got %d", specIndex, spec.exp, got)
}
}
}
func TestParserErrorHandling(t *testing.T) {
p := &Parser{
errWriter: ioutil.Discard,
}
t.Run("ParseAML errors", func(t *testing.T) {
t.Run("parseObjList error", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
// Setup resolver to serve an AML stream containing an invalid opcode
header := mockParserPayload(p, []byte{0x5b, 0x00})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected ParseAML to return an error")
}
// Setup resolver to serve an AML stream containing an incomplete extended opcode
header = mockParserPayload(p, []byte{0x5b})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected ParseAML to return an error")
}
})
t.Run("unresolved entities", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
// Inject a reference entity to the tree
p.root.Append(&namedReference{
targetName: "UNKNOWN",
})
// Setup resolver to serve an empty AML stream
header := mockParserPayload(p, nil)
if err := p.ParseAML(uint8(42), "DSDT", header); err != errResolvingEntities {
t.Fatalf("expected ParseAML to return errResolvingEntities; got %v", err)
}
})
})
t.Run("parseObj errors", func(t *testing.T) {
t.Run("parsePkgLength error", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
// Setup resolver to serve an AML stream containing an incomplete
// buffer specification
header := mockParserPayload(p, []byte{byte(opBuffer)})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected parsePkgLength to return an error")
}
})
t.Run("incomplete object list", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
// Setup resolver to serve an AML stream containing an incomplete
// buffer arglist specification
header := mockParserPayload(p, []byte{byte(opBuffer), 0x10})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected parsePkgLength to return an error")
}
})
})
t.Run("finalizeObj errors", func(t *testing.T) {
t.Run("else without matching if", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
p.root.Append(&constEntity{val: 0x42})
p.root.Append(&scopeEntity{op: opElse})
// Setup resolver to serve an AML stream containing an
// empty else statement without a matching if
header := mockParserPayload(p, []byte{byte(opElse), 0x0})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected finalizeObj to return an error")
}
})
})
t.Run("parseScope errors", func(t *testing.T) {
t.Run("parseNameString error", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
header := mockParserPayload(p, []byte{
byte(opScope),
0x10, // pkglen
})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected parseScope to return an error")
}
})
t.Run("unknown scope", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
header := mockParserPayload(p, []byte{
byte(opScope),
0x10, // pkglen
'F', 'O', 'O', 'F',
})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected parseScope to return an error")
}
})
t.Run("nameless scope", func(t *testing.T) {
p.root = &scopeEntity{}
header := mockParserPayload(p, []byte{
byte(opScope),
0x02, // pkglen
'\\', // scope name: "\" (root scope)
0x00, // null string
})
if err := p.ParseAML(uint8(42), "DSDT", header); err == nil {
t.Fatal("expected parseScope to return an error")
}
})
})
t.Run("parseNamespacedObj errors", func(t *testing.T) {
t.Run("parseNameString error", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
mockParserPayload(p, nil)
if p.parseNamespacedObj(opDevice, 10) {
t.Fatal("expected parseNamespacedObj to return false")
}
})
t.Run("scope lookup error", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
header := mockParserPayload(p, []byte{'^', 'F', 'A', 'B', 'C'})
p.scopeEnter(p.root)
if p.parseNamespacedObj(opDevice, header.Length) {
t.Fatal("expected parseNamespacedObj to return false")
}
})
t.Run("error parsing method arg count", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
header := mockParserPayload(p, []byte{'F', 'A', 'B', 'C'})
p.scopeEnter(p.root)
if p.parseNamespacedObj(opMethod, header.Length) {
t.Fatal("expected parseNamespacedObj to return false")
}
})
})
t.Run("parseArg bytelist errors", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
mockParserPayload(p, nil)
if p.parseArg(new(opcodeInfo), new(unnamedEntity), 0, opArgByteList, 42) {
t.Fatal("expected parseNamespacedObj to return false")
}
})
t.Run("parseMethodInvocationOrNameRef errors", func(t *testing.T) {
t.Run("missing args", func(t *testing.T) {
p.root = &scopeEntity{op: opScope, name: `\`}
p.root.Append(&Method{
scopeEntity: scopeEntity{name: "MTHD"},
argCount: 10,
})
mockParserPayload(p, []byte{
'M', 'T', 'H', 'D',
byte(opIf), // Incomplete type2 opcode
})
p.scopeEnter(p.root)
if p.parseMethodInvocationOrNameRef() {
t.Fatal("expected parseMethodInvocationOrNameRef to return false")
}
})
})
t.Run("parseFieldList errors", func(t *testing.T) {
specs := []struct {
op opcode
args []interface{}
maxReadOffset uint32
payload []byte
}{
// Invalid arg count for opField
{
opField,
nil,
0,
nil,
},
// Wrong arg type for opField
{
opField,
[]interface{}{0, uint64(42)},
0,
nil,
},
{
opField,
[]interface{}{"FLD0", uint32(42)},
0,
nil,
},
// Invalid arg count for opIndexField
{
opIndexField,
nil,
0,
nil,
},
// Wrong arg type for opIndexField
{
opIndexField,
[]interface{}{0, "FLD1", "FLD2"},
0,
nil,
},
{
opIndexField,
[]interface{}{"FLD0", 0, "FLD2"},
0,
nil,
},
{
opIndexField,
[]interface{}{"FLD0", "FLD1", 0},
0,
nil,
},
// unexpected EOF parsing fields
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
nil,
},
// reserved field (0x00) with missing pkgLen
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0x00},
},
// access field (0x01) with missing accessType
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0x01},
},
// access field (0x01) with missing attribute byte
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0x01, 0x01},
},
// connect field (0x02) with incomplete TermObject => Buffer arg
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0x02, byte(opBuffer)},
},
// extended access field (0x03) with missing ext. accessType
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0x03},
},
// extended access field (0x03) with missing ext. attribute byte
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0x03, 0x01},
},
// extended access field (0x03) with missing access byte count value
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0x03, 0x01, 0x02},
},
// named field with invalid name
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{0xff},
},
// named field with invalid pkgLen
{
opField,
[]interface{}{"FLD0", uint64(42)},
128,
[]byte{'N', 'A', 'M', 'E'},
},
}
for specIndex, spec := range specs {
mockParserPayload(p, spec.payload)
if p.parseFieldList(spec.op, spec.args, spec.maxReadOffset) {
t.Errorf("[spec %d] expected parseFieldLis to return false", specIndex)
}
}
})
t.Run("parsePkgLength errors", func(t *testing.T) {
specs := [][]byte{
// lead byte bits (6:7) indicate 1 extra byte that is missing
[]byte{1 << 6},
// lead byte bits (6:7) indicate 2 extra bytes with the 1st and then 2nd missing
[]byte{2 << 6},
[]byte{2 << 6, 0x1},
// lead byte bits (6:7) indicate 3 extra bytes with the 1st and then 2nd and then 3rd missing
[]byte{3 << 6},
[]byte{3 << 6, 0x1},
[]byte{3 << 6, 0x1, 0x2},
}
for specIndex, spec := range specs {
mockParserPayload(p, spec)
if _, ok := p.parsePkgLength(); ok {
t.Errorf("[spec %d] expected parsePkgLength to return false", specIndex)
}
}
})
t.Run("parseString errors", func(t *testing.T) {
specs := [][]byte{
// Unexpected EOF before terminating null byte
[]byte{'A'},
// Characters outside the allowed [0x01, 0x7f] range
[]byte{'A', 0xba, 0xdf, 0x00},
}
for specIndex, spec := range specs {
mockParserPayload(p, spec)
if _, ok := p.parseString(); ok {
t.Errorf("[spec %d] expected parseString to return false", specIndex)
}
}
})
t.Run("parseTarget errors", func(t *testing.T) {
t.Run("unexpected opcode", func(t *testing.T) {
// Unexpected opcode
mockParserPayload(p, []byte{byte(opAnd)})
if _, ok := p.parseTarget(); ok {
t.Error("expected parseTarget to return false")
}
})
t.Run("corrupted data", func(t *testing.T) {
// Invalid opcode and not a method invocation nor a namestring
mockParserPayload(p, []byte{0xba, 0xad})
if _, ok := p.parseTarget(); ok {
t.Error("expected parseTarget to return false")
}
})
})
t.Run("parseNameString errors", func(t *testing.T) {
t.Run("EOF while parsing path prefix", func(t *testing.T) {
mockParserPayload(p, []byte{'^'})
if _, ok := p.parseNameString(); ok {
t.Error("expected parseNameString to return false")
}
})
t.Run("EOF while parsing multiname path", func(t *testing.T) {
specs := [][]byte{
// multiname path prefix but no data following
[]byte{0x2f},
[]byte{
0x2f, // multiname path prefix
0x0, // no segments (segments must be > 0)
},
[]byte{
0x2f, // multiname path prefix
0x1, // 1 expected segment but no more data available
},
[]byte{
'\\', // RootChar and no more data
},
}
for specIndex, spec := range specs {
mockParserPayload(p, spec)
if _, ok := p.parseNameString(); ok {
t.Errorf("[spec %d] expected parseNameString to return false", specIndex)
}
}
})
})
}
func mockParserPayload(p *Parser, payload []byte) *table.SDTHeader {
resolver := fixedPayloadResolver{payload}
header := resolver.LookupTable("DSDT")
p.r.Init(
uintptr(unsafe.Pointer(header)),
header.Length,
uint32(unsafe.Sizeof(table.SDTHeader{})),
)
return resolver.LookupTable("DSDT")
}
func pkgDir() string {
_, f, _, _ := runtime.Caller(1)
return filepath.Dir(f)
}
type mockResolver struct {
tableFiles []string
}
func (m mockResolver) LookupTable(name string) *table.SDTHeader {
pathToDumps := pkgDir() + "/../table/tabletest/"
for _, f := range m.tableFiles {
if !strings.Contains(f, name) {
continue
}
data, err := ioutil.ReadFile(pathToDumps + f)
if err != nil {
panic(err)
}
return (*table.SDTHeader)(unsafe.Pointer(&data[0]))
}
return nil
}
type fixedPayloadResolver struct {
payload []byte
}
func (f fixedPayloadResolver) LookupTable(name string) *table.SDTHeader {
hdrLen := int(unsafe.Sizeof(table.SDTHeader{}))
buf := make([]byte, len(f.payload)+hdrLen)
copy(buf[hdrLen:], f.payload)
hdr := (*table.SDTHeader)(unsafe.Pointer(&buf[0]))
hdr.Length = uint32(len(buf))
return hdr
}

View File

@ -0,0 +1,189 @@
package aml
import "strings"
// Visitor is a function invoked by the VM for each AML tree entity that matches
// a particular type. The return value controls whether the children of this
// entity should also be visited.
type Visitor func(depth int, obj Entity) (keepRecursing bool)
// EntityType defines the type of entity that visitors should inspect.
type EntityType uint8
// The list of supported EntityType values. EntityTypeAny works as a wildcard
// allowing the visitor to inspect all entities in the AML tree.
const (
EntityTypeAny EntityType = iota
EntityTypeDevice
EntityTypeProcessor
EntityTypePowerResource
EntityTypeThermalZone
EntityTypeMethod
)
// scopeVisit descends a scope hierarchy and invokes visitorFn for each entity
// that matches entType.
func scopeVisit(depth int, ent Entity, entType EntityType, visitorFn Visitor) bool {
op := ent.getOpcode()
switch {
case (entType == EntityTypeAny) ||
(entType == EntityTypeDevice && op == opDevice) ||
(entType == EntityTypeProcessor && op == opProcessor) ||
(entType == EntityTypePowerResource && op == opPowerRes) ||
(entType == EntityTypeThermalZone && op == opThermalZone) ||
(entType == EntityTypeMethod && op == opMethod):
// If the visitor returned false we should not visit the children
if !visitorFn(depth, ent) {
return false
}
}
// If the entity defines a scope we need to visit the child entities.
if scopeEnt, ok := ent.(ScopeEntity); ok {
for _, child := range scopeEnt.Children() {
scopeVisit(depth+1, child, entType, visitorFn)
}
}
return true
}
// scopeResolvePath examines a path expression and attempts to break it down
// into a parent and child segment. The parent segment is looked up via the
// regular scope rules specified in page 252 of the ACPI 6.2 spec. If the
// parent scope is found then the function returns back the parent entity and
// the name of the child that should be appended to it. If the expression
// lookup fails then the function returns nil, "".
func scopeResolvePath(curScope, rootScope ScopeEntity, expr string) (parent ScopeEntity, name string) {
if len(expr) <= 1 {
return nil, ""
}
// Pattern looks like \FOO or ^+BAR or BAZ (relative to curScope)
lastDotIndex := strings.LastIndexByte(expr, '.')
if lastDotIndex == -1 {
switch expr[0] {
case '\\':
return rootScope, expr[1:]
case '^':
lastHatIndex := strings.LastIndexByte(expr, '^')
if target := scopeFind(curScope, rootScope, expr[:lastHatIndex+1]); target != nil {
return target.(ScopeEntity), expr[lastHatIndex+1:]
}
return nil, ""
default:
return curScope, expr
}
}
// Pattern looks like: \FOO.BAR.BAZ or ^+FOO.BAR.BAZ or FOO.BAR.BAZ
if target := scopeFind(curScope, rootScope, expr[:lastDotIndex]); target != nil {
return target.(ScopeEntity), expr[lastDotIndex+1:]
}
return nil, ""
}
// scopeFind attempts to find an object with the given name using the rules
// specified in page 252 of the ACPI 6.2 spec:
//
// There are two types of namespace paths: an absolute namespace path (that is,
// one that starts with a \ prefix), and a relative namespace path (that is,
// one that is relative to the current namespace). The namespace search rules
// discussed above, only apply to single NameSeg paths, which is a relative
// namespace path. For those relative name paths that contain multiple NameSegs
// or Parent Prefixes, ^, the search rules do not apply. If the search rules
// do not apply to a relative namespace path, the namespace object is looked up
// relative to the current namespace
func scopeFind(curScope, rootScope ScopeEntity, name string) Entity {
nameLen := len(name)
if nameLen == 0 {
return nil
}
switch {
case name[0] == '\\': // relative to the root scope
if nameLen > 1 {
return scopeFindRelative(rootScope, name[1:])
}
// Name was just `\`; this matches the root namespace
return rootScope
case name[0] == '^': // relative to the parent scope(s)
for startIndex := 0; startIndex < nameLen; startIndex++ {
switch name[startIndex] {
case '^':
curScope = curScope.Parent()
// No parent to visit
if curScope == nil {
return nil
}
default:
// Found the start of the name. Look it up relative to curNs
return scopeFindRelative(curScope, name[startIndex:])
}
}
// Name was just a sequence of '^'; this matches the last curScope value
return curScope
case strings.ContainsRune(name, '.'):
// If the name contains any '.' then we still need to look it
// up relative to the current scope
return scopeFindRelative(curScope, name)
default:
// We can apply the search rules described by the spec
for s := curScope; s != nil; s = s.Parent() {
for _, child := range s.Children() {
if child.Name() == name {
return child
}
}
}
}
// Not found
return nil
}
// scopeFindRelative returns the Entity referenced by path relative
// to the provided Namespace. If the name contains dots, each segment
// is used to access a nested namespace. If the path does not point
// to a NamedObject then lookupRelativeTo returns back nil.
func scopeFindRelative(ns ScopeEntity, path string) Entity {
var matchName string
matchNextPathSegment:
for {
dotSepIndex := strings.IndexRune(path, '.')
if dotSepIndex != -1 {
matchName = path[:dotSepIndex]
path = path[dotSepIndex+1:]
// Search for a scoped child named "matchName"
for _, child := range ns.Children() {
childNs, ok := child.(ScopeEntity)
if !ok {
continue
}
if childNs.Name() == matchName {
ns = childNs
continue matchNextPathSegment
}
}
} else {
// Search for a child named "name"
for _, child := range ns.Children() {
if child.Name() == path {
return child
}
}
}
// Next segment in the path was not found or last segment not found
break
}
return nil
}

View File

@ -0,0 +1,264 @@
package aml
import (
"reflect"
"testing"
)
func TestScopeVisit(t *testing.T) {
scopeMap := genTestScopes()
root := scopeMap[`\`].(*scopeEntity)
// Append special entities under IDE0
ide := scopeMap["IDE0"].(*scopeEntity)
ide.Append(&Device{})
ide.Append(&namedEntity{op: opProcessor})
ide.Append(&namedEntity{op: opProcessor})
ide.Append(&namedEntity{op: opPowerRes})
ide.Append(&namedEntity{op: opPowerRes})
ide.Append(&namedEntity{op: opPowerRes})
ide.Append(&namedEntity{op: opThermalZone})
ide.Append(&namedEntity{op: opThermalZone})
ide.Append(&namedEntity{op: opThermalZone})
ide.Append(&namedEntity{op: opThermalZone})
ide.Append(&Method{})
ide.Append(&Method{})
ide.Append(&Method{})
ide.Append(&Method{})
ide.Append(&Method{})
specs := []struct {
searchType EntityType
keepRecursing bool
wantHits int
}{
{EntityTypeAny, true, 21},
{EntityTypeAny, false, 1},
{EntityTypeDevice, true, 1},
{EntityTypeProcessor, true, 2},
{EntityTypePowerResource, true, 3},
{EntityTypeThermalZone, true, 4},
{EntityTypeMethod, true, 5},
}
for specIndex, spec := range specs {
var hits int
scopeVisit(0, root, spec.searchType, func(_ int, obj Entity) bool {
hits++
return spec.keepRecursing
})
if hits != spec.wantHits {
t.Errorf("[spec %d] expected visitor to be called %d times; got %d", specIndex, spec.wantHits, hits)
}
}
}
func TestScopeResolvePath(t *testing.T) {
scopeMap := genTestScopes()
specs := []struct {
curScope ScopeEntity
pathExpr string
wantParent Entity
wantName string
}{
{
scopeMap["IDE0"].(*scopeEntity),
`\_SB_`,
scopeMap[`\`],
"_SB_",
},
{
scopeMap["IDE0"].(*scopeEntity),
`^FOO`,
scopeMap[`PCI0`],
"FOO",
},
{
scopeMap["IDE0"].(*scopeEntity),
`^^FOO`,
scopeMap[`_SB_`],
"FOO",
},
{
scopeMap["IDE0"].(*scopeEntity),
`_ADR`,
scopeMap[`IDE0`],
"_ADR",
},
// Paths with dots
{
scopeMap["IDE0"].(*scopeEntity),
`\_SB_.PCI0.IDE0._ADR`,
scopeMap[`IDE0`],
"_ADR",
},
{
scopeMap["PCI0"].(*scopeEntity),
`IDE0._ADR`,
scopeMap[`IDE0`],
"_ADR",
},
{
scopeMap["PCI0"].(*scopeEntity),
`_CRS`,
scopeMap[`PCI0`],
"_CRS",
},
// Bad queries
{
scopeMap["PCI0"].(*scopeEntity),
`FOO.BAR.BAZ`,
nil,
"",
},
{
scopeMap["PCI0"].(*scopeEntity),
``,
nil,
"",
},
{
scopeMap["PCI0"].(*scopeEntity),
`\`,
nil,
"",
},
{
scopeMap["PCI0"].(*scopeEntity),
`^^^^^^^^^BADPATH`,
nil,
"",
},
}
root := scopeMap[`\`].(*scopeEntity)
for specIndex, spec := range specs {
gotParent, gotName := scopeResolvePath(spec.curScope, root, spec.pathExpr)
if !reflect.DeepEqual(gotParent, spec.wantParent) {
t.Errorf("[spec %d] expected lookup to return %#v; got %#v", specIndex, spec.wantParent, gotParent)
continue
}
if gotName != spec.wantName {
t.Errorf("[spec %d] expected lookup to return node name %q; got %q", specIndex, spec.wantName, gotName)
}
}
}
func TestScopeFind(t *testing.T) {
scopeMap := genTestScopes()
specs := []struct {
curScope ScopeEntity
lookup string
want Entity
}{
// Search rules do not apply for these cases
{
scopeMap["PCI0"].(*scopeEntity),
`\`,
scopeMap[`\`],
},
{
scopeMap["PCI0"].(*scopeEntity),
"IDE0._ADR",
scopeMap["_ADR"],
},
{
scopeMap["IDE0"].(*scopeEntity),
"^^PCI0.IDE0._ADR",
scopeMap["_ADR"],
},
{
scopeMap["IDE0"].(*scopeEntity),
`\_SB_.PCI0.IDE0._ADR`,
scopeMap["_ADR"],
},
{
scopeMap["IDE0"].(*scopeEntity),
`\_SB_.PCI0`,
scopeMap["PCI0"],
},
{
scopeMap["IDE0"].(*scopeEntity),
`^`,
scopeMap["PCI0"],
},
// Bad queries
{
scopeMap["_SB_"].(*scopeEntity),
"PCI0.USB._CRS",
nil,
},
{
scopeMap["IDE0"].(*scopeEntity),
"^^^^^^^^^^^^^^^^^^^",
nil,
},
{
scopeMap["IDE0"].(*scopeEntity),
`^^^^^^^^^^^FOO`,
nil,
},
{
scopeMap["IDE0"].(*scopeEntity),
"FOO",
nil,
},
{
scopeMap["IDE0"].(*scopeEntity),
"",
nil,
},
// Search rules apply for these cases
{
scopeMap["IDE0"].(*scopeEntity),
"_CRS",
scopeMap["_CRS"],
},
}
root := scopeMap[`\`].(*scopeEntity)
for specIndex, spec := range specs {
if got := scopeFind(spec.curScope, root, spec.lookup); !reflect.DeepEqual(got, spec.want) {
t.Errorf("[spec %d] expected lookup to return %#v; got %#v", specIndex, spec.want, got)
}
}
}
func genTestScopes() map[string]Entity {
// Setup the example tree from page 252 of the acpi 6.2 spec
// \
// SB
// \
// PCI0
// | _CRS
// \
// IDE0
// | _ADR
ideScope := &scopeEntity{name: `IDE0`}
pciScope := &scopeEntity{name: `PCI0`}
sbScope := &scopeEntity{name: `_SB_`}
rootScope := &scopeEntity{name: `\`}
adr := &namedEntity{name: `_ADR`}
crs := &namedEntity{name: `_CRS`}
// Setup tree
ideScope.Append(adr)
pciScope.Append(crs)
pciScope.Append(ideScope)
sbScope.Append(pciScope)
rootScope.Append(sbScope)
return map[string]Entity{
"IDE0": ideScope,
"PCI0": pciScope,
"_SB_": sbScope,
"\\": rootScope,
"_ADR": adr,
"_CRS": crs,
}
}

View File

@ -0,0 +1,84 @@
package aml
import (
"errors"
"io"
"reflect"
"unsafe"
)
var (
errInvalidUnreadByte = errors.New("amlStreamReader: invalid use of UnreadByte")
)
type amlStreamReader struct {
offset uint32
data []byte
}
// Init sets up the reader so it can read up to dataLen bytes from the virtual
// memory address dataAddr. If a non-zero initialOffset is specified, it will
// be used as the current offset in the stream.
func (r *amlStreamReader) Init(dataAddr uintptr, dataLen, initialOffset uint32) {
// Overlay a byte slice on top of the memory block to be accessed.
r.data = *(*[]byte)(unsafe.Pointer(&reflect.SliceHeader{
Len: int(dataLen),
Cap: int(dataLen),
Data: dataAddr,
}))
r.SetOffset(initialOffset)
}
// EOF returns true if the end of the stream has been reached.
func (r *amlStreamReader) EOF() bool {
return r.offset == uint32(len(r.data))
}
// ReadByte returns the next byte from the stream.
func (r *amlStreamReader) ReadByte() (byte, error) {
if r.EOF() {
return 0, io.EOF
}
r.offset++
return r.data[r.offset-1], nil
}
// PeekByte returns the next byte from the stream without advancing the read pointer.
func (r *amlStreamReader) PeekByte() (byte, error) {
if r.EOF() {
return 0, io.EOF
}
return r.data[r.offset], nil
}
// LastByte returns the last byte read off the stream
func (r *amlStreamReader) LastByte() (byte, error) {
if r.offset == 0 {
return 0, io.EOF
}
return r.data[r.offset-1], nil
}
// UnreadByte moves back the read pointer by one byte.
func (r *amlStreamReader) UnreadByte() error {
if r.offset == 0 {
return errInvalidUnreadByte
}
r.offset--
return nil
}
// Offset returns the current offset.
func (r *amlStreamReader) Offset() uint32 {
return r.offset
}
// SetOffset sets the reader offset to the supplied value.
func (r *amlStreamReader) SetOffset(off uint32) {
r.offset = off
}

View File

@ -0,0 +1,97 @@
package aml
import (
"io"
"testing"
"unsafe"
)
func TestAMLStreamReader(t *testing.T) {
buf := make([]byte, 16)
for i := 0; i < len(buf); i++ {
buf[i] = byte(i)
}
t.Run("without offset", func(t *testing.T) {
var r amlStreamReader
r.Init(
uintptr(unsafe.Pointer(&buf[0])),
uint32(len(buf)),
0,
)
if r.EOF() {
t.Fatal("unexpected EOF")
}
if err := r.UnreadByte(); err != errInvalidUnreadByte {
t.Fatalf("expected errInvalidUnreadByte; got %v", err)
}
if _, err := r.LastByte(); err != io.EOF {
t.Fatalf("unexpected error: %v", err)
}
for i := 0; i < len(buf); i++ {
exp := byte(i)
next, err := r.PeekByte()
if err != nil {
t.Fatal(err)
}
if next != exp {
t.Fatalf("expected PeekByte to return %d; got %d", exp, next)
}
next, err = r.ReadByte()
if err != nil {
t.Fatal(err)
}
if next != exp {
t.Fatalf("expected ReadByte to return %d; got %d", exp, next)
}
last, err := r.LastByte()
if err != nil {
t.Fatal(err)
}
if last != exp {
t.Fatalf("expected LastByte to return %d; got %d", exp, last)
}
}
if _, err := r.PeekByte(); err != io.EOF {
t.Fatalf("unexpected error: %v", err)
}
if _, err := r.ReadByte(); err != io.EOF {
t.Fatalf("unexpected error: %v", err)
}
exp := byte(len(buf) - 1)
if last, _ := r.LastByte(); last != exp {
t.Fatalf("expected LastByte to return %d; got %d", exp, last)
}
})
t.Run("with offset", func(t *testing.T) {
var r amlStreamReader
r.Init(
uintptr(unsafe.Pointer(&buf[0])),
uint32(len(buf)),
8,
)
if r.EOF() {
t.Fatal("unexpected EOF")
}
if exp, got := uint32(8), r.Offset(); got != exp {
t.Fatalf("expected Offset() to return %d; got %d", exp, got)
}
exp := byte(8)
if next, _ := r.ReadByte(); next != exp {
t.Fatalf("expected ReadByte to return %d; got %d", exp, next)
}
})
}

View File

@ -0,0 +1,117 @@
// DSDT-parser-testsuite
//
// This file contains various ASL constructs to ensure that the AML parser
// properly handles all possible ASL opcodes it may encounter. This test file
// is used in addition to the DSDT.aml file obtained by running acpidump inside
// virtualbox.
DefinitionBlock ("parser-testsuite-DSDT.aml", "DSDT", 2, "GOPHER", "GOPHEROS", 0x00000002)
{
OperationRegion (DBG0, SystemIO, 0x3000, 0x04)
Field (DBG0, ByteAcc, NoLock, Preserve)
{
DHE1, 8
}
Device (DRV0)
{
Name (_ADR, Ones)
// named entity containing qword const
Name (H15F, 0xBADC0FEEDEADC0DE)
Method (_GTF, 0, NotSerialized) // _GTF: Get Task File
{
Return (H15F)
}
}
// example from p. 268 of ACPI 6.2 spec
Scope(\_SB){
OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) // GenericSerialBus device at command offset 0x00
Name (SDB0, ResourceTemplate() {})
Field(TOP1, BufferAcc, NoLock, Preserve){
Connection(SDB0), // Use the Resource Descriptor defined above
AccessAs(BufferAcc, AttribWord),
FLD0, 8,
FLD1, 8
}
Field(TOP1, BufferAcc, NoLock, Preserve){
Connection(I2cSerialBus(0x5b,,100000,, "\\_SB",,,,RawDataBuffer(){3,9})),
AccessAs(BufferAcc, AttribBytes(4)),
FLD2, 8,
AccessAs(BufferAcc, AttribRawBytes(3)),
FLD3, 8,
AccessAs(BufferAcc, AttribRawProcessBytes(2)),
FLD4, 8
}
}
// Other entity types
Event(HLO0)
// Other executable bits
Method (EXE0, 1, Serialized)
{
Local0 = Revision
// NameString target
Local1 = SizeOf(GLB1)
Local0 = "my-handle"
Load(DBG0, Local0)
Unload(Local0)
// Example from p. 951 of the spec
Store (
LoadTable ("OEM1", "MYOEM", "TABLE1", "\\_SB.PCI0","MYD",
Package () {0,"\\_SB.PCI0"}
), Local0
)
FromBCD(9, Arg0)
ToBCD(Arg0, Local1)
Breakpoint
Debug = "test"
Fatal(0xf0, 0xdeadc0de, 1)
Reset(HLO0)
// Mutex support
Mutex(MUT0, 1)
Acquire(MUT0, 0xffff) // no timeout
Release(MUT0)
// Signal/Wait
Signal(HLO0)
Wait(HLO0, 0xffff)
// Get monotonic timer value
Local0 = Timer
CopyObject(Local0, Local1)
Return(ObjectType(Local1))
}
// Misc regions
// BankField example from p. 899 of the spec
// Define a 256-byte operational region in SystemIO space and name it GIO0
OperationRegion (GIO0, SystemIO, 0x125, 0x100)
Field (GIO0, ByteAcc, NoLock, Preserve) {
GLB1, 1,
GLB2, 1,
Offset (1), // Move to offset for byte 1
BNK1, 4
}
BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {
Offset (0x30),
FET0, 1,
FET1, 1
}
// Data Region
DataTableRegion (REG0, "FOOF", "BAR", "BAZ")
}