1
0
mirror of https://github.com/taigrr/wtf synced 2025-01-18 04:03:14 -08:00

Delete the vendored golang.org packages

This commit is contained in:
Chris Cummer 2019-07-19 21:32:39 -07:00
parent b62969e07c
commit e9bd5e2fb9
700 changed files with 0 additions and 564408 deletions

3
vendor/golang.org/x/crypto/AUTHORS generated vendored
View File

@ -1,3 +0,0 @@
# This source code refers to The Go Authors for copyright purposes.
# The master list of authors is in the main Go distribution,
# visible at https://tip.golang.org/AUTHORS.

View File

@ -1,3 +0,0 @@
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at https://tip.golang.org/CONTRIBUTORS.

27
vendor/golang.org/x/crypto/LICENSE generated vendored
View File

@ -1,27 +0,0 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/crypto/PATENTS generated vendored
View File

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View File

@ -1,533 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package cast5 implements CAST5, as defined in RFC 2144.
//
// CAST5 is a legacy cipher and its short block size makes it vulnerable to
// birthday bound attacks (see https://sweet32.info). It should only be used
// where compatibility with legacy systems, not security, is the goal.
//
// Deprecated: any new system should use AES (from crypto/aes, if necessary in
// an AEAD mode like crypto/cipher.NewGCM) or XChaCha20-Poly1305 (from
// golang.org/x/crypto/chacha20poly1305).
package cast5 // import "golang.org/x/crypto/cast5"
import "errors"
const BlockSize = 8
const KeySize = 16
type Cipher struct {
masking [16]uint32
rotate [16]uint8
}
func NewCipher(key []byte) (c *Cipher, err error) {
if len(key) != KeySize {
return nil, errors.New("CAST5: keys must be 16 bytes")
}
c = new(Cipher)
c.keySchedule(key)
return
}
func (c *Cipher) BlockSize() int {
return BlockSize
}
func (c *Cipher) Encrypt(dst, src []byte) {
l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
l, r = r, l^f1(r, c.masking[0], c.rotate[0])
l, r = r, l^f2(r, c.masking[1], c.rotate[1])
l, r = r, l^f3(r, c.masking[2], c.rotate[2])
l, r = r, l^f1(r, c.masking[3], c.rotate[3])
l, r = r, l^f2(r, c.masking[4], c.rotate[4])
l, r = r, l^f3(r, c.masking[5], c.rotate[5])
l, r = r, l^f1(r, c.masking[6], c.rotate[6])
l, r = r, l^f2(r, c.masking[7], c.rotate[7])
l, r = r, l^f3(r, c.masking[8], c.rotate[8])
l, r = r, l^f1(r, c.masking[9], c.rotate[9])
l, r = r, l^f2(r, c.masking[10], c.rotate[10])
l, r = r, l^f3(r, c.masking[11], c.rotate[11])
l, r = r, l^f1(r, c.masking[12], c.rotate[12])
l, r = r, l^f2(r, c.masking[13], c.rotate[13])
l, r = r, l^f3(r, c.masking[14], c.rotate[14])
l, r = r, l^f1(r, c.masking[15], c.rotate[15])
dst[0] = uint8(r >> 24)
dst[1] = uint8(r >> 16)
dst[2] = uint8(r >> 8)
dst[3] = uint8(r)
dst[4] = uint8(l >> 24)
dst[5] = uint8(l >> 16)
dst[6] = uint8(l >> 8)
dst[7] = uint8(l)
}
func (c *Cipher) Decrypt(dst, src []byte) {
l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
l, r = r, l^f1(r, c.masking[15], c.rotate[15])
l, r = r, l^f3(r, c.masking[14], c.rotate[14])
l, r = r, l^f2(r, c.masking[13], c.rotate[13])
l, r = r, l^f1(r, c.masking[12], c.rotate[12])
l, r = r, l^f3(r, c.masking[11], c.rotate[11])
l, r = r, l^f2(r, c.masking[10], c.rotate[10])
l, r = r, l^f1(r, c.masking[9], c.rotate[9])
l, r = r, l^f3(r, c.masking[8], c.rotate[8])
l, r = r, l^f2(r, c.masking[7], c.rotate[7])
l, r = r, l^f1(r, c.masking[6], c.rotate[6])
l, r = r, l^f3(r, c.masking[5], c.rotate[5])
l, r = r, l^f2(r, c.masking[4], c.rotate[4])
l, r = r, l^f1(r, c.masking[3], c.rotate[3])
l, r = r, l^f3(r, c.masking[2], c.rotate[2])
l, r = r, l^f2(r, c.masking[1], c.rotate[1])
l, r = r, l^f1(r, c.masking[0], c.rotate[0])
dst[0] = uint8(r >> 24)
dst[1] = uint8(r >> 16)
dst[2] = uint8(r >> 8)
dst[3] = uint8(r)
dst[4] = uint8(l >> 24)
dst[5] = uint8(l >> 16)
dst[6] = uint8(l >> 8)
dst[7] = uint8(l)
}
type keyScheduleA [4][7]uint8
type keyScheduleB [4][5]uint8
// keyScheduleRound contains the magic values for a round of the key schedule.
// The keyScheduleA deals with the lines like:
// z0z1z2z3 = x0x1x2x3 ^ S5[xD] ^ S6[xF] ^ S7[xC] ^ S8[xE] ^ S7[x8]
// Conceptually, both x and z are in the same array, x first. The first
// element describes which word of this array gets written to and the
// second, which word gets read. So, for the line above, it's "4, 0", because
// it's writing to the first word of z, which, being after x, is word 4, and
// reading from the first word of x: word 0.
//
// Next are the indexes into the S-boxes. Now the array is treated as bytes. So
// "xD" is 0xd. The first byte of z is written as "16 + 0", just to be clear
// that it's z that we're indexing.
//
// keyScheduleB deals with lines like:
// K1 = S5[z8] ^ S6[z9] ^ S7[z7] ^ S8[z6] ^ S5[z2]
// "K1" is ignored because key words are always written in order. So the five
// elements are the S-box indexes. They use the same form as in keyScheduleA,
// above.
type keyScheduleRound struct{}
type keySchedule []keyScheduleRound
var schedule = []struct {
a keyScheduleA
b keyScheduleB
}{
{
keyScheduleA{
{4, 0, 0xd, 0xf, 0xc, 0xe, 0x8},
{5, 2, 16 + 0, 16 + 2, 16 + 1, 16 + 3, 0xa},
{6, 3, 16 + 7, 16 + 6, 16 + 5, 16 + 4, 9},
{7, 1, 16 + 0xa, 16 + 9, 16 + 0xb, 16 + 8, 0xb},
},
keyScheduleB{
{16 + 8, 16 + 9, 16 + 7, 16 + 6, 16 + 2},
{16 + 0xa, 16 + 0xb, 16 + 5, 16 + 4, 16 + 6},
{16 + 0xc, 16 + 0xd, 16 + 3, 16 + 2, 16 + 9},
{16 + 0xe, 16 + 0xf, 16 + 1, 16 + 0, 16 + 0xc},
},
},
{
keyScheduleA{
{0, 6, 16 + 5, 16 + 7, 16 + 4, 16 + 6, 16 + 0},
{1, 4, 0, 2, 1, 3, 16 + 2},
{2, 5, 7, 6, 5, 4, 16 + 1},
{3, 7, 0xa, 9, 0xb, 8, 16 + 3},
},
keyScheduleB{
{3, 2, 0xc, 0xd, 8},
{1, 0, 0xe, 0xf, 0xd},
{7, 6, 8, 9, 3},
{5, 4, 0xa, 0xb, 7},
},
},
{
keyScheduleA{
{4, 0, 0xd, 0xf, 0xc, 0xe, 8},
{5, 2, 16 + 0, 16 + 2, 16 + 1, 16 + 3, 0xa},
{6, 3, 16 + 7, 16 + 6, 16 + 5, 16 + 4, 9},
{7, 1, 16 + 0xa, 16 + 9, 16 + 0xb, 16 + 8, 0xb},
},
keyScheduleB{
{16 + 3, 16 + 2, 16 + 0xc, 16 + 0xd, 16 + 9},
{16 + 1, 16 + 0, 16 + 0xe, 16 + 0xf, 16 + 0xc},
{16 + 7, 16 + 6, 16 + 8, 16 + 9, 16 + 2},
{16 + 5, 16 + 4, 16 + 0xa, 16 + 0xb, 16 + 6},
},
},
{
keyScheduleA{
{0, 6, 16 + 5, 16 + 7, 16 + 4, 16 + 6, 16 + 0},
{1, 4, 0, 2, 1, 3, 16 + 2},
{2, 5, 7, 6, 5, 4, 16 + 1},
{3, 7, 0xa, 9, 0xb, 8, 16 + 3},
},
keyScheduleB{
{8, 9, 7, 6, 3},
{0xa, 0xb, 5, 4, 7},
{0xc, 0xd, 3, 2, 8},
{0xe, 0xf, 1, 0, 0xd},
},
},
}
func (c *Cipher) keySchedule(in []byte) {
var t [8]uint32
var k [32]uint32
for i := 0; i < 4; i++ {
j := i * 4
t[i] = uint32(in[j])<<24 | uint32(in[j+1])<<16 | uint32(in[j+2])<<8 | uint32(in[j+3])
}
x := []byte{6, 7, 4, 5}
ki := 0
for half := 0; half < 2; half++ {
for _, round := range schedule {
for j := 0; j < 4; j++ {
var a [7]uint8
copy(a[:], round.a[j][:])
w := t[a[1]]
w ^= sBox[4][(t[a[2]>>2]>>(24-8*(a[2]&3)))&0xff]
w ^= sBox[5][(t[a[3]>>2]>>(24-8*(a[3]&3)))&0xff]
w ^= sBox[6][(t[a[4]>>2]>>(24-8*(a[4]&3)))&0xff]
w ^= sBox[7][(t[a[5]>>2]>>(24-8*(a[5]&3)))&0xff]
w ^= sBox[x[j]][(t[a[6]>>2]>>(24-8*(a[6]&3)))&0xff]
t[a[0]] = w
}
for j := 0; j < 4; j++ {
var b [5]uint8
copy(b[:], round.b[j][:])
w := sBox[4][(t[b[0]>>2]>>(24-8*(b[0]&3)))&0xff]
w ^= sBox[5][(t[b[1]>>2]>>(24-8*(b[1]&3)))&0xff]
w ^= sBox[6][(t[b[2]>>2]>>(24-8*(b[2]&3)))&0xff]
w ^= sBox[7][(t[b[3]>>2]>>(24-8*(b[3]&3)))&0xff]
w ^= sBox[4+j][(t[b[4]>>2]>>(24-8*(b[4]&3)))&0xff]
k[ki] = w
ki++
}
}
}
for i := 0; i < 16; i++ {
c.masking[i] = k[i]
c.rotate[i] = uint8(k[16+i] & 0x1f)
}
}
// These are the three 'f' functions. See RFC 2144, section 2.2.
func f1(d, m uint32, r uint8) uint32 {
t := m + d
I := (t << r) | (t >> (32 - r))
return ((sBox[0][I>>24] ^ sBox[1][(I>>16)&0xff]) - sBox[2][(I>>8)&0xff]) + sBox[3][I&0xff]
}
func f2(d, m uint32, r uint8) uint32 {
t := m ^ d
I := (t << r) | (t >> (32 - r))
return ((sBox[0][I>>24] - sBox[1][(I>>16)&0xff]) + sBox[2][(I>>8)&0xff]) ^ sBox[3][I&0xff]
}
func f3(d, m uint32, r uint8) uint32 {
t := m - d
I := (t << r) | (t >> (32 - r))
return ((sBox[0][I>>24] + sBox[1][(I>>16)&0xff]) ^ sBox[2][(I>>8)&0xff]) - sBox[3][I&0xff]
}
var sBox = [8][256]uint32{
{
0x30fb40d4, 0x9fa0ff0b, 0x6beccd2f, 0x3f258c7a, 0x1e213f2f, 0x9c004dd3, 0x6003e540, 0xcf9fc949,
0xbfd4af27, 0x88bbbdb5, 0xe2034090, 0x98d09675, 0x6e63a0e0, 0x15c361d2, 0xc2e7661d, 0x22d4ff8e,
0x28683b6f, 0xc07fd059, 0xff2379c8, 0x775f50e2, 0x43c340d3, 0xdf2f8656, 0x887ca41a, 0xa2d2bd2d,
0xa1c9e0d6, 0x346c4819, 0x61b76d87, 0x22540f2f, 0x2abe32e1, 0xaa54166b, 0x22568e3a, 0xa2d341d0,
0x66db40c8, 0xa784392f, 0x004dff2f, 0x2db9d2de, 0x97943fac, 0x4a97c1d8, 0x527644b7, 0xb5f437a7,
0xb82cbaef, 0xd751d159, 0x6ff7f0ed, 0x5a097a1f, 0x827b68d0, 0x90ecf52e, 0x22b0c054, 0xbc8e5935,
0x4b6d2f7f, 0x50bb64a2, 0xd2664910, 0xbee5812d, 0xb7332290, 0xe93b159f, 0xb48ee411, 0x4bff345d,
0xfd45c240, 0xad31973f, 0xc4f6d02e, 0x55fc8165, 0xd5b1caad, 0xa1ac2dae, 0xa2d4b76d, 0xc19b0c50,
0x882240f2, 0x0c6e4f38, 0xa4e4bfd7, 0x4f5ba272, 0x564c1d2f, 0xc59c5319, 0xb949e354, 0xb04669fe,
0xb1b6ab8a, 0xc71358dd, 0x6385c545, 0x110f935d, 0x57538ad5, 0x6a390493, 0xe63d37e0, 0x2a54f6b3,
0x3a787d5f, 0x6276a0b5, 0x19a6fcdf, 0x7a42206a, 0x29f9d4d5, 0xf61b1891, 0xbb72275e, 0xaa508167,
0x38901091, 0xc6b505eb, 0x84c7cb8c, 0x2ad75a0f, 0x874a1427, 0xa2d1936b, 0x2ad286af, 0xaa56d291,
0xd7894360, 0x425c750d, 0x93b39e26, 0x187184c9, 0x6c00b32d, 0x73e2bb14, 0xa0bebc3c, 0x54623779,
0x64459eab, 0x3f328b82, 0x7718cf82, 0x59a2cea6, 0x04ee002e, 0x89fe78e6, 0x3fab0950, 0x325ff6c2,
0x81383f05, 0x6963c5c8, 0x76cb5ad6, 0xd49974c9, 0xca180dcf, 0x380782d5, 0xc7fa5cf6, 0x8ac31511,
0x35e79e13, 0x47da91d0, 0xf40f9086, 0xa7e2419e, 0x31366241, 0x051ef495, 0xaa573b04, 0x4a805d8d,
0x548300d0, 0x00322a3c, 0xbf64cddf, 0xba57a68e, 0x75c6372b, 0x50afd341, 0xa7c13275, 0x915a0bf5,
0x6b54bfab, 0x2b0b1426, 0xab4cc9d7, 0x449ccd82, 0xf7fbf265, 0xab85c5f3, 0x1b55db94, 0xaad4e324,
0xcfa4bd3f, 0x2deaa3e2, 0x9e204d02, 0xc8bd25ac, 0xeadf55b3, 0xd5bd9e98, 0xe31231b2, 0x2ad5ad6c,
0x954329de, 0xadbe4528, 0xd8710f69, 0xaa51c90f, 0xaa786bf6, 0x22513f1e, 0xaa51a79b, 0x2ad344cc,
0x7b5a41f0, 0xd37cfbad, 0x1b069505, 0x41ece491, 0xb4c332e6, 0x032268d4, 0xc9600acc, 0xce387e6d,
0xbf6bb16c, 0x6a70fb78, 0x0d03d9c9, 0xd4df39de, 0xe01063da, 0x4736f464, 0x5ad328d8, 0xb347cc96,
0x75bb0fc3, 0x98511bfb, 0x4ffbcc35, 0xb58bcf6a, 0xe11f0abc, 0xbfc5fe4a, 0xa70aec10, 0xac39570a,
0x3f04442f, 0x6188b153, 0xe0397a2e, 0x5727cb79, 0x9ceb418f, 0x1cacd68d, 0x2ad37c96, 0x0175cb9d,
0xc69dff09, 0xc75b65f0, 0xd9db40d8, 0xec0e7779, 0x4744ead4, 0xb11c3274, 0xdd24cb9e, 0x7e1c54bd,
0xf01144f9, 0xd2240eb1, 0x9675b3fd, 0xa3ac3755, 0xd47c27af, 0x51c85f4d, 0x56907596, 0xa5bb15e6,
0x580304f0, 0xca042cf1, 0x011a37ea, 0x8dbfaadb, 0x35ba3e4a, 0x3526ffa0, 0xc37b4d09, 0xbc306ed9,
0x98a52666, 0x5648f725, 0xff5e569d, 0x0ced63d0, 0x7c63b2cf, 0x700b45e1, 0xd5ea50f1, 0x85a92872,
0xaf1fbda7, 0xd4234870, 0xa7870bf3, 0x2d3b4d79, 0x42e04198, 0x0cd0ede7, 0x26470db8, 0xf881814c,
0x474d6ad7, 0x7c0c5e5c, 0xd1231959, 0x381b7298, 0xf5d2f4db, 0xab838653, 0x6e2f1e23, 0x83719c9e,
0xbd91e046, 0x9a56456e, 0xdc39200c, 0x20c8c571, 0x962bda1c, 0xe1e696ff, 0xb141ab08, 0x7cca89b9,
0x1a69e783, 0x02cc4843, 0xa2f7c579, 0x429ef47d, 0x427b169c, 0x5ac9f049, 0xdd8f0f00, 0x5c8165bf,
},
{
0x1f201094, 0xef0ba75b, 0x69e3cf7e, 0x393f4380, 0xfe61cf7a, 0xeec5207a, 0x55889c94, 0x72fc0651,
0xada7ef79, 0x4e1d7235, 0xd55a63ce, 0xde0436ba, 0x99c430ef, 0x5f0c0794, 0x18dcdb7d, 0xa1d6eff3,
0xa0b52f7b, 0x59e83605, 0xee15b094, 0xe9ffd909, 0xdc440086, 0xef944459, 0xba83ccb3, 0xe0c3cdfb,
0xd1da4181, 0x3b092ab1, 0xf997f1c1, 0xa5e6cf7b, 0x01420ddb, 0xe4e7ef5b, 0x25a1ff41, 0xe180f806,
0x1fc41080, 0x179bee7a, 0xd37ac6a9, 0xfe5830a4, 0x98de8b7f, 0x77e83f4e, 0x79929269, 0x24fa9f7b,
0xe113c85b, 0xacc40083, 0xd7503525, 0xf7ea615f, 0x62143154, 0x0d554b63, 0x5d681121, 0xc866c359,
0x3d63cf73, 0xcee234c0, 0xd4d87e87, 0x5c672b21, 0x071f6181, 0x39f7627f, 0x361e3084, 0xe4eb573b,
0x602f64a4, 0xd63acd9c, 0x1bbc4635, 0x9e81032d, 0x2701f50c, 0x99847ab4, 0xa0e3df79, 0xba6cf38c,
0x10843094, 0x2537a95e, 0xf46f6ffe, 0xa1ff3b1f, 0x208cfb6a, 0x8f458c74, 0xd9e0a227, 0x4ec73a34,
0xfc884f69, 0x3e4de8df, 0xef0e0088, 0x3559648d, 0x8a45388c, 0x1d804366, 0x721d9bfd, 0xa58684bb,
0xe8256333, 0x844e8212, 0x128d8098, 0xfed33fb4, 0xce280ae1, 0x27e19ba5, 0xd5a6c252, 0xe49754bd,
0xc5d655dd, 0xeb667064, 0x77840b4d, 0xa1b6a801, 0x84db26a9, 0xe0b56714, 0x21f043b7, 0xe5d05860,
0x54f03084, 0x066ff472, 0xa31aa153, 0xdadc4755, 0xb5625dbf, 0x68561be6, 0x83ca6b94, 0x2d6ed23b,
0xeccf01db, 0xa6d3d0ba, 0xb6803d5c, 0xaf77a709, 0x33b4a34c, 0x397bc8d6, 0x5ee22b95, 0x5f0e5304,
0x81ed6f61, 0x20e74364, 0xb45e1378, 0xde18639b, 0x881ca122, 0xb96726d1, 0x8049a7e8, 0x22b7da7b,
0x5e552d25, 0x5272d237, 0x79d2951c, 0xc60d894c, 0x488cb402, 0x1ba4fe5b, 0xa4b09f6b, 0x1ca815cf,
0xa20c3005, 0x8871df63, 0xb9de2fcb, 0x0cc6c9e9, 0x0beeff53, 0xe3214517, 0xb4542835, 0x9f63293c,
0xee41e729, 0x6e1d2d7c, 0x50045286, 0x1e6685f3, 0xf33401c6, 0x30a22c95, 0x31a70850, 0x60930f13,
0x73f98417, 0xa1269859, 0xec645c44, 0x52c877a9, 0xcdff33a6, 0xa02b1741, 0x7cbad9a2, 0x2180036f,
0x50d99c08, 0xcb3f4861, 0xc26bd765, 0x64a3f6ab, 0x80342676, 0x25a75e7b, 0xe4e6d1fc, 0x20c710e6,
0xcdf0b680, 0x17844d3b, 0x31eef84d, 0x7e0824e4, 0x2ccb49eb, 0x846a3bae, 0x8ff77888, 0xee5d60f6,
0x7af75673, 0x2fdd5cdb, 0xa11631c1, 0x30f66f43, 0xb3faec54, 0x157fd7fa, 0xef8579cc, 0xd152de58,
0xdb2ffd5e, 0x8f32ce19, 0x306af97a, 0x02f03ef8, 0x99319ad5, 0xc242fa0f, 0xa7e3ebb0, 0xc68e4906,
0xb8da230c, 0x80823028, 0xdcdef3c8, 0xd35fb171, 0x088a1bc8, 0xbec0c560, 0x61a3c9e8, 0xbca8f54d,
0xc72feffa, 0x22822e99, 0x82c570b4, 0xd8d94e89, 0x8b1c34bc, 0x301e16e6, 0x273be979, 0xb0ffeaa6,
0x61d9b8c6, 0x00b24869, 0xb7ffce3f, 0x08dc283b, 0x43daf65a, 0xf7e19798, 0x7619b72f, 0x8f1c9ba4,
0xdc8637a0, 0x16a7d3b1, 0x9fc393b7, 0xa7136eeb, 0xc6bcc63e, 0x1a513742, 0xef6828bc, 0x520365d6,
0x2d6a77ab, 0x3527ed4b, 0x821fd216, 0x095c6e2e, 0xdb92f2fb, 0x5eea29cb, 0x145892f5, 0x91584f7f,
0x5483697b, 0x2667a8cc, 0x85196048, 0x8c4bacea, 0x833860d4, 0x0d23e0f9, 0x6c387e8a, 0x0ae6d249,
0xb284600c, 0xd835731d, 0xdcb1c647, 0xac4c56ea, 0x3ebd81b3, 0x230eabb0, 0x6438bc87, 0xf0b5b1fa,
0x8f5ea2b3, 0xfc184642, 0x0a036b7a, 0x4fb089bd, 0x649da589, 0xa345415e, 0x5c038323, 0x3e5d3bb9,
0x43d79572, 0x7e6dd07c, 0x06dfdf1e, 0x6c6cc4ef, 0x7160a539, 0x73bfbe70, 0x83877605, 0x4523ecf1,
},
{
0x8defc240, 0x25fa5d9f, 0xeb903dbf, 0xe810c907, 0x47607fff, 0x369fe44b, 0x8c1fc644, 0xaececa90,
0xbeb1f9bf, 0xeefbcaea, 0xe8cf1950, 0x51df07ae, 0x920e8806, 0xf0ad0548, 0xe13c8d83, 0x927010d5,
0x11107d9f, 0x07647db9, 0xb2e3e4d4, 0x3d4f285e, 0xb9afa820, 0xfade82e0, 0xa067268b, 0x8272792e,
0x553fb2c0, 0x489ae22b, 0xd4ef9794, 0x125e3fbc, 0x21fffcee, 0x825b1bfd, 0x9255c5ed, 0x1257a240,
0x4e1a8302, 0xbae07fff, 0x528246e7, 0x8e57140e, 0x3373f7bf, 0x8c9f8188, 0xa6fc4ee8, 0xc982b5a5,
0xa8c01db7, 0x579fc264, 0x67094f31, 0xf2bd3f5f, 0x40fff7c1, 0x1fb78dfc, 0x8e6bd2c1, 0x437be59b,
0x99b03dbf, 0xb5dbc64b, 0x638dc0e6, 0x55819d99, 0xa197c81c, 0x4a012d6e, 0xc5884a28, 0xccc36f71,
0xb843c213, 0x6c0743f1, 0x8309893c, 0x0feddd5f, 0x2f7fe850, 0xd7c07f7e, 0x02507fbf, 0x5afb9a04,
0xa747d2d0, 0x1651192e, 0xaf70bf3e, 0x58c31380, 0x5f98302e, 0x727cc3c4, 0x0a0fb402, 0x0f7fef82,
0x8c96fdad, 0x5d2c2aae, 0x8ee99a49, 0x50da88b8, 0x8427f4a0, 0x1eac5790, 0x796fb449, 0x8252dc15,
0xefbd7d9b, 0xa672597d, 0xada840d8, 0x45f54504, 0xfa5d7403, 0xe83ec305, 0x4f91751a, 0x925669c2,
0x23efe941, 0xa903f12e, 0x60270df2, 0x0276e4b6, 0x94fd6574, 0x927985b2, 0x8276dbcb, 0x02778176,
0xf8af918d, 0x4e48f79e, 0x8f616ddf, 0xe29d840e, 0x842f7d83, 0x340ce5c8, 0x96bbb682, 0x93b4b148,
0xef303cab, 0x984faf28, 0x779faf9b, 0x92dc560d, 0x224d1e20, 0x8437aa88, 0x7d29dc96, 0x2756d3dc,
0x8b907cee, 0xb51fd240, 0xe7c07ce3, 0xe566b4a1, 0xc3e9615e, 0x3cf8209d, 0x6094d1e3, 0xcd9ca341,
0x5c76460e, 0x00ea983b, 0xd4d67881, 0xfd47572c, 0xf76cedd9, 0xbda8229c, 0x127dadaa, 0x438a074e,
0x1f97c090, 0x081bdb8a, 0x93a07ebe, 0xb938ca15, 0x97b03cff, 0x3dc2c0f8, 0x8d1ab2ec, 0x64380e51,
0x68cc7bfb, 0xd90f2788, 0x12490181, 0x5de5ffd4, 0xdd7ef86a, 0x76a2e214, 0xb9a40368, 0x925d958f,
0x4b39fffa, 0xba39aee9, 0xa4ffd30b, 0xfaf7933b, 0x6d498623, 0x193cbcfa, 0x27627545, 0x825cf47a,
0x61bd8ba0, 0xd11e42d1, 0xcead04f4, 0x127ea392, 0x10428db7, 0x8272a972, 0x9270c4a8, 0x127de50b,
0x285ba1c8, 0x3c62f44f, 0x35c0eaa5, 0xe805d231, 0x428929fb, 0xb4fcdf82, 0x4fb66a53, 0x0e7dc15b,
0x1f081fab, 0x108618ae, 0xfcfd086d, 0xf9ff2889, 0x694bcc11, 0x236a5cae, 0x12deca4d, 0x2c3f8cc5,
0xd2d02dfe, 0xf8ef5896, 0xe4cf52da, 0x95155b67, 0x494a488c, 0xb9b6a80c, 0x5c8f82bc, 0x89d36b45,
0x3a609437, 0xec00c9a9, 0x44715253, 0x0a874b49, 0xd773bc40, 0x7c34671c, 0x02717ef6, 0x4feb5536,
0xa2d02fff, 0xd2bf60c4, 0xd43f03c0, 0x50b4ef6d, 0x07478cd1, 0x006e1888, 0xa2e53f55, 0xb9e6d4bc,
0xa2048016, 0x97573833, 0xd7207d67, 0xde0f8f3d, 0x72f87b33, 0xabcc4f33, 0x7688c55d, 0x7b00a6b0,
0x947b0001, 0x570075d2, 0xf9bb88f8, 0x8942019e, 0x4264a5ff, 0x856302e0, 0x72dbd92b, 0xee971b69,
0x6ea22fde, 0x5f08ae2b, 0xaf7a616d, 0xe5c98767, 0xcf1febd2, 0x61efc8c2, 0xf1ac2571, 0xcc8239c2,
0x67214cb8, 0xb1e583d1, 0xb7dc3e62, 0x7f10bdce, 0xf90a5c38, 0x0ff0443d, 0x606e6dc6, 0x60543a49,
0x5727c148, 0x2be98a1d, 0x8ab41738, 0x20e1be24, 0xaf96da0f, 0x68458425, 0x99833be5, 0x600d457d,
0x282f9350, 0x8334b362, 0xd91d1120, 0x2b6d8da0, 0x642b1e31, 0x9c305a00, 0x52bce688, 0x1b03588a,
0xf7baefd5, 0x4142ed9c, 0xa4315c11, 0x83323ec5, 0xdfef4636, 0xa133c501, 0xe9d3531c, 0xee353783,
},
{
0x9db30420, 0x1fb6e9de, 0xa7be7bef, 0xd273a298, 0x4a4f7bdb, 0x64ad8c57, 0x85510443, 0xfa020ed1,
0x7e287aff, 0xe60fb663, 0x095f35a1, 0x79ebf120, 0xfd059d43, 0x6497b7b1, 0xf3641f63, 0x241e4adf,
0x28147f5f, 0x4fa2b8cd, 0xc9430040, 0x0cc32220, 0xfdd30b30, 0xc0a5374f, 0x1d2d00d9, 0x24147b15,
0xee4d111a, 0x0fca5167, 0x71ff904c, 0x2d195ffe, 0x1a05645f, 0x0c13fefe, 0x081b08ca, 0x05170121,
0x80530100, 0xe83e5efe, 0xac9af4f8, 0x7fe72701, 0xd2b8ee5f, 0x06df4261, 0xbb9e9b8a, 0x7293ea25,
0xce84ffdf, 0xf5718801, 0x3dd64b04, 0xa26f263b, 0x7ed48400, 0x547eebe6, 0x446d4ca0, 0x6cf3d6f5,
0x2649abdf, 0xaea0c7f5, 0x36338cc1, 0x503f7e93, 0xd3772061, 0x11b638e1, 0x72500e03, 0xf80eb2bb,
0xabe0502e, 0xec8d77de, 0x57971e81, 0xe14f6746, 0xc9335400, 0x6920318f, 0x081dbb99, 0xffc304a5,
0x4d351805, 0x7f3d5ce3, 0xa6c866c6, 0x5d5bcca9, 0xdaec6fea, 0x9f926f91, 0x9f46222f, 0x3991467d,
0xa5bf6d8e, 0x1143c44f, 0x43958302, 0xd0214eeb, 0x022083b8, 0x3fb6180c, 0x18f8931e, 0x281658e6,
0x26486e3e, 0x8bd78a70, 0x7477e4c1, 0xb506e07c, 0xf32d0a25, 0x79098b02, 0xe4eabb81, 0x28123b23,
0x69dead38, 0x1574ca16, 0xdf871b62, 0x211c40b7, 0xa51a9ef9, 0x0014377b, 0x041e8ac8, 0x09114003,
0xbd59e4d2, 0xe3d156d5, 0x4fe876d5, 0x2f91a340, 0x557be8de, 0x00eae4a7, 0x0ce5c2ec, 0x4db4bba6,
0xe756bdff, 0xdd3369ac, 0xec17b035, 0x06572327, 0x99afc8b0, 0x56c8c391, 0x6b65811c, 0x5e146119,
0x6e85cb75, 0xbe07c002, 0xc2325577, 0x893ff4ec, 0x5bbfc92d, 0xd0ec3b25, 0xb7801ab7, 0x8d6d3b24,
0x20c763ef, 0xc366a5fc, 0x9c382880, 0x0ace3205, 0xaac9548a, 0xeca1d7c7, 0x041afa32, 0x1d16625a,
0x6701902c, 0x9b757a54, 0x31d477f7, 0x9126b031, 0x36cc6fdb, 0xc70b8b46, 0xd9e66a48, 0x56e55a79,
0x026a4ceb, 0x52437eff, 0x2f8f76b4, 0x0df980a5, 0x8674cde3, 0xedda04eb, 0x17a9be04, 0x2c18f4df,
0xb7747f9d, 0xab2af7b4, 0xefc34d20, 0x2e096b7c, 0x1741a254, 0xe5b6a035, 0x213d42f6, 0x2c1c7c26,
0x61c2f50f, 0x6552daf9, 0xd2c231f8, 0x25130f69, 0xd8167fa2, 0x0418f2c8, 0x001a96a6, 0x0d1526ab,
0x63315c21, 0x5e0a72ec, 0x49bafefd, 0x187908d9, 0x8d0dbd86, 0x311170a7, 0x3e9b640c, 0xcc3e10d7,
0xd5cad3b6, 0x0caec388, 0xf73001e1, 0x6c728aff, 0x71eae2a1, 0x1f9af36e, 0xcfcbd12f, 0xc1de8417,
0xac07be6b, 0xcb44a1d8, 0x8b9b0f56, 0x013988c3, 0xb1c52fca, 0xb4be31cd, 0xd8782806, 0x12a3a4e2,
0x6f7de532, 0x58fd7eb6, 0xd01ee900, 0x24adffc2, 0xf4990fc5, 0x9711aac5, 0x001d7b95, 0x82e5e7d2,
0x109873f6, 0x00613096, 0xc32d9521, 0xada121ff, 0x29908415, 0x7fbb977f, 0xaf9eb3db, 0x29c9ed2a,
0x5ce2a465, 0xa730f32c, 0xd0aa3fe8, 0x8a5cc091, 0xd49e2ce7, 0x0ce454a9, 0xd60acd86, 0x015f1919,
0x77079103, 0xdea03af6, 0x78a8565e, 0xdee356df, 0x21f05cbe, 0x8b75e387, 0xb3c50651, 0xb8a5c3ef,
0xd8eeb6d2, 0xe523be77, 0xc2154529, 0x2f69efdf, 0xafe67afb, 0xf470c4b2, 0xf3e0eb5b, 0xd6cc9876,
0x39e4460c, 0x1fda8538, 0x1987832f, 0xca007367, 0xa99144f8, 0x296b299e, 0x492fc295, 0x9266beab,
0xb5676e69, 0x9bd3ddda, 0xdf7e052f, 0xdb25701c, 0x1b5e51ee, 0xf65324e6, 0x6afce36c, 0x0316cc04,
0x8644213e, 0xb7dc59d0, 0x7965291f, 0xccd6fd43, 0x41823979, 0x932bcdf6, 0xb657c34d, 0x4edfd282,
0x7ae5290c, 0x3cb9536b, 0x851e20fe, 0x9833557e, 0x13ecf0b0, 0xd3ffb372, 0x3f85c5c1, 0x0aef7ed2,
},
{
0x7ec90c04, 0x2c6e74b9, 0x9b0e66df, 0xa6337911, 0xb86a7fff, 0x1dd358f5, 0x44dd9d44, 0x1731167f,
0x08fbf1fa, 0xe7f511cc, 0xd2051b00, 0x735aba00, 0x2ab722d8, 0x386381cb, 0xacf6243a, 0x69befd7a,
0xe6a2e77f, 0xf0c720cd, 0xc4494816, 0xccf5c180, 0x38851640, 0x15b0a848, 0xe68b18cb, 0x4caadeff,
0x5f480a01, 0x0412b2aa, 0x259814fc, 0x41d0efe2, 0x4e40b48d, 0x248eb6fb, 0x8dba1cfe, 0x41a99b02,
0x1a550a04, 0xba8f65cb, 0x7251f4e7, 0x95a51725, 0xc106ecd7, 0x97a5980a, 0xc539b9aa, 0x4d79fe6a,
0xf2f3f763, 0x68af8040, 0xed0c9e56, 0x11b4958b, 0xe1eb5a88, 0x8709e6b0, 0xd7e07156, 0x4e29fea7,
0x6366e52d, 0x02d1c000, 0xc4ac8e05, 0x9377f571, 0x0c05372a, 0x578535f2, 0x2261be02, 0xd642a0c9,
0xdf13a280, 0x74b55bd2, 0x682199c0, 0xd421e5ec, 0x53fb3ce8, 0xc8adedb3, 0x28a87fc9, 0x3d959981,
0x5c1ff900, 0xfe38d399, 0x0c4eff0b, 0x062407ea, 0xaa2f4fb1, 0x4fb96976, 0x90c79505, 0xb0a8a774,
0xef55a1ff, 0xe59ca2c2, 0xa6b62d27, 0xe66a4263, 0xdf65001f, 0x0ec50966, 0xdfdd55bc, 0x29de0655,
0x911e739a, 0x17af8975, 0x32c7911c, 0x89f89468, 0x0d01e980, 0x524755f4, 0x03b63cc9, 0x0cc844b2,
0xbcf3f0aa, 0x87ac36e9, 0xe53a7426, 0x01b3d82b, 0x1a9e7449, 0x64ee2d7e, 0xcddbb1da, 0x01c94910,
0xb868bf80, 0x0d26f3fd, 0x9342ede7, 0x04a5c284, 0x636737b6, 0x50f5b616, 0xf24766e3, 0x8eca36c1,
0x136e05db, 0xfef18391, 0xfb887a37, 0xd6e7f7d4, 0xc7fb7dc9, 0x3063fcdf, 0xb6f589de, 0xec2941da,
0x26e46695, 0xb7566419, 0xf654efc5, 0xd08d58b7, 0x48925401, 0xc1bacb7f, 0xe5ff550f, 0xb6083049,
0x5bb5d0e8, 0x87d72e5a, 0xab6a6ee1, 0x223a66ce, 0xc62bf3cd, 0x9e0885f9, 0x68cb3e47, 0x086c010f,
0xa21de820, 0xd18b69de, 0xf3f65777, 0xfa02c3f6, 0x407edac3, 0xcbb3d550, 0x1793084d, 0xb0d70eba,
0x0ab378d5, 0xd951fb0c, 0xded7da56, 0x4124bbe4, 0x94ca0b56, 0x0f5755d1, 0xe0e1e56e, 0x6184b5be,
0x580a249f, 0x94f74bc0, 0xe327888e, 0x9f7b5561, 0xc3dc0280, 0x05687715, 0x646c6bd7, 0x44904db3,
0x66b4f0a3, 0xc0f1648a, 0x697ed5af, 0x49e92ff6, 0x309e374f, 0x2cb6356a, 0x85808573, 0x4991f840,
0x76f0ae02, 0x083be84d, 0x28421c9a, 0x44489406, 0x736e4cb8, 0xc1092910, 0x8bc95fc6, 0x7d869cf4,
0x134f616f, 0x2e77118d, 0xb31b2be1, 0xaa90b472, 0x3ca5d717, 0x7d161bba, 0x9cad9010, 0xaf462ba2,
0x9fe459d2, 0x45d34559, 0xd9f2da13, 0xdbc65487, 0xf3e4f94e, 0x176d486f, 0x097c13ea, 0x631da5c7,
0x445f7382, 0x175683f4, 0xcdc66a97, 0x70be0288, 0xb3cdcf72, 0x6e5dd2f3, 0x20936079, 0x459b80a5,
0xbe60e2db, 0xa9c23101, 0xeba5315c, 0x224e42f2, 0x1c5c1572, 0xf6721b2c, 0x1ad2fff3, 0x8c25404e,
0x324ed72f, 0x4067b7fd, 0x0523138e, 0x5ca3bc78, 0xdc0fd66e, 0x75922283, 0x784d6b17, 0x58ebb16e,
0x44094f85, 0x3f481d87, 0xfcfeae7b, 0x77b5ff76, 0x8c2302bf, 0xaaf47556, 0x5f46b02a, 0x2b092801,
0x3d38f5f7, 0x0ca81f36, 0x52af4a8a, 0x66d5e7c0, 0xdf3b0874, 0x95055110, 0x1b5ad7a8, 0xf61ed5ad,
0x6cf6e479, 0x20758184, 0xd0cefa65, 0x88f7be58, 0x4a046826, 0x0ff6f8f3, 0xa09c7f70, 0x5346aba0,
0x5ce96c28, 0xe176eda3, 0x6bac307f, 0x376829d2, 0x85360fa9, 0x17e3fe2a, 0x24b79767, 0xf5a96b20,
0xd6cd2595, 0x68ff1ebf, 0x7555442c, 0xf19f06be, 0xf9e0659a, 0xeeb9491d, 0x34010718, 0xbb30cab8,
0xe822fe15, 0x88570983, 0x750e6249, 0xda627e55, 0x5e76ffa8, 0xb1534546, 0x6d47de08, 0xefe9e7d4,
},
{
0xf6fa8f9d, 0x2cac6ce1, 0x4ca34867, 0xe2337f7c, 0x95db08e7, 0x016843b4, 0xeced5cbc, 0x325553ac,
0xbf9f0960, 0xdfa1e2ed, 0x83f0579d, 0x63ed86b9, 0x1ab6a6b8, 0xde5ebe39, 0xf38ff732, 0x8989b138,
0x33f14961, 0xc01937bd, 0xf506c6da, 0xe4625e7e, 0xa308ea99, 0x4e23e33c, 0x79cbd7cc, 0x48a14367,
0xa3149619, 0xfec94bd5, 0xa114174a, 0xeaa01866, 0xa084db2d, 0x09a8486f, 0xa888614a, 0x2900af98,
0x01665991, 0xe1992863, 0xc8f30c60, 0x2e78ef3c, 0xd0d51932, 0xcf0fec14, 0xf7ca07d2, 0xd0a82072,
0xfd41197e, 0x9305a6b0, 0xe86be3da, 0x74bed3cd, 0x372da53c, 0x4c7f4448, 0xdab5d440, 0x6dba0ec3,
0x083919a7, 0x9fbaeed9, 0x49dbcfb0, 0x4e670c53, 0x5c3d9c01, 0x64bdb941, 0x2c0e636a, 0xba7dd9cd,
0xea6f7388, 0xe70bc762, 0x35f29adb, 0x5c4cdd8d, 0xf0d48d8c, 0xb88153e2, 0x08a19866, 0x1ae2eac8,
0x284caf89, 0xaa928223, 0x9334be53, 0x3b3a21bf, 0x16434be3, 0x9aea3906, 0xefe8c36e, 0xf890cdd9,
0x80226dae, 0xc340a4a3, 0xdf7e9c09, 0xa694a807, 0x5b7c5ecc, 0x221db3a6, 0x9a69a02f, 0x68818a54,
0xceb2296f, 0x53c0843a, 0xfe893655, 0x25bfe68a, 0xb4628abc, 0xcf222ebf, 0x25ac6f48, 0xa9a99387,
0x53bddb65, 0xe76ffbe7, 0xe967fd78, 0x0ba93563, 0x8e342bc1, 0xe8a11be9, 0x4980740d, 0xc8087dfc,
0x8de4bf99, 0xa11101a0, 0x7fd37975, 0xda5a26c0, 0xe81f994f, 0x9528cd89, 0xfd339fed, 0xb87834bf,
0x5f04456d, 0x22258698, 0xc9c4c83b, 0x2dc156be, 0x4f628daa, 0x57f55ec5, 0xe2220abe, 0xd2916ebf,
0x4ec75b95, 0x24f2c3c0, 0x42d15d99, 0xcd0d7fa0, 0x7b6e27ff, 0xa8dc8af0, 0x7345c106, 0xf41e232f,
0x35162386, 0xe6ea8926, 0x3333b094, 0x157ec6f2, 0x372b74af, 0x692573e4, 0xe9a9d848, 0xf3160289,
0x3a62ef1d, 0xa787e238, 0xf3a5f676, 0x74364853, 0x20951063, 0x4576698d, 0xb6fad407, 0x592af950,
0x36f73523, 0x4cfb6e87, 0x7da4cec0, 0x6c152daa, 0xcb0396a8, 0xc50dfe5d, 0xfcd707ab, 0x0921c42f,
0x89dff0bb, 0x5fe2be78, 0x448f4f33, 0x754613c9, 0x2b05d08d, 0x48b9d585, 0xdc049441, 0xc8098f9b,
0x7dede786, 0xc39a3373, 0x42410005, 0x6a091751, 0x0ef3c8a6, 0x890072d6, 0x28207682, 0xa9a9f7be,
0xbf32679d, 0xd45b5b75, 0xb353fd00, 0xcbb0e358, 0x830f220a, 0x1f8fb214, 0xd372cf08, 0xcc3c4a13,
0x8cf63166, 0x061c87be, 0x88c98f88, 0x6062e397, 0x47cf8e7a, 0xb6c85283, 0x3cc2acfb, 0x3fc06976,
0x4e8f0252, 0x64d8314d, 0xda3870e3, 0x1e665459, 0xc10908f0, 0x513021a5, 0x6c5b68b7, 0x822f8aa0,
0x3007cd3e, 0x74719eef, 0xdc872681, 0x073340d4, 0x7e432fd9, 0x0c5ec241, 0x8809286c, 0xf592d891,
0x08a930f6, 0x957ef305, 0xb7fbffbd, 0xc266e96f, 0x6fe4ac98, 0xb173ecc0, 0xbc60b42a, 0x953498da,
0xfba1ae12, 0x2d4bd736, 0x0f25faab, 0xa4f3fceb, 0xe2969123, 0x257f0c3d, 0x9348af49, 0x361400bc,
0xe8816f4a, 0x3814f200, 0xa3f94043, 0x9c7a54c2, 0xbc704f57, 0xda41e7f9, 0xc25ad33a, 0x54f4a084,
0xb17f5505, 0x59357cbe, 0xedbd15c8, 0x7f97c5ab, 0xba5ac7b5, 0xb6f6deaf, 0x3a479c3a, 0x5302da25,
0x653d7e6a, 0x54268d49, 0x51a477ea, 0x5017d55b, 0xd7d25d88, 0x44136c76, 0x0404a8c8, 0xb8e5a121,
0xb81a928a, 0x60ed5869, 0x97c55b96, 0xeaec991b, 0x29935913, 0x01fdb7f1, 0x088e8dfa, 0x9ab6f6f5,
0x3b4cbf9f, 0x4a5de3ab, 0xe6051d35, 0xa0e1d855, 0xd36b4cf1, 0xf544edeb, 0xb0e93524, 0xbebb8fbd,
0xa2d762cf, 0x49c92f54, 0x38b5f331, 0x7128a454, 0x48392905, 0xa65b1db8, 0x851c97bd, 0xd675cf2f,
},
{
0x85e04019, 0x332bf567, 0x662dbfff, 0xcfc65693, 0x2a8d7f6f, 0xab9bc912, 0xde6008a1, 0x2028da1f,
0x0227bce7, 0x4d642916, 0x18fac300, 0x50f18b82, 0x2cb2cb11, 0xb232e75c, 0x4b3695f2, 0xb28707de,
0xa05fbcf6, 0xcd4181e9, 0xe150210c, 0xe24ef1bd, 0xb168c381, 0xfde4e789, 0x5c79b0d8, 0x1e8bfd43,
0x4d495001, 0x38be4341, 0x913cee1d, 0x92a79c3f, 0x089766be, 0xbaeeadf4, 0x1286becf, 0xb6eacb19,
0x2660c200, 0x7565bde4, 0x64241f7a, 0x8248dca9, 0xc3b3ad66, 0x28136086, 0x0bd8dfa8, 0x356d1cf2,
0x107789be, 0xb3b2e9ce, 0x0502aa8f, 0x0bc0351e, 0x166bf52a, 0xeb12ff82, 0xe3486911, 0xd34d7516,
0x4e7b3aff, 0x5f43671b, 0x9cf6e037, 0x4981ac83, 0x334266ce, 0x8c9341b7, 0xd0d854c0, 0xcb3a6c88,
0x47bc2829, 0x4725ba37, 0xa66ad22b, 0x7ad61f1e, 0x0c5cbafa, 0x4437f107, 0xb6e79962, 0x42d2d816,
0x0a961288, 0xe1a5c06e, 0x13749e67, 0x72fc081a, 0xb1d139f7, 0xf9583745, 0xcf19df58, 0xbec3f756,
0xc06eba30, 0x07211b24, 0x45c28829, 0xc95e317f, 0xbc8ec511, 0x38bc46e9, 0xc6e6fa14, 0xbae8584a,
0xad4ebc46, 0x468f508b, 0x7829435f, 0xf124183b, 0x821dba9f, 0xaff60ff4, 0xea2c4e6d, 0x16e39264,
0x92544a8b, 0x009b4fc3, 0xaba68ced, 0x9ac96f78, 0x06a5b79a, 0xb2856e6e, 0x1aec3ca9, 0xbe838688,
0x0e0804e9, 0x55f1be56, 0xe7e5363b, 0xb3a1f25d, 0xf7debb85, 0x61fe033c, 0x16746233, 0x3c034c28,
0xda6d0c74, 0x79aac56c, 0x3ce4e1ad, 0x51f0c802, 0x98f8f35a, 0x1626a49f, 0xeed82b29, 0x1d382fe3,
0x0c4fb99a, 0xbb325778, 0x3ec6d97b, 0x6e77a6a9, 0xcb658b5c, 0xd45230c7, 0x2bd1408b, 0x60c03eb7,
0xb9068d78, 0xa33754f4, 0xf430c87d, 0xc8a71302, 0xb96d8c32, 0xebd4e7be, 0xbe8b9d2d, 0x7979fb06,
0xe7225308, 0x8b75cf77, 0x11ef8da4, 0xe083c858, 0x8d6b786f, 0x5a6317a6, 0xfa5cf7a0, 0x5dda0033,
0xf28ebfb0, 0xf5b9c310, 0xa0eac280, 0x08b9767a, 0xa3d9d2b0, 0x79d34217, 0x021a718d, 0x9ac6336a,
0x2711fd60, 0x438050e3, 0x069908a8, 0x3d7fedc4, 0x826d2bef, 0x4eeb8476, 0x488dcf25, 0x36c9d566,
0x28e74e41, 0xc2610aca, 0x3d49a9cf, 0xbae3b9df, 0xb65f8de6, 0x92aeaf64, 0x3ac7d5e6, 0x9ea80509,
0xf22b017d, 0xa4173f70, 0xdd1e16c3, 0x15e0d7f9, 0x50b1b887, 0x2b9f4fd5, 0x625aba82, 0x6a017962,
0x2ec01b9c, 0x15488aa9, 0xd716e740, 0x40055a2c, 0x93d29a22, 0xe32dbf9a, 0x058745b9, 0x3453dc1e,
0xd699296e, 0x496cff6f, 0x1c9f4986, 0xdfe2ed07, 0xb87242d1, 0x19de7eae, 0x053e561a, 0x15ad6f8c,
0x66626c1c, 0x7154c24c, 0xea082b2a, 0x93eb2939, 0x17dcb0f0, 0x58d4f2ae, 0x9ea294fb, 0x52cf564c,
0x9883fe66, 0x2ec40581, 0x763953c3, 0x01d6692e, 0xd3a0c108, 0xa1e7160e, 0xe4f2dfa6, 0x693ed285,
0x74904698, 0x4c2b0edd, 0x4f757656, 0x5d393378, 0xa132234f, 0x3d321c5d, 0xc3f5e194, 0x4b269301,
0xc79f022f, 0x3c997e7e, 0x5e4f9504, 0x3ffafbbd, 0x76f7ad0e, 0x296693f4, 0x3d1fce6f, 0xc61e45be,
0xd3b5ab34, 0xf72bf9b7, 0x1b0434c0, 0x4e72b567, 0x5592a33d, 0xb5229301, 0xcfd2a87f, 0x60aeb767,
0x1814386b, 0x30bcc33d, 0x38a0c07d, 0xfd1606f2, 0xc363519b, 0x589dd390, 0x5479f8e6, 0x1cb8d647,
0x97fd61a9, 0xea7759f4, 0x2d57539d, 0x569a58cf, 0xe84e63ad, 0x462e1b78, 0x6580f87e, 0xf3817914,
0x91da55f4, 0x40a230f3, 0xd1988f35, 0xb6e318d2, 0x3ffa50bc, 0x3d40f021, 0xc3c0bdae, 0x4958c24c,
0x518f36b2, 0x84b1d370, 0x0fedce83, 0x878ddada, 0xf2a279c7, 0x94e01be8, 0x90716f4b, 0x954b8aa3,
},
{
0xe216300d, 0xbbddfffc, 0xa7ebdabd, 0x35648095, 0x7789f8b7, 0xe6c1121b, 0x0e241600, 0x052ce8b5,
0x11a9cfb0, 0xe5952f11, 0xece7990a, 0x9386d174, 0x2a42931c, 0x76e38111, 0xb12def3a, 0x37ddddfc,
0xde9adeb1, 0x0a0cc32c, 0xbe197029, 0x84a00940, 0xbb243a0f, 0xb4d137cf, 0xb44e79f0, 0x049eedfd,
0x0b15a15d, 0x480d3168, 0x8bbbde5a, 0x669ded42, 0xc7ece831, 0x3f8f95e7, 0x72df191b, 0x7580330d,
0x94074251, 0x5c7dcdfa, 0xabbe6d63, 0xaa402164, 0xb301d40a, 0x02e7d1ca, 0x53571dae, 0x7a3182a2,
0x12a8ddec, 0xfdaa335d, 0x176f43e8, 0x71fb46d4, 0x38129022, 0xce949ad4, 0xb84769ad, 0x965bd862,
0x82f3d055, 0x66fb9767, 0x15b80b4e, 0x1d5b47a0, 0x4cfde06f, 0xc28ec4b8, 0x57e8726e, 0x647a78fc,
0x99865d44, 0x608bd593, 0x6c200e03, 0x39dc5ff6, 0x5d0b00a3, 0xae63aff2, 0x7e8bd632, 0x70108c0c,
0xbbd35049, 0x2998df04, 0x980cf42a, 0x9b6df491, 0x9e7edd53, 0x06918548, 0x58cb7e07, 0x3b74ef2e,
0x522fffb1, 0xd24708cc, 0x1c7e27cd, 0xa4eb215b, 0x3cf1d2e2, 0x19b47a38, 0x424f7618, 0x35856039,
0x9d17dee7, 0x27eb35e6, 0xc9aff67b, 0x36baf5b8, 0x09c467cd, 0xc18910b1, 0xe11dbf7b, 0x06cd1af8,
0x7170c608, 0x2d5e3354, 0xd4de495a, 0x64c6d006, 0xbcc0c62c, 0x3dd00db3, 0x708f8f34, 0x77d51b42,
0x264f620f, 0x24b8d2bf, 0x15c1b79e, 0x46a52564, 0xf8d7e54e, 0x3e378160, 0x7895cda5, 0x859c15a5,
0xe6459788, 0xc37bc75f, 0xdb07ba0c, 0x0676a3ab, 0x7f229b1e, 0x31842e7b, 0x24259fd7, 0xf8bef472,
0x835ffcb8, 0x6df4c1f2, 0x96f5b195, 0xfd0af0fc, 0xb0fe134c, 0xe2506d3d, 0x4f9b12ea, 0xf215f225,
0xa223736f, 0x9fb4c428, 0x25d04979, 0x34c713f8, 0xc4618187, 0xea7a6e98, 0x7cd16efc, 0x1436876c,
0xf1544107, 0xbedeee14, 0x56e9af27, 0xa04aa441, 0x3cf7c899, 0x92ecbae6, 0xdd67016d, 0x151682eb,
0xa842eedf, 0xfdba60b4, 0xf1907b75, 0x20e3030f, 0x24d8c29e, 0xe139673b, 0xefa63fb8, 0x71873054,
0xb6f2cf3b, 0x9f326442, 0xcb15a4cc, 0xb01a4504, 0xf1e47d8d, 0x844a1be5, 0xbae7dfdc, 0x42cbda70,
0xcd7dae0a, 0x57e85b7a, 0xd53f5af6, 0x20cf4d8c, 0xcea4d428, 0x79d130a4, 0x3486ebfb, 0x33d3cddc,
0x77853b53, 0x37effcb5, 0xc5068778, 0xe580b3e6, 0x4e68b8f4, 0xc5c8b37e, 0x0d809ea2, 0x398feb7c,
0x132a4f94, 0x43b7950e, 0x2fee7d1c, 0x223613bd, 0xdd06caa2, 0x37df932b, 0xc4248289, 0xacf3ebc3,
0x5715f6b7, 0xef3478dd, 0xf267616f, 0xc148cbe4, 0x9052815e, 0x5e410fab, 0xb48a2465, 0x2eda7fa4,
0xe87b40e4, 0xe98ea084, 0x5889e9e1, 0xefd390fc, 0xdd07d35b, 0xdb485694, 0x38d7e5b2, 0x57720101,
0x730edebc, 0x5b643113, 0x94917e4f, 0x503c2fba, 0x646f1282, 0x7523d24a, 0xe0779695, 0xf9c17a8f,
0x7a5b2121, 0xd187b896, 0x29263a4d, 0xba510cdf, 0x81f47c9f, 0xad1163ed, 0xea7b5965, 0x1a00726e,
0x11403092, 0x00da6d77, 0x4a0cdd61, 0xad1f4603, 0x605bdfb0, 0x9eedc364, 0x22ebe6a8, 0xcee7d28a,
0xa0e736a0, 0x5564a6b9, 0x10853209, 0xc7eb8f37, 0x2de705ca, 0x8951570f, 0xdf09822b, 0xbd691a6c,
0xaa12e4f2, 0x87451c0f, 0xe0f6a27a, 0x3ada4819, 0x4cf1764f, 0x0d771c2b, 0x67cdb156, 0x350d8384,
0x5938fa0f, 0x42399ef3, 0x36997b07, 0x0e84093d, 0x4aa93e61, 0x8360d87b, 0x1fa98b0c, 0x1149382c,
0xe97625a5, 0x0614d1b7, 0x0e25244b, 0x0c768347, 0x589e8d82, 0x0d2059d1, 0xa466bb1e, 0xf8da0a82,
0x04f19130, 0xba6e4ec0, 0x99265164, 0x1ee7230d, 0x50b2ad80, 0xeaee6801, 0x8db2a283, 0xea8bf59e,
},
}

View File

@ -1,219 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package armor implements OpenPGP ASCII Armor, see RFC 4880. OpenPGP Armor is
// very similar to PEM except that it has an additional CRC checksum.
package armor // import "golang.org/x/crypto/openpgp/armor"
import (
"bufio"
"bytes"
"encoding/base64"
"golang.org/x/crypto/openpgp/errors"
"io"
)
// A Block represents an OpenPGP armored structure.
//
// The encoded form is:
// -----BEGIN Type-----
// Headers
//
// base64-encoded Bytes
// '=' base64 encoded checksum
// -----END Type-----
// where Headers is a possibly empty sequence of Key: Value lines.
//
// Since the armored data can be very large, this package presents a streaming
// interface.
type Block struct {
Type string // The type, taken from the preamble (i.e. "PGP SIGNATURE").
Header map[string]string // Optional headers.
Body io.Reader // A Reader from which the contents can be read
lReader lineReader
oReader openpgpReader
}
var ArmorCorrupt error = errors.StructuralError("armor invalid")
const crc24Init = 0xb704ce
const crc24Poly = 0x1864cfb
const crc24Mask = 0xffffff
// crc24 calculates the OpenPGP checksum as specified in RFC 4880, section 6.1
func crc24(crc uint32, d []byte) uint32 {
for _, b := range d {
crc ^= uint32(b) << 16
for i := 0; i < 8; i++ {
crc <<= 1
if crc&0x1000000 != 0 {
crc ^= crc24Poly
}
}
}
return crc
}
var armorStart = []byte("-----BEGIN ")
var armorEnd = []byte("-----END ")
var armorEndOfLine = []byte("-----")
// lineReader wraps a line based reader. It watches for the end of an armor
// block and records the expected CRC value.
type lineReader struct {
in *bufio.Reader
buf []byte
eof bool
crc uint32
}
func (l *lineReader) Read(p []byte) (n int, err error) {
if l.eof {
return 0, io.EOF
}
if len(l.buf) > 0 {
n = copy(p, l.buf)
l.buf = l.buf[n:]
return
}
line, isPrefix, err := l.in.ReadLine()
if err != nil {
return
}
if isPrefix {
return 0, ArmorCorrupt
}
if len(line) == 5 && line[0] == '=' {
// This is the checksum line
var expectedBytes [3]byte
var m int
m, err = base64.StdEncoding.Decode(expectedBytes[0:], line[1:])
if m != 3 || err != nil {
return
}
l.crc = uint32(expectedBytes[0])<<16 |
uint32(expectedBytes[1])<<8 |
uint32(expectedBytes[2])
line, _, err = l.in.ReadLine()
if err != nil && err != io.EOF {
return
}
if !bytes.HasPrefix(line, armorEnd) {
return 0, ArmorCorrupt
}
l.eof = true
return 0, io.EOF
}
if len(line) > 96 {
return 0, ArmorCorrupt
}
n = copy(p, line)
bytesToSave := len(line) - n
if bytesToSave > 0 {
if cap(l.buf) < bytesToSave {
l.buf = make([]byte, 0, bytesToSave)
}
l.buf = l.buf[0:bytesToSave]
copy(l.buf, line[n:])
}
return
}
// openpgpReader passes Read calls to the underlying base64 decoder, but keeps
// a running CRC of the resulting data and checks the CRC against the value
// found by the lineReader at EOF.
type openpgpReader struct {
lReader *lineReader
b64Reader io.Reader
currentCRC uint32
}
func (r *openpgpReader) Read(p []byte) (n int, err error) {
n, err = r.b64Reader.Read(p)
r.currentCRC = crc24(r.currentCRC, p[:n])
if err == io.EOF {
if r.lReader.crc != uint32(r.currentCRC&crc24Mask) {
return 0, ArmorCorrupt
}
}
return
}
// Decode reads a PGP armored block from the given Reader. It will ignore
// leading garbage. If it doesn't find a block, it will return nil, io.EOF. The
// given Reader is not usable after calling this function: an arbitrary amount
// of data may have been read past the end of the block.
func Decode(in io.Reader) (p *Block, err error) {
r := bufio.NewReaderSize(in, 100)
var line []byte
ignoreNext := false
TryNextBlock:
p = nil
// Skip leading garbage
for {
ignoreThis := ignoreNext
line, ignoreNext, err = r.ReadLine()
if err != nil {
return
}
if ignoreNext || ignoreThis {
continue
}
line = bytes.TrimSpace(line)
if len(line) > len(armorStart)+len(armorEndOfLine) && bytes.HasPrefix(line, armorStart) {
break
}
}
p = new(Block)
p.Type = string(line[len(armorStart) : len(line)-len(armorEndOfLine)])
p.Header = make(map[string]string)
nextIsContinuation := false
var lastKey string
// Read headers
for {
isContinuation := nextIsContinuation
line, nextIsContinuation, err = r.ReadLine()
if err != nil {
p = nil
return
}
if isContinuation {
p.Header[lastKey] += string(line)
continue
}
line = bytes.TrimSpace(line)
if len(line) == 0 {
break
}
i := bytes.Index(line, []byte(": "))
if i == -1 {
goto TryNextBlock
}
lastKey = string(line[:i])
p.Header[lastKey] = string(line[i+2:])
}
p.lReader.in = r
p.oReader.currentCRC = crc24Init
p.oReader.lReader = &p.lReader
p.oReader.b64Reader = base64.NewDecoder(base64.StdEncoding, &p.lReader)
p.Body = &p.oReader
return
}

View File

@ -1,160 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package armor
import (
"encoding/base64"
"io"
)
var armorHeaderSep = []byte(": ")
var blockEnd = []byte("\n=")
var newline = []byte("\n")
var armorEndOfLineOut = []byte("-----\n")
// writeSlices writes its arguments to the given Writer.
func writeSlices(out io.Writer, slices ...[]byte) (err error) {
for _, s := range slices {
_, err = out.Write(s)
if err != nil {
return err
}
}
return
}
// lineBreaker breaks data across several lines, all of the same byte length
// (except possibly the last). Lines are broken with a single '\n'.
type lineBreaker struct {
lineLength int
line []byte
used int
out io.Writer
haveWritten bool
}
func newLineBreaker(out io.Writer, lineLength int) *lineBreaker {
return &lineBreaker{
lineLength: lineLength,
line: make([]byte, lineLength),
used: 0,
out: out,
}
}
func (l *lineBreaker) Write(b []byte) (n int, err error) {
n = len(b)
if n == 0 {
return
}
if l.used == 0 && l.haveWritten {
_, err = l.out.Write([]byte{'\n'})
if err != nil {
return
}
}
if l.used+len(b) < l.lineLength {
l.used += copy(l.line[l.used:], b)
return
}
l.haveWritten = true
_, err = l.out.Write(l.line[0:l.used])
if err != nil {
return
}
excess := l.lineLength - l.used
l.used = 0
_, err = l.out.Write(b[0:excess])
if err != nil {
return
}
_, err = l.Write(b[excess:])
return
}
func (l *lineBreaker) Close() (err error) {
if l.used > 0 {
_, err = l.out.Write(l.line[0:l.used])
if err != nil {
return
}
}
return
}
// encoding keeps track of a running CRC24 over the data which has been written
// to it and outputs a OpenPGP checksum when closed, followed by an armor
// trailer.
//
// It's built into a stack of io.Writers:
// encoding -> base64 encoder -> lineBreaker -> out
type encoding struct {
out io.Writer
breaker *lineBreaker
b64 io.WriteCloser
crc uint32
blockType []byte
}
func (e *encoding) Write(data []byte) (n int, err error) {
e.crc = crc24(e.crc, data)
return e.b64.Write(data)
}
func (e *encoding) Close() (err error) {
err = e.b64.Close()
if err != nil {
return
}
e.breaker.Close()
var checksumBytes [3]byte
checksumBytes[0] = byte(e.crc >> 16)
checksumBytes[1] = byte(e.crc >> 8)
checksumBytes[2] = byte(e.crc)
var b64ChecksumBytes [4]byte
base64.StdEncoding.Encode(b64ChecksumBytes[:], checksumBytes[:])
return writeSlices(e.out, blockEnd, b64ChecksumBytes[:], newline, armorEnd, e.blockType, armorEndOfLine)
}
// Encode returns a WriteCloser which will encode the data written to it in
// OpenPGP armor.
func Encode(out io.Writer, blockType string, headers map[string]string) (w io.WriteCloser, err error) {
bType := []byte(blockType)
err = writeSlices(out, armorStart, bType, armorEndOfLineOut)
if err != nil {
return
}
for k, v := range headers {
err = writeSlices(out, []byte(k), armorHeaderSep, []byte(v), newline)
if err != nil {
return
}
}
_, err = out.Write(newline)
if err != nil {
return
}
e := &encoding{
out: out,
breaker: newLineBreaker(out, 64),
crc: crc24Init,
blockType: bType,
}
e.b64 = base64.NewEncoder(base64.StdEncoding, e.breaker)
return e, nil
}

View File

@ -1,59 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import "hash"
// NewCanonicalTextHash reformats text written to it into the canonical
// form and then applies the hash h. See RFC 4880, section 5.2.1.
func NewCanonicalTextHash(h hash.Hash) hash.Hash {
return &canonicalTextHash{h, 0}
}
type canonicalTextHash struct {
h hash.Hash
s int
}
var newline = []byte{'\r', '\n'}
func (cth *canonicalTextHash) Write(buf []byte) (int, error) {
start := 0
for i, c := range buf {
switch cth.s {
case 0:
if c == '\r' {
cth.s = 1
} else if c == '\n' {
cth.h.Write(buf[start:i])
cth.h.Write(newline)
start = i + 1
}
case 1:
cth.s = 0
}
}
cth.h.Write(buf[start:])
return len(buf), nil
}
func (cth *canonicalTextHash) Sum(in []byte) []byte {
return cth.h.Sum(in)
}
func (cth *canonicalTextHash) Reset() {
cth.h.Reset()
cth.s = 0
}
func (cth *canonicalTextHash) Size() int {
return cth.h.Size()
}
func (cth *canonicalTextHash) BlockSize() int {
return cth.h.BlockSize()
}

View File

@ -1,122 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package elgamal implements ElGamal encryption, suitable for OpenPGP,
// as specified in "A Public-Key Cryptosystem and a Signature Scheme Based on
// Discrete Logarithms," IEEE Transactions on Information Theory, v. IT-31,
// n. 4, 1985, pp. 469-472.
//
// This form of ElGamal embeds PKCS#1 v1.5 padding, which may make it
// unsuitable for other protocols. RSA should be used in preference in any
// case.
package elgamal // import "golang.org/x/crypto/openpgp/elgamal"
import (
"crypto/rand"
"crypto/subtle"
"errors"
"io"
"math/big"
)
// PublicKey represents an ElGamal public key.
type PublicKey struct {
G, P, Y *big.Int
}
// PrivateKey represents an ElGamal private key.
type PrivateKey struct {
PublicKey
X *big.Int
}
// Encrypt encrypts the given message to the given public key. The result is a
// pair of integers. Errors can result from reading random, or because msg is
// too large to be encrypted to the public key.
func Encrypt(random io.Reader, pub *PublicKey, msg []byte) (c1, c2 *big.Int, err error) {
pLen := (pub.P.BitLen() + 7) / 8
if len(msg) > pLen-11 {
err = errors.New("elgamal: message too long")
return
}
// EM = 0x02 || PS || 0x00 || M
em := make([]byte, pLen-1)
em[0] = 2
ps, mm := em[1:len(em)-len(msg)-1], em[len(em)-len(msg):]
err = nonZeroRandomBytes(ps, random)
if err != nil {
return
}
em[len(em)-len(msg)-1] = 0
copy(mm, msg)
m := new(big.Int).SetBytes(em)
k, err := rand.Int(random, pub.P)
if err != nil {
return
}
c1 = new(big.Int).Exp(pub.G, k, pub.P)
s := new(big.Int).Exp(pub.Y, k, pub.P)
c2 = s.Mul(s, m)
c2.Mod(c2, pub.P)
return
}
// Decrypt takes two integers, resulting from an ElGamal encryption, and
// returns the plaintext of the message. An error can result only if the
// ciphertext is invalid. Users should keep in mind that this is a padding
// oracle and thus, if exposed to an adaptive chosen ciphertext attack, can
// be used to break the cryptosystem. See ``Chosen Ciphertext Attacks
// Against Protocols Based on the RSA Encryption Standard PKCS #1'', Daniel
// Bleichenbacher, Advances in Cryptology (Crypto '98),
func Decrypt(priv *PrivateKey, c1, c2 *big.Int) (msg []byte, err error) {
s := new(big.Int).Exp(c1, priv.X, priv.P)
s.ModInverse(s, priv.P)
s.Mul(s, c2)
s.Mod(s, priv.P)
em := s.Bytes()
firstByteIsTwo := subtle.ConstantTimeByteEq(em[0], 2)
// The remainder of the plaintext must be a string of non-zero random
// octets, followed by a 0, followed by the message.
// lookingForIndex: 1 iff we are still looking for the zero.
// index: the offset of the first zero byte.
var lookingForIndex, index int
lookingForIndex = 1
for i := 1; i < len(em); i++ {
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
}
if firstByteIsTwo != 1 || lookingForIndex != 0 || index < 9 {
return nil, errors.New("elgamal: decryption error")
}
return em[index+1:], nil
}
// nonZeroRandomBytes fills the given slice with non-zero random octets.
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
_, err = io.ReadFull(rand, s)
if err != nil {
return
}
for i := 0; i < len(s); i++ {
for s[i] == 0 {
_, err = io.ReadFull(rand, s[i:i+1])
if err != nil {
return
}
}
}
return
}

View File

@ -1,72 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package errors contains common error types for the OpenPGP packages.
package errors // import "golang.org/x/crypto/openpgp/errors"
import (
"strconv"
)
// A StructuralError is returned when OpenPGP data is found to be syntactically
// invalid.
type StructuralError string
func (s StructuralError) Error() string {
return "openpgp: invalid data: " + string(s)
}
// UnsupportedError indicates that, although the OpenPGP data is valid, it
// makes use of currently unimplemented features.
type UnsupportedError string
func (s UnsupportedError) Error() string {
return "openpgp: unsupported feature: " + string(s)
}
// InvalidArgumentError indicates that the caller is in error and passed an
// incorrect value.
type InvalidArgumentError string
func (i InvalidArgumentError) Error() string {
return "openpgp: invalid argument: " + string(i)
}
// SignatureError indicates that a syntactically valid signature failed to
// validate.
type SignatureError string
func (b SignatureError) Error() string {
return "openpgp: invalid signature: " + string(b)
}
type keyIncorrectError int
func (ki keyIncorrectError) Error() string {
return "openpgp: incorrect key"
}
var ErrKeyIncorrect error = keyIncorrectError(0)
type unknownIssuerError int
func (unknownIssuerError) Error() string {
return "openpgp: signature made by unknown entity"
}
var ErrUnknownIssuer error = unknownIssuerError(0)
type keyRevokedError int
func (keyRevokedError) Error() string {
return "openpgp: signature made by revoked key"
}
var ErrKeyRevoked error = keyRevokedError(0)
type UnknownPacketTypeError uint8
func (upte UnknownPacketTypeError) Error() string {
return "openpgp: unknown packet type: " + strconv.Itoa(int(upte))
}

View File

@ -1,693 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto/rsa"
"io"
"time"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
)
// PublicKeyType is the armor type for a PGP public key.
var PublicKeyType = "PGP PUBLIC KEY BLOCK"
// PrivateKeyType is the armor type for a PGP private key.
var PrivateKeyType = "PGP PRIVATE KEY BLOCK"
// An Entity represents the components of an OpenPGP key: a primary public key
// (which must be a signing key), one or more identities claimed by that key,
// and zero or more subkeys, which may be encryption keys.
type Entity struct {
PrimaryKey *packet.PublicKey
PrivateKey *packet.PrivateKey
Identities map[string]*Identity // indexed by Identity.Name
Revocations []*packet.Signature
Subkeys []Subkey
}
// An Identity represents an identity claimed by an Entity and zero or more
// assertions by other entities about that claim.
type Identity struct {
Name string // by convention, has the form "Full Name (comment) <email@example.com>"
UserId *packet.UserId
SelfSignature *packet.Signature
Signatures []*packet.Signature
}
// A Subkey is an additional public key in an Entity. Subkeys can be used for
// encryption.
type Subkey struct {
PublicKey *packet.PublicKey
PrivateKey *packet.PrivateKey
Sig *packet.Signature
}
// A Key identifies a specific public key in an Entity. This is either the
// Entity's primary key or a subkey.
type Key struct {
Entity *Entity
PublicKey *packet.PublicKey
PrivateKey *packet.PrivateKey
SelfSignature *packet.Signature
}
// A KeyRing provides access to public and private keys.
type KeyRing interface {
// KeysById returns the set of keys that have the given key id.
KeysById(id uint64) []Key
// KeysByIdAndUsage returns the set of keys with the given id
// that also meet the key usage given by requiredUsage.
// The requiredUsage is expressed as the bitwise-OR of
// packet.KeyFlag* values.
KeysByIdUsage(id uint64, requiredUsage byte) []Key
// DecryptionKeys returns all private keys that are valid for
// decryption.
DecryptionKeys() []Key
}
// primaryIdentity returns the Identity marked as primary or the first identity
// if none are so marked.
func (e *Entity) primaryIdentity() *Identity {
var firstIdentity *Identity
for _, ident := range e.Identities {
if firstIdentity == nil {
firstIdentity = ident
}
if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
return ident
}
}
return firstIdentity
}
// encryptionKey returns the best candidate Key for encrypting a message to the
// given Entity.
func (e *Entity) encryptionKey(now time.Time) (Key, bool) {
candidateSubkey := -1
// Iterate the keys to find the newest key
var maxTime time.Time
for i, subkey := range e.Subkeys {
if subkey.Sig.FlagsValid &&
subkey.Sig.FlagEncryptCommunications &&
subkey.PublicKey.PubKeyAlgo.CanEncrypt() &&
!subkey.Sig.KeyExpired(now) &&
(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) {
candidateSubkey = i
maxTime = subkey.Sig.CreationTime
}
}
if candidateSubkey != -1 {
subkey := e.Subkeys[candidateSubkey]
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true
}
// If we don't have any candidate subkeys for encryption and
// the primary key doesn't have any usage metadata then we
// assume that the primary key is ok. Or, if the primary key is
// marked as ok to encrypt to, then we can obviously use it.
i := e.primaryIdentity()
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications &&
e.PrimaryKey.PubKeyAlgo.CanEncrypt() &&
!i.SelfSignature.KeyExpired(now) {
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true
}
// This Entity appears to be signing only.
return Key{}, false
}
// signingKey return the best candidate Key for signing a message with this
// Entity.
func (e *Entity) signingKey(now time.Time) (Key, bool) {
candidateSubkey := -1
for i, subkey := range e.Subkeys {
if subkey.Sig.FlagsValid &&
subkey.Sig.FlagSign &&
subkey.PublicKey.PubKeyAlgo.CanSign() &&
!subkey.Sig.KeyExpired(now) {
candidateSubkey = i
break
}
}
if candidateSubkey != -1 {
subkey := e.Subkeys[candidateSubkey]
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true
}
// If we have no candidate subkey then we assume that it's ok to sign
// with the primary key.
i := e.primaryIdentity()
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign &&
!i.SelfSignature.KeyExpired(now) {
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true
}
return Key{}, false
}
// An EntityList contains one or more Entities.
type EntityList []*Entity
// KeysById returns the set of keys that have the given key id.
func (el EntityList) KeysById(id uint64) (keys []Key) {
for _, e := range el {
if e.PrimaryKey.KeyId == id {
var selfSig *packet.Signature
for _, ident := range e.Identities {
if selfSig == nil {
selfSig = ident.SelfSignature
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId {
selfSig = ident.SelfSignature
break
}
}
keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig})
}
for _, subKey := range e.Subkeys {
if subKey.PublicKey.KeyId == id {
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
}
}
}
return
}
// KeysByIdAndUsage returns the set of keys with the given id that also meet
// the key usage given by requiredUsage. The requiredUsage is expressed as
// the bitwise-OR of packet.KeyFlag* values.
func (el EntityList) KeysByIdUsage(id uint64, requiredUsage byte) (keys []Key) {
for _, key := range el.KeysById(id) {
if len(key.Entity.Revocations) > 0 {
continue
}
if key.SelfSignature.RevocationReason != nil {
continue
}
if key.SelfSignature.FlagsValid && requiredUsage != 0 {
var usage byte
if key.SelfSignature.FlagCertify {
usage |= packet.KeyFlagCertify
}
if key.SelfSignature.FlagSign {
usage |= packet.KeyFlagSign
}
if key.SelfSignature.FlagEncryptCommunications {
usage |= packet.KeyFlagEncryptCommunications
}
if key.SelfSignature.FlagEncryptStorage {
usage |= packet.KeyFlagEncryptStorage
}
if usage&requiredUsage != requiredUsage {
continue
}
}
keys = append(keys, key)
}
return
}
// DecryptionKeys returns all private keys that are valid for decryption.
func (el EntityList) DecryptionKeys() (keys []Key) {
for _, e := range el {
for _, subKey := range e.Subkeys {
if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) {
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig})
}
}
}
return
}
// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file.
func ReadArmoredKeyRing(r io.Reader) (EntityList, error) {
block, err := armor.Decode(r)
if err == io.EOF {
return nil, errors.InvalidArgumentError("no armored data found")
}
if err != nil {
return nil, err
}
if block.Type != PublicKeyType && block.Type != PrivateKeyType {
return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type)
}
return ReadKeyRing(block.Body)
}
// ReadKeyRing reads one or more public/private keys. Unsupported keys are
// ignored as long as at least a single valid key is found.
func ReadKeyRing(r io.Reader) (el EntityList, err error) {
packets := packet.NewReader(r)
var lastUnsupportedError error
for {
var e *Entity
e, err = ReadEntity(packets)
if err != nil {
// TODO: warn about skipped unsupported/unreadable keys
if _, ok := err.(errors.UnsupportedError); ok {
lastUnsupportedError = err
err = readToNextPublicKey(packets)
} else if _, ok := err.(errors.StructuralError); ok {
// Skip unreadable, badly-formatted keys
lastUnsupportedError = err
err = readToNextPublicKey(packets)
}
if err == io.EOF {
err = nil
break
}
if err != nil {
el = nil
break
}
} else {
el = append(el, e)
}
}
if len(el) == 0 && err == nil {
err = lastUnsupportedError
}
return
}
// readToNextPublicKey reads packets until the start of the entity and leaves
// the first packet of the new entity in the Reader.
func readToNextPublicKey(packets *packet.Reader) (err error) {
var p packet.Packet
for {
p, err = packets.Next()
if err == io.EOF {
return
} else if err != nil {
if _, ok := err.(errors.UnsupportedError); ok {
err = nil
continue
}
return
}
if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey {
packets.Unread(p)
return
}
}
}
// ReadEntity reads an entity (public key, identities, subkeys etc) from the
// given Reader.
func ReadEntity(packets *packet.Reader) (*Entity, error) {
e := new(Entity)
e.Identities = make(map[string]*Identity)
p, err := packets.Next()
if err != nil {
return nil, err
}
var ok bool
if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok {
if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok {
packets.Unread(p)
return nil, errors.StructuralError("first packet was not a public/private key")
}
e.PrimaryKey = &e.PrivateKey.PublicKey
}
if !e.PrimaryKey.PubKeyAlgo.CanSign() {
return nil, errors.StructuralError("primary key cannot be used for signatures")
}
var revocations []*packet.Signature
EachPacket:
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return nil, err
}
switch pkt := p.(type) {
case *packet.UserId:
if err := addUserID(e, packets, pkt); err != nil {
return nil, err
}
case *packet.Signature:
if pkt.SigType == packet.SigTypeKeyRevocation {
revocations = append(revocations, pkt)
} else if pkt.SigType == packet.SigTypeDirectSignature {
// TODO: RFC4880 5.2.1 permits signatures
// directly on keys (eg. to bind additional
// revocation keys).
}
// Else, ignoring the signature as it does not follow anything
// we would know to attach it to.
case *packet.PrivateKey:
if pkt.IsSubkey == false {
packets.Unread(p)
break EachPacket
}
err = addSubkey(e, packets, &pkt.PublicKey, pkt)
if err != nil {
return nil, err
}
case *packet.PublicKey:
if pkt.IsSubkey == false {
packets.Unread(p)
break EachPacket
}
err = addSubkey(e, packets, pkt, nil)
if err != nil {
return nil, err
}
default:
// we ignore unknown packets
}
}
if len(e.Identities) == 0 {
return nil, errors.StructuralError("entity without any identities")
}
for _, revocation := range revocations {
err = e.PrimaryKey.VerifyRevocationSignature(revocation)
if err == nil {
e.Revocations = append(e.Revocations, revocation)
} else {
// TODO: RFC 4880 5.2.3.15 defines revocation keys.
return nil, errors.StructuralError("revocation signature signed by alternate key")
}
}
return e, nil
}
func addUserID(e *Entity, packets *packet.Reader, pkt *packet.UserId) error {
// Make a new Identity object, that we might wind up throwing away.
// We'll only add it if we get a valid self-signature over this
// userID.
identity := new(Identity)
identity.Name = pkt.Id
identity.UserId = pkt
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return err
}
sig, ok := p.(*packet.Signature)
if !ok {
packets.Unread(p)
break
}
if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId {
if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil {
return errors.StructuralError("user ID self-signature invalid: " + err.Error())
}
identity.SelfSignature = sig
e.Identities[pkt.Id] = identity
} else {
identity.Signatures = append(identity.Signatures, sig)
}
}
return nil
}
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error {
var subKey Subkey
subKey.PublicKey = pub
subKey.PrivateKey = priv
for {
p, err := packets.Next()
if err == io.EOF {
break
} else if err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
sig, ok := p.(*packet.Signature)
if !ok {
packets.Unread(p)
break
}
if sig.SigType != packet.SigTypeSubkeyBinding && sig.SigType != packet.SigTypeSubkeyRevocation {
return errors.StructuralError("subkey signature with wrong type")
}
if err := e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, sig); err != nil {
return errors.StructuralError("subkey signature invalid: " + err.Error())
}
switch sig.SigType {
case packet.SigTypeSubkeyRevocation:
subKey.Sig = sig
case packet.SigTypeSubkeyBinding:
if shouldReplaceSubkeySig(subKey.Sig, sig) {
subKey.Sig = sig
}
}
}
if subKey.Sig == nil {
return errors.StructuralError("subkey packet not followed by signature")
}
e.Subkeys = append(e.Subkeys, subKey)
return nil
}
func shouldReplaceSubkeySig(existingSig, potentialNewSig *packet.Signature) bool {
if potentialNewSig == nil {
return false
}
if existingSig == nil {
return true
}
if existingSig.SigType == packet.SigTypeSubkeyRevocation {
return false // never override a revocation signature
}
return potentialNewSig.CreationTime.After(existingSig.CreationTime)
}
const defaultRSAKeyBits = 2048
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
// single identity composed of the given full name, comment and email, any of
// which may be empty but must not contain any of "()<>\x00".
// If config is nil, sensible defaults will be used.
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
creationTime := config.Now()
bits := defaultRSAKeyBits
if config != nil && config.RSABits != 0 {
bits = config.RSABits
}
uid := packet.NewUserId(name, comment, email)
if uid == nil {
return nil, errors.InvalidArgumentError("user id field contained invalid characters")
}
signingPriv, err := rsa.GenerateKey(config.Random(), bits)
if err != nil {
return nil, err
}
encryptingPriv, err := rsa.GenerateKey(config.Random(), bits)
if err != nil {
return nil, err
}
e := &Entity{
PrimaryKey: packet.NewRSAPublicKey(creationTime, &signingPriv.PublicKey),
PrivateKey: packet.NewRSAPrivateKey(creationTime, signingPriv),
Identities: make(map[string]*Identity),
}
isPrimaryId := true
e.Identities[uid.Id] = &Identity{
Name: uid.Id,
UserId: uid,
SelfSignature: &packet.Signature{
CreationTime: creationTime,
SigType: packet.SigTypePositiveCert,
PubKeyAlgo: packet.PubKeyAlgoRSA,
Hash: config.Hash(),
IsPrimaryId: &isPrimaryId,
FlagsValid: true,
FlagSign: true,
FlagCertify: true,
IssuerKeyId: &e.PrimaryKey.KeyId,
},
}
err = e.Identities[uid.Id].SelfSignature.SignUserId(uid.Id, e.PrimaryKey, e.PrivateKey, config)
if err != nil {
return nil, err
}
// If the user passes in a DefaultHash via packet.Config,
// set the PreferredHash for the SelfSignature.
if config != nil && config.DefaultHash != 0 {
e.Identities[uid.Id].SelfSignature.PreferredHash = []uint8{hashToHashId(config.DefaultHash)}
}
// Likewise for DefaultCipher.
if config != nil && config.DefaultCipher != 0 {
e.Identities[uid.Id].SelfSignature.PreferredSymmetric = []uint8{uint8(config.DefaultCipher)}
}
e.Subkeys = make([]Subkey, 1)
e.Subkeys[0] = Subkey{
PublicKey: packet.NewRSAPublicKey(creationTime, &encryptingPriv.PublicKey),
PrivateKey: packet.NewRSAPrivateKey(creationTime, encryptingPriv),
Sig: &packet.Signature{
CreationTime: creationTime,
SigType: packet.SigTypeSubkeyBinding,
PubKeyAlgo: packet.PubKeyAlgoRSA,
Hash: config.Hash(),
FlagsValid: true,
FlagEncryptStorage: true,
FlagEncryptCommunications: true,
IssuerKeyId: &e.PrimaryKey.KeyId,
},
}
e.Subkeys[0].PublicKey.IsSubkey = true
e.Subkeys[0].PrivateKey.IsSubkey = true
err = e.Subkeys[0].Sig.SignKey(e.Subkeys[0].PublicKey, e.PrivateKey, config)
if err != nil {
return nil, err
}
return e, nil
}
// SerializePrivate serializes an Entity, including private key material, but
// excluding signatures from other entities, to the given Writer.
// Identities and subkeys are re-signed in case they changed since NewEntry.
// If config is nil, sensible defaults will be used.
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) {
err = e.PrivateKey.Serialize(w)
if err != nil {
return
}
for _, ident := range e.Identities {
err = ident.UserId.Serialize(w)
if err != nil {
return
}
err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config)
if err != nil {
return
}
err = ident.SelfSignature.Serialize(w)
if err != nil {
return
}
}
for _, subkey := range e.Subkeys {
err = subkey.PrivateKey.Serialize(w)
if err != nil {
return
}
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config)
if err != nil {
return
}
err = subkey.Sig.Serialize(w)
if err != nil {
return
}
}
return nil
}
// Serialize writes the public part of the given Entity to w, including
// signatures from other entities. No private key material will be output.
func (e *Entity) Serialize(w io.Writer) error {
err := e.PrimaryKey.Serialize(w)
if err != nil {
return err
}
for _, ident := range e.Identities {
err = ident.UserId.Serialize(w)
if err != nil {
return err
}
err = ident.SelfSignature.Serialize(w)
if err != nil {
return err
}
for _, sig := range ident.Signatures {
err = sig.Serialize(w)
if err != nil {
return err
}
}
}
for _, subkey := range e.Subkeys {
err = subkey.PublicKey.Serialize(w)
if err != nil {
return err
}
err = subkey.Sig.Serialize(w)
if err != nil {
return err
}
}
return nil
}
// SignIdentity adds a signature to e, from signer, attesting that identity is
// associated with e. The provided identity must already be an element of
// e.Identities and the private key of signer must have been decrypted if
// necessary.
// If config is nil, sensible defaults will be used.
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error {
if signer.PrivateKey == nil {
return errors.InvalidArgumentError("signing Entity must have a private key")
}
if signer.PrivateKey.Encrypted {
return errors.InvalidArgumentError("signing Entity's private key must be decrypted")
}
ident, ok := e.Identities[identity]
if !ok {
return errors.InvalidArgumentError("given identity string not found in Entity")
}
sig := &packet.Signature{
SigType: packet.SigTypeGenericCert,
PubKeyAlgo: signer.PrivateKey.PubKeyAlgo,
Hash: config.Hash(),
CreationTime: config.Now(),
IssuerKeyId: &signer.PrivateKey.KeyId,
}
if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil {
return err
}
ident.Signatures = append(ident.Signatures, sig)
return nil
}

View File

@ -1,123 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"compress/bzip2"
"compress/flate"
"compress/zlib"
"golang.org/x/crypto/openpgp/errors"
"io"
"strconv"
)
// Compressed represents a compressed OpenPGP packet. The decompressed contents
// will contain more OpenPGP packets. See RFC 4880, section 5.6.
type Compressed struct {
Body io.Reader
}
const (
NoCompression = flate.NoCompression
BestSpeed = flate.BestSpeed
BestCompression = flate.BestCompression
DefaultCompression = flate.DefaultCompression
)
// CompressionConfig contains compressor configuration settings.
type CompressionConfig struct {
// Level is the compression level to use. It must be set to
// between -1 and 9, with -1 causing the compressor to use the
// default compression level, 0 causing the compressor to use
// no compression and 1 to 9 representing increasing (better,
// slower) compression levels. If Level is less than -1 or
// more then 9, a non-nil error will be returned during
// encryption. See the constants above for convenient common
// settings for Level.
Level int
}
func (c *Compressed) parse(r io.Reader) error {
var buf [1]byte
_, err := readFull(r, buf[:])
if err != nil {
return err
}
switch buf[0] {
case 1:
c.Body = flate.NewReader(r)
case 2:
c.Body, err = zlib.NewReader(r)
case 3:
c.Body = bzip2.NewReader(r)
default:
err = errors.UnsupportedError("unknown compression algorithm: " + strconv.Itoa(int(buf[0])))
}
return err
}
// compressedWriterCloser represents the serialized compression stream
// header and the compressor. Its Close() method ensures that both the
// compressor and serialized stream header are closed. Its Write()
// method writes to the compressor.
type compressedWriteCloser struct {
sh io.Closer // Stream Header
c io.WriteCloser // Compressor
}
func (cwc compressedWriteCloser) Write(p []byte) (int, error) {
return cwc.c.Write(p)
}
func (cwc compressedWriteCloser) Close() (err error) {
err = cwc.c.Close()
if err != nil {
return err
}
return cwc.sh.Close()
}
// SerializeCompressed serializes a compressed data packet to w and
// returns a WriteCloser to which the literal data packets themselves
// can be written and which MUST be closed on completion. If cc is
// nil, sensible defaults will be used to configure the compression
// algorithm.
func SerializeCompressed(w io.WriteCloser, algo CompressionAlgo, cc *CompressionConfig) (literaldata io.WriteCloser, err error) {
compressed, err := serializeStreamHeader(w, packetTypeCompressed)
if err != nil {
return
}
_, err = compressed.Write([]byte{uint8(algo)})
if err != nil {
return
}
level := DefaultCompression
if cc != nil {
level = cc.Level
}
var compressor io.WriteCloser
switch algo {
case CompressionZIP:
compressor, err = flate.NewWriter(compressed, level)
case CompressionZLIB:
compressor, err = zlib.NewWriterLevel(compressed, level)
default:
s := strconv.Itoa(int(algo))
err = errors.UnsupportedError("Unsupported compression algorithm: " + s)
}
if err != nil {
return
}
literaldata = compressedWriteCloser{compressed, compressor}
return
}

View File

@ -1,91 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"crypto/rand"
"io"
"time"
)
// Config collects a number of parameters along with sensible defaults.
// A nil *Config is valid and results in all default values.
type Config struct {
// Rand provides the source of entropy.
// If nil, the crypto/rand Reader is used.
Rand io.Reader
// DefaultHash is the default hash function to be used.
// If zero, SHA-256 is used.
DefaultHash crypto.Hash
// DefaultCipher is the cipher to be used.
// If zero, AES-128 is used.
DefaultCipher CipherFunction
// Time returns the current time as the number of seconds since the
// epoch. If Time is nil, time.Now is used.
Time func() time.Time
// DefaultCompressionAlgo is the compression algorithm to be
// applied to the plaintext before encryption. If zero, no
// compression is done.
DefaultCompressionAlgo CompressionAlgo
// CompressionConfig configures the compression settings.
CompressionConfig *CompressionConfig
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 1024 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 65536 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. When set, it is strongly encrouraged to
// use a value that is at least 65536. See RFC 4880 Section
// 3.7.1.3.
S2KCount int
// RSABits is the number of bits in new RSA keys made with NewEntity.
// If zero, then 2048 bit keys are created.
RSABits int
}
func (c *Config) Random() io.Reader {
if c == nil || c.Rand == nil {
return rand.Reader
}
return c.Rand
}
func (c *Config) Hash() crypto.Hash {
if c == nil || uint(c.DefaultHash) == 0 {
return crypto.SHA256
}
return c.DefaultHash
}
func (c *Config) Cipher() CipherFunction {
if c == nil || uint8(c.DefaultCipher) == 0 {
return CipherAES128
}
return c.DefaultCipher
}
func (c *Config) Now() time.Time {
if c == nil || c.Time == nil {
return time.Now()
}
return c.Time()
}
func (c *Config) Compression() CompressionAlgo {
if c == nil {
return CompressionNone
}
return c.DefaultCompressionAlgo
}
func (c *Config) PasswordHashIterations() int {
if c == nil || c.S2KCount == 0 {
return 0
}
return c.S2KCount
}

View File

@ -1,206 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/rsa"
"encoding/binary"
"io"
"math/big"
"strconv"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
)
const encryptedKeyVersion = 3
// EncryptedKey represents a public-key encrypted session key. See RFC 4880,
// section 5.1.
type EncryptedKey struct {
KeyId uint64
Algo PublicKeyAlgorithm
CipherFunc CipherFunction // only valid after a successful Decrypt
Key []byte // only valid after a successful Decrypt
encryptedMPI1, encryptedMPI2 parsedMPI
}
func (e *EncryptedKey) parse(r io.Reader) (err error) {
var buf [10]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != encryptedKeyVersion {
return errors.UnsupportedError("unknown EncryptedKey version " + strconv.Itoa(int(buf[0])))
}
e.KeyId = binary.BigEndian.Uint64(buf[1:9])
e.Algo = PublicKeyAlgorithm(buf[9])
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
case PubKeyAlgoElGamal:
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r)
if err != nil {
return
}
e.encryptedMPI2.bytes, e.encryptedMPI2.bitLength, err = readMPI(r)
if err != nil {
return
}
}
_, err = consumeAll(r)
return
}
func checksumKeyMaterial(key []byte) uint16 {
var checksum uint16
for _, v := range key {
checksum += uint16(v)
}
return checksum
}
// Decrypt decrypts an encrypted session key with the given private key. The
// private key must have been decrypted first.
// If config is nil, sensible defaults will be used.
func (e *EncryptedKey) Decrypt(priv *PrivateKey, config *Config) error {
var err error
var b []byte
// TODO(agl): use session key decryption routines here to avoid
// padding oracle attacks.
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
k := priv.PrivateKey.(*rsa.PrivateKey)
b, err = rsa.DecryptPKCS1v15(config.Random(), k, padToKeySize(&k.PublicKey, e.encryptedMPI1.bytes))
case PubKeyAlgoElGamal:
c1 := new(big.Int).SetBytes(e.encryptedMPI1.bytes)
c2 := new(big.Int).SetBytes(e.encryptedMPI2.bytes)
b, err = elgamal.Decrypt(priv.PrivateKey.(*elgamal.PrivateKey), c1, c2)
default:
err = errors.InvalidArgumentError("cannot decrypted encrypted session key with private key of type " + strconv.Itoa(int(priv.PubKeyAlgo)))
}
if err != nil {
return err
}
e.CipherFunc = CipherFunction(b[0])
e.Key = b[1 : len(b)-2]
expectedChecksum := uint16(b[len(b)-2])<<8 | uint16(b[len(b)-1])
checksum := checksumKeyMaterial(e.Key)
if checksum != expectedChecksum {
return errors.StructuralError("EncryptedKey checksum incorrect")
}
return nil
}
// Serialize writes the encrypted key packet, e, to w.
func (e *EncryptedKey) Serialize(w io.Writer) error {
var mpiLen int
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
mpiLen = 2 + len(e.encryptedMPI1.bytes)
case PubKeyAlgoElGamal:
mpiLen = 2 + len(e.encryptedMPI1.bytes) + 2 + len(e.encryptedMPI2.bytes)
default:
return errors.InvalidArgumentError("don't know how to serialize encrypted key type " + strconv.Itoa(int(e.Algo)))
}
serializeHeader(w, packetTypeEncryptedKey, 1 /* version */ +8 /* key id */ +1 /* algo */ +mpiLen)
w.Write([]byte{encryptedKeyVersion})
binary.Write(w, binary.BigEndian, e.KeyId)
w.Write([]byte{byte(e.Algo)})
switch e.Algo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
writeMPIs(w, e.encryptedMPI1)
case PubKeyAlgoElGamal:
writeMPIs(w, e.encryptedMPI1, e.encryptedMPI2)
default:
panic("internal error")
}
return nil
}
// SerializeEncryptedKey serializes an encrypted key packet to w that contains
// key, encrypted to pub.
// If config is nil, sensible defaults will be used.
func SerializeEncryptedKey(w io.Writer, pub *PublicKey, cipherFunc CipherFunction, key []byte, config *Config) error {
var buf [10]byte
buf[0] = encryptedKeyVersion
binary.BigEndian.PutUint64(buf[1:9], pub.KeyId)
buf[9] = byte(pub.PubKeyAlgo)
keyBlock := make([]byte, 1 /* cipher type */ +len(key)+2 /* checksum */)
keyBlock[0] = byte(cipherFunc)
copy(keyBlock[1:], key)
checksum := checksumKeyMaterial(key)
keyBlock[1+len(key)] = byte(checksum >> 8)
keyBlock[1+len(key)+1] = byte(checksum)
switch pub.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly:
return serializeEncryptedKeyRSA(w, config.Random(), buf, pub.PublicKey.(*rsa.PublicKey), keyBlock)
case PubKeyAlgoElGamal:
return serializeEncryptedKeyElGamal(w, config.Random(), buf, pub.PublicKey.(*elgamal.PublicKey), keyBlock)
case PubKeyAlgoDSA, PubKeyAlgoRSASignOnly:
return errors.InvalidArgumentError("cannot encrypt to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo)))
}
return errors.UnsupportedError("encrypting a key to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo)))
}
func serializeEncryptedKeyRSA(w io.Writer, rand io.Reader, header [10]byte, pub *rsa.PublicKey, keyBlock []byte) error {
cipherText, err := rsa.EncryptPKCS1v15(rand, pub, keyBlock)
if err != nil {
return errors.InvalidArgumentError("RSA encryption failed: " + err.Error())
}
packetLen := 10 /* header length */ + 2 /* mpi size */ + len(cipherText)
err = serializeHeader(w, packetTypeEncryptedKey, packetLen)
if err != nil {
return err
}
_, err = w.Write(header[:])
if err != nil {
return err
}
return writeMPI(w, 8*uint16(len(cipherText)), cipherText)
}
func serializeEncryptedKeyElGamal(w io.Writer, rand io.Reader, header [10]byte, pub *elgamal.PublicKey, keyBlock []byte) error {
c1, c2, err := elgamal.Encrypt(rand, pub, keyBlock)
if err != nil {
return errors.InvalidArgumentError("ElGamal encryption failed: " + err.Error())
}
packetLen := 10 /* header length */
packetLen += 2 /* mpi size */ + (c1.BitLen()+7)/8
packetLen += 2 /* mpi size */ + (c2.BitLen()+7)/8
err = serializeHeader(w, packetTypeEncryptedKey, packetLen)
if err != nil {
return err
}
_, err = w.Write(header[:])
if err != nil {
return err
}
err = writeBig(w, c1)
if err != nil {
return err
}
return writeBig(w, c2)
}

View File

@ -1,89 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"encoding/binary"
"io"
)
// LiteralData represents an encrypted file. See RFC 4880, section 5.9.
type LiteralData struct {
IsBinary bool
FileName string
Time uint32 // Unix epoch time. Either creation time or modification time. 0 means undefined.
Body io.Reader
}
// ForEyesOnly returns whether the contents of the LiteralData have been marked
// as especially sensitive.
func (l *LiteralData) ForEyesOnly() bool {
return l.FileName == "_CONSOLE"
}
func (l *LiteralData) parse(r io.Reader) (err error) {
var buf [256]byte
_, err = readFull(r, buf[:2])
if err != nil {
return
}
l.IsBinary = buf[0] == 'b'
fileNameLen := int(buf[1])
_, err = readFull(r, buf[:fileNameLen])
if err != nil {
return
}
l.FileName = string(buf[:fileNameLen])
_, err = readFull(r, buf[:4])
if err != nil {
return
}
l.Time = binary.BigEndian.Uint32(buf[:4])
l.Body = r
return
}
// SerializeLiteral serializes a literal data packet to w and returns a
// WriteCloser to which the data itself can be written and which MUST be closed
// on completion. The fileName is truncated to 255 bytes.
func SerializeLiteral(w io.WriteCloser, isBinary bool, fileName string, time uint32) (plaintext io.WriteCloser, err error) {
var buf [4]byte
buf[0] = 't'
if isBinary {
buf[0] = 'b'
}
if len(fileName) > 255 {
fileName = fileName[:255]
}
buf[1] = byte(len(fileName))
inner, err := serializeStreamHeader(w, packetTypeLiteralData)
if err != nil {
return
}
_, err = inner.Write(buf[:2])
if err != nil {
return
}
_, err = inner.Write([]byte(fileName))
if err != nil {
return
}
binary.BigEndian.PutUint32(buf[:], time)
_, err = inner.Write(buf[:])
if err != nil {
return
}
plaintext = inner
return
}

View File

@ -1,143 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// OpenPGP CFB Mode. http://tools.ietf.org/html/rfc4880#section-13.9
package packet
import (
"crypto/cipher"
)
type ocfbEncrypter struct {
b cipher.Block
fre []byte
outUsed int
}
// An OCFBResyncOption determines if the "resynchronization step" of OCFB is
// performed.
type OCFBResyncOption bool
const (
OCFBResync OCFBResyncOption = true
OCFBNoResync OCFBResyncOption = false
)
// NewOCFBEncrypter returns a cipher.Stream which encrypts data with OpenPGP's
// cipher feedback mode using the given cipher.Block, and an initial amount of
// ciphertext. randData must be random bytes and be the same length as the
// cipher.Block's block size. Resync determines if the "resynchronization step"
// from RFC 4880, 13.9 step 7 is performed. Different parts of OpenPGP vary on
// this point.
func NewOCFBEncrypter(block cipher.Block, randData []byte, resync OCFBResyncOption) (cipher.Stream, []byte) {
blockSize := block.BlockSize()
if len(randData) != blockSize {
return nil, nil
}
x := &ocfbEncrypter{
b: block,
fre: make([]byte, blockSize),
outUsed: 0,
}
prefix := make([]byte, blockSize+2)
block.Encrypt(x.fre, x.fre)
for i := 0; i < blockSize; i++ {
prefix[i] = randData[i] ^ x.fre[i]
}
block.Encrypt(x.fre, prefix[:blockSize])
prefix[blockSize] = x.fre[0] ^ randData[blockSize-2]
prefix[blockSize+1] = x.fre[1] ^ randData[blockSize-1]
if resync {
block.Encrypt(x.fre, prefix[2:])
} else {
x.fre[0] = prefix[blockSize]
x.fre[1] = prefix[blockSize+1]
x.outUsed = 2
}
return x, prefix
}
func (x *ocfbEncrypter) XORKeyStream(dst, src []byte) {
for i := 0; i < len(src); i++ {
if x.outUsed == len(x.fre) {
x.b.Encrypt(x.fre, x.fre)
x.outUsed = 0
}
x.fre[x.outUsed] ^= src[i]
dst[i] = x.fre[x.outUsed]
x.outUsed++
}
}
type ocfbDecrypter struct {
b cipher.Block
fre []byte
outUsed int
}
// NewOCFBDecrypter returns a cipher.Stream which decrypts data with OpenPGP's
// cipher feedback mode using the given cipher.Block. Prefix must be the first
// blockSize + 2 bytes of the ciphertext, where blockSize is the cipher.Block's
// block size. If an incorrect key is detected then nil is returned. On
// successful exit, blockSize+2 bytes of decrypted data are written into
// prefix. Resync determines if the "resynchronization step" from RFC 4880,
// 13.9 step 7 is performed. Different parts of OpenPGP vary on this point.
func NewOCFBDecrypter(block cipher.Block, prefix []byte, resync OCFBResyncOption) cipher.Stream {
blockSize := block.BlockSize()
if len(prefix) != blockSize+2 {
return nil
}
x := &ocfbDecrypter{
b: block,
fre: make([]byte, blockSize),
outUsed: 0,
}
prefixCopy := make([]byte, len(prefix))
copy(prefixCopy, prefix)
block.Encrypt(x.fre, x.fre)
for i := 0; i < blockSize; i++ {
prefixCopy[i] ^= x.fre[i]
}
block.Encrypt(x.fre, prefix[:blockSize])
prefixCopy[blockSize] ^= x.fre[0]
prefixCopy[blockSize+1] ^= x.fre[1]
if prefixCopy[blockSize-2] != prefixCopy[blockSize] ||
prefixCopy[blockSize-1] != prefixCopy[blockSize+1] {
return nil
}
if resync {
block.Encrypt(x.fre, prefix[2:])
} else {
x.fre[0] = prefix[blockSize]
x.fre[1] = prefix[blockSize+1]
x.outUsed = 2
}
copy(prefix, prefixCopy)
return x
}
func (x *ocfbDecrypter) XORKeyStream(dst, src []byte) {
for i := 0; i < len(src); i++ {
if x.outUsed == len(x.fre) {
x.b.Encrypt(x.fre, x.fre)
x.outUsed = 0
}
c := src[i]
dst[i] = x.fre[x.outUsed] ^ src[i]
x.fre[x.outUsed] = c
x.outUsed++
}
}

View File

@ -1,73 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"encoding/binary"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
"io"
"strconv"
)
// OnePassSignature represents a one-pass signature packet. See RFC 4880,
// section 5.4.
type OnePassSignature struct {
SigType SignatureType
Hash crypto.Hash
PubKeyAlgo PublicKeyAlgorithm
KeyId uint64
IsLast bool
}
const onePassSignatureVersion = 3
func (ops *OnePassSignature) parse(r io.Reader) (err error) {
var buf [13]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != onePassSignatureVersion {
err = errors.UnsupportedError("one-pass-signature packet version " + strconv.Itoa(int(buf[0])))
}
var ok bool
ops.Hash, ok = s2k.HashIdToHash(buf[2])
if !ok {
return errors.UnsupportedError("hash function: " + strconv.Itoa(int(buf[2])))
}
ops.SigType = SignatureType(buf[1])
ops.PubKeyAlgo = PublicKeyAlgorithm(buf[3])
ops.KeyId = binary.BigEndian.Uint64(buf[4:12])
ops.IsLast = buf[12] != 0
return
}
// Serialize marshals the given OnePassSignature to w.
func (ops *OnePassSignature) Serialize(w io.Writer) error {
var buf [13]byte
buf[0] = onePassSignatureVersion
buf[1] = uint8(ops.SigType)
var ok bool
buf[2], ok = s2k.HashToHashId(ops.Hash)
if !ok {
return errors.UnsupportedError("hash type: " + strconv.Itoa(int(ops.Hash)))
}
buf[3] = uint8(ops.PubKeyAlgo)
binary.BigEndian.PutUint64(buf[4:12], ops.KeyId)
if ops.IsLast {
buf[12] = 1
}
if err := serializeHeader(w, packetTypeOnePassSignature, len(buf)); err != nil {
return err
}
_, err := w.Write(buf[:])
return err
}

View File

@ -1,162 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"io"
"io/ioutil"
"golang.org/x/crypto/openpgp/errors"
)
// OpaquePacket represents an OpenPGP packet as raw, unparsed data. This is
// useful for splitting and storing the original packet contents separately,
// handling unsupported packet types or accessing parts of the packet not yet
// implemented by this package.
type OpaquePacket struct {
// Packet type
Tag uint8
// Reason why the packet was parsed opaquely
Reason error
// Binary contents of the packet data
Contents []byte
}
func (op *OpaquePacket) parse(r io.Reader) (err error) {
op.Contents, err = ioutil.ReadAll(r)
return
}
// Serialize marshals the packet to a writer in its original form, including
// the packet header.
func (op *OpaquePacket) Serialize(w io.Writer) (err error) {
err = serializeHeader(w, packetType(op.Tag), len(op.Contents))
if err == nil {
_, err = w.Write(op.Contents)
}
return
}
// Parse attempts to parse the opaque contents into a structure supported by
// this package. If the packet is not known then the result will be another
// OpaquePacket.
func (op *OpaquePacket) Parse() (p Packet, err error) {
hdr := bytes.NewBuffer(nil)
err = serializeHeader(hdr, packetType(op.Tag), len(op.Contents))
if err != nil {
op.Reason = err
return op, err
}
p, err = Read(io.MultiReader(hdr, bytes.NewBuffer(op.Contents)))
if err != nil {
op.Reason = err
p = op
}
return
}
// OpaqueReader reads OpaquePackets from an io.Reader.
type OpaqueReader struct {
r io.Reader
}
func NewOpaqueReader(r io.Reader) *OpaqueReader {
return &OpaqueReader{r: r}
}
// Read the next OpaquePacket.
func (or *OpaqueReader) Next() (op *OpaquePacket, err error) {
tag, _, contents, err := readHeader(or.r)
if err != nil {
return
}
op = &OpaquePacket{Tag: uint8(tag), Reason: err}
err = op.parse(contents)
if err != nil {
consumeAll(contents)
}
return
}
// OpaqueSubpacket represents an unparsed OpenPGP subpacket,
// as found in signature and user attribute packets.
type OpaqueSubpacket struct {
SubType uint8
Contents []byte
}
// OpaqueSubpackets extracts opaque, unparsed OpenPGP subpackets from
// their byte representation.
func OpaqueSubpackets(contents []byte) (result []*OpaqueSubpacket, err error) {
var (
subHeaderLen int
subPacket *OpaqueSubpacket
)
for len(contents) > 0 {
subHeaderLen, subPacket, err = nextSubpacket(contents)
if err != nil {
break
}
result = append(result, subPacket)
contents = contents[subHeaderLen+len(subPacket.Contents):]
}
return
}
func nextSubpacket(contents []byte) (subHeaderLen int, subPacket *OpaqueSubpacket, err error) {
// RFC 4880, section 5.2.3.1
var subLen uint32
if len(contents) < 1 {
goto Truncated
}
subPacket = &OpaqueSubpacket{}
switch {
case contents[0] < 192:
subHeaderLen = 2 // 1 length byte, 1 subtype byte
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[0])
contents = contents[1:]
case contents[0] < 255:
subHeaderLen = 3 // 2 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[0]-192)<<8 + uint32(contents[1]) + 192
contents = contents[2:]
default:
subHeaderLen = 6 // 5 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
subLen = uint32(contents[1])<<24 |
uint32(contents[2])<<16 |
uint32(contents[3])<<8 |
uint32(contents[4])
contents = contents[5:]
}
if subLen > uint32(len(contents)) || subLen == 0 {
goto Truncated
}
subPacket.SubType = contents[0]
subPacket.Contents = contents[1:subLen]
return
Truncated:
err = errors.StructuralError("subpacket truncated")
return
}
func (osp *OpaqueSubpacket) Serialize(w io.Writer) (err error) {
buf := make([]byte, 6)
n := serializeSubpacketLength(buf, len(osp.Contents)+1)
buf[n] = osp.SubType
if _, err = w.Write(buf[:n+1]); err != nil {
return
}
_, err = w.Write(osp.Contents)
return
}

View File

@ -1,551 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package packet implements parsing and serialization of OpenPGP packets, as
// specified in RFC 4880.
package packet // import "golang.org/x/crypto/openpgp/packet"
import (
"bufio"
"crypto/aes"
"crypto/cipher"
"crypto/des"
"crypto/rsa"
"io"
"math/big"
"golang.org/x/crypto/cast5"
"golang.org/x/crypto/openpgp/errors"
)
// readFull is the same as io.ReadFull except that reading zero bytes returns
// ErrUnexpectedEOF rather than EOF.
func readFull(r io.Reader, buf []byte) (n int, err error) {
n, err = io.ReadFull(r, buf)
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// readLength reads an OpenPGP length from r. See RFC 4880, section 4.2.2.
func readLength(r io.Reader) (length int64, isPartial bool, err error) {
var buf [4]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
switch {
case buf[0] < 192:
length = int64(buf[0])
case buf[0] < 224:
length = int64(buf[0]-192) << 8
_, err = readFull(r, buf[0:1])
if err != nil {
return
}
length += int64(buf[0]) + 192
case buf[0] < 255:
length = int64(1) << (buf[0] & 0x1f)
isPartial = true
default:
_, err = readFull(r, buf[0:4])
if err != nil {
return
}
length = int64(buf[0])<<24 |
int64(buf[1])<<16 |
int64(buf[2])<<8 |
int64(buf[3])
}
return
}
// partialLengthReader wraps an io.Reader and handles OpenPGP partial lengths.
// The continuation lengths are parsed and removed from the stream and EOF is
// returned at the end of the packet. See RFC 4880, section 4.2.2.4.
type partialLengthReader struct {
r io.Reader
remaining int64
isPartial bool
}
func (r *partialLengthReader) Read(p []byte) (n int, err error) {
for r.remaining == 0 {
if !r.isPartial {
return 0, io.EOF
}
r.remaining, r.isPartial, err = readLength(r.r)
if err != nil {
return 0, err
}
}
toRead := int64(len(p))
if toRead > r.remaining {
toRead = r.remaining
}
n, err = r.r.Read(p[:int(toRead)])
r.remaining -= int64(n)
if n < int(toRead) && err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// partialLengthWriter writes a stream of data using OpenPGP partial lengths.
// See RFC 4880, section 4.2.2.4.
type partialLengthWriter struct {
w io.WriteCloser
lengthByte [1]byte
}
func (w *partialLengthWriter) Write(p []byte) (n int, err error) {
for len(p) > 0 {
for power := uint(14); power < 32; power-- {
l := 1 << power
if len(p) >= l {
w.lengthByte[0] = 224 + uint8(power)
_, err = w.w.Write(w.lengthByte[:])
if err != nil {
return
}
var m int
m, err = w.w.Write(p[:l])
n += m
if err != nil {
return
}
p = p[l:]
break
}
}
}
return
}
func (w *partialLengthWriter) Close() error {
w.lengthByte[0] = 0
_, err := w.w.Write(w.lengthByte[:])
if err != nil {
return err
}
return w.w.Close()
}
// A spanReader is an io.LimitReader, but it returns ErrUnexpectedEOF if the
// underlying Reader returns EOF before the limit has been reached.
type spanReader struct {
r io.Reader
n int64
}
func (l *spanReader) Read(p []byte) (n int, err error) {
if l.n <= 0 {
return 0, io.EOF
}
if int64(len(p)) > l.n {
p = p[0:l.n]
}
n, err = l.r.Read(p)
l.n -= int64(n)
if l.n > 0 && err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// readHeader parses a packet header and returns an io.Reader which will return
// the contents of the packet. See RFC 4880, section 4.2.
func readHeader(r io.Reader) (tag packetType, length int64, contents io.Reader, err error) {
var buf [4]byte
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return
}
if buf[0]&0x80 == 0 {
err = errors.StructuralError("tag byte does not have MSB set")
return
}
if buf[0]&0x40 == 0 {
// Old format packet
tag = packetType((buf[0] & 0x3f) >> 2)
lengthType := buf[0] & 3
if lengthType == 3 {
length = -1
contents = r
return
}
lengthBytes := 1 << lengthType
_, err = readFull(r, buf[0:lengthBytes])
if err != nil {
return
}
for i := 0; i < lengthBytes; i++ {
length <<= 8
length |= int64(buf[i])
}
contents = &spanReader{r, length}
return
}
// New format packet
tag = packetType(buf[0] & 0x3f)
length, isPartial, err := readLength(r)
if err != nil {
return
}
if isPartial {
contents = &partialLengthReader{
remaining: length,
isPartial: true,
r: r,
}
length = -1
} else {
contents = &spanReader{r, length}
}
return
}
// serializeHeader writes an OpenPGP packet header to w. See RFC 4880, section
// 4.2.
func serializeHeader(w io.Writer, ptype packetType, length int) (err error) {
var buf [6]byte
var n int
buf[0] = 0x80 | 0x40 | byte(ptype)
if length < 192 {
buf[1] = byte(length)
n = 2
} else if length < 8384 {
length -= 192
buf[1] = 192 + byte(length>>8)
buf[2] = byte(length)
n = 3
} else {
buf[1] = 255
buf[2] = byte(length >> 24)
buf[3] = byte(length >> 16)
buf[4] = byte(length >> 8)
buf[5] = byte(length)
n = 6
}
_, err = w.Write(buf[:n])
return
}
// serializeStreamHeader writes an OpenPGP packet header to w where the
// length of the packet is unknown. It returns a io.WriteCloser which can be
// used to write the contents of the packet. See RFC 4880, section 4.2.
func serializeStreamHeader(w io.WriteCloser, ptype packetType) (out io.WriteCloser, err error) {
var buf [1]byte
buf[0] = 0x80 | 0x40 | byte(ptype)
_, err = w.Write(buf[:])
if err != nil {
return
}
out = &partialLengthWriter{w: w}
return
}
// Packet represents an OpenPGP packet. Users are expected to try casting
// instances of this interface to specific packet types.
type Packet interface {
parse(io.Reader) error
}
// consumeAll reads from the given Reader until error, returning the number of
// bytes read.
func consumeAll(r io.Reader) (n int64, err error) {
var m int
var buf [1024]byte
for {
m, err = r.Read(buf[:])
n += int64(m)
if err == io.EOF {
err = nil
return
}
if err != nil {
return
}
}
}
// packetType represents the numeric ids of the different OpenPGP packet types. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-2
type packetType uint8
const (
packetTypeEncryptedKey packetType = 1
packetTypeSignature packetType = 2
packetTypeSymmetricKeyEncrypted packetType = 3
packetTypeOnePassSignature packetType = 4
packetTypePrivateKey packetType = 5
packetTypePublicKey packetType = 6
packetTypePrivateSubkey packetType = 7
packetTypeCompressed packetType = 8
packetTypeSymmetricallyEncrypted packetType = 9
packetTypeLiteralData packetType = 11
packetTypeUserId packetType = 13
packetTypePublicSubkey packetType = 14
packetTypeUserAttribute packetType = 17
packetTypeSymmetricallyEncryptedMDC packetType = 18
)
// peekVersion detects the version of a public key packet about to
// be read. A bufio.Reader at the original position of the io.Reader
// is returned.
func peekVersion(r io.Reader) (bufr *bufio.Reader, ver byte, err error) {
bufr = bufio.NewReader(r)
var verBuf []byte
if verBuf, err = bufr.Peek(1); err != nil {
return
}
ver = verBuf[0]
return
}
// Read reads a single OpenPGP packet from the given io.Reader. If there is an
// error parsing a packet, the whole packet is consumed from the input.
func Read(r io.Reader) (p Packet, err error) {
tag, _, contents, err := readHeader(r)
if err != nil {
return
}
switch tag {
case packetTypeEncryptedKey:
p = new(EncryptedKey)
case packetTypeSignature:
var version byte
// Detect signature version
if contents, version, err = peekVersion(contents); err != nil {
return
}
if version < 4 {
p = new(SignatureV3)
} else {
p = new(Signature)
}
case packetTypeSymmetricKeyEncrypted:
p = new(SymmetricKeyEncrypted)
case packetTypeOnePassSignature:
p = new(OnePassSignature)
case packetTypePrivateKey, packetTypePrivateSubkey:
pk := new(PrivateKey)
if tag == packetTypePrivateSubkey {
pk.IsSubkey = true
}
p = pk
case packetTypePublicKey, packetTypePublicSubkey:
var version byte
if contents, version, err = peekVersion(contents); err != nil {
return
}
isSubkey := tag == packetTypePublicSubkey
if version < 4 {
p = &PublicKeyV3{IsSubkey: isSubkey}
} else {
p = &PublicKey{IsSubkey: isSubkey}
}
case packetTypeCompressed:
p = new(Compressed)
case packetTypeSymmetricallyEncrypted:
p = new(SymmetricallyEncrypted)
case packetTypeLiteralData:
p = new(LiteralData)
case packetTypeUserId:
p = new(UserId)
case packetTypeUserAttribute:
p = new(UserAttribute)
case packetTypeSymmetricallyEncryptedMDC:
se := new(SymmetricallyEncrypted)
se.MDC = true
p = se
default:
err = errors.UnknownPacketTypeError(tag)
}
if p != nil {
err = p.parse(contents)
}
if err != nil {
consumeAll(contents)
}
return
}
// SignatureType represents the different semantic meanings of an OpenPGP
// signature. See RFC 4880, section 5.2.1.
type SignatureType uint8
const (
SigTypeBinary SignatureType = 0
SigTypeText = 1
SigTypeGenericCert = 0x10
SigTypePersonaCert = 0x11
SigTypeCasualCert = 0x12
SigTypePositiveCert = 0x13
SigTypeSubkeyBinding = 0x18
SigTypePrimaryKeyBinding = 0x19
SigTypeDirectSignature = 0x1F
SigTypeKeyRevocation = 0x20
SigTypeSubkeyRevocation = 0x28
)
// PublicKeyAlgorithm represents the different public key system specified for
// OpenPGP. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-12
type PublicKeyAlgorithm uint8
const (
PubKeyAlgoRSA PublicKeyAlgorithm = 1
PubKeyAlgoElGamal PublicKeyAlgorithm = 16
PubKeyAlgoDSA PublicKeyAlgorithm = 17
// RFC 6637, Section 5.
PubKeyAlgoECDH PublicKeyAlgorithm = 18
PubKeyAlgoECDSA PublicKeyAlgorithm = 19
// Deprecated in RFC 4880, Section 13.5. Use key flags instead.
PubKeyAlgoRSAEncryptOnly PublicKeyAlgorithm = 2
PubKeyAlgoRSASignOnly PublicKeyAlgorithm = 3
)
// CanEncrypt returns true if it's possible to encrypt a message to a public
// key of the given type.
func (pka PublicKeyAlgorithm) CanEncrypt() bool {
switch pka {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoElGamal:
return true
}
return false
}
// CanSign returns true if it's possible for a public key of the given type to
// sign a message.
func (pka PublicKeyAlgorithm) CanSign() bool {
switch pka {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA:
return true
}
return false
}
// CipherFunction represents the different block ciphers specified for OpenPGP. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-13
type CipherFunction uint8
const (
Cipher3DES CipherFunction = 2
CipherCAST5 CipherFunction = 3
CipherAES128 CipherFunction = 7
CipherAES192 CipherFunction = 8
CipherAES256 CipherFunction = 9
)
// KeySize returns the key size, in bytes, of cipher.
func (cipher CipherFunction) KeySize() int {
switch cipher {
case Cipher3DES:
return 24
case CipherCAST5:
return cast5.KeySize
case CipherAES128:
return 16
case CipherAES192:
return 24
case CipherAES256:
return 32
}
return 0
}
// blockSize returns the block size, in bytes, of cipher.
func (cipher CipherFunction) blockSize() int {
switch cipher {
case Cipher3DES:
return des.BlockSize
case CipherCAST5:
return 8
case CipherAES128, CipherAES192, CipherAES256:
return 16
}
return 0
}
// new returns a fresh instance of the given cipher.
func (cipher CipherFunction) new(key []byte) (block cipher.Block) {
switch cipher {
case Cipher3DES:
block, _ = des.NewTripleDESCipher(key)
case CipherCAST5:
block, _ = cast5.NewCipher(key)
case CipherAES128, CipherAES192, CipherAES256:
block, _ = aes.NewCipher(key)
}
return
}
// readMPI reads a big integer from r. The bit length returned is the bit
// length that was specified in r. This is preserved so that the integer can be
// reserialized exactly.
func readMPI(r io.Reader) (mpi []byte, bitLength uint16, err error) {
var buf [2]byte
_, err = readFull(r, buf[0:])
if err != nil {
return
}
bitLength = uint16(buf[0])<<8 | uint16(buf[1])
numBytes := (int(bitLength) + 7) / 8
mpi = make([]byte, numBytes)
_, err = readFull(r, mpi)
// According to RFC 4880 3.2. we should check that the MPI has no leading
// zeroes (at least when not an encrypted MPI?), but this implementation
// does generate leading zeroes, so we keep accepting them.
return
}
// writeMPI serializes a big integer to w.
func writeMPI(w io.Writer, bitLength uint16, mpiBytes []byte) (err error) {
// Note that we can produce leading zeroes, in violation of RFC 4880 3.2.
// Implementations seem to be tolerant of them, and stripping them would
// make it complex to guarantee matching re-serialization.
_, err = w.Write([]byte{byte(bitLength >> 8), byte(bitLength)})
if err == nil {
_, err = w.Write(mpiBytes)
}
return
}
// writeBig serializes a *big.Int to w.
func writeBig(w io.Writer, i *big.Int) error {
return writeMPI(w, uint16(i.BitLen()), i.Bytes())
}
// padToKeySize left-pads a MPI with zeroes to match the length of the
// specified RSA public.
func padToKeySize(pub *rsa.PublicKey, b []byte) []byte {
k := (pub.N.BitLen() + 7) / 8
if len(b) >= k {
return b
}
bb := make([]byte, k)
copy(bb[len(bb)-len(b):], b)
return bb
}
// CompressionAlgo Represents the different compression algorithms
// supported by OpenPGP (except for BZIP2, which is not currently
// supported). See Section 9.3 of RFC 4880.
type CompressionAlgo uint8
const (
CompressionNone CompressionAlgo = 0
CompressionZIP CompressionAlgo = 1
CompressionZLIB CompressionAlgo = 2
)

View File

@ -1,385 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/cipher"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"crypto/sha1"
"io"
"io/ioutil"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// PrivateKey represents a possibly encrypted private key. See RFC 4880,
// section 5.5.3.
type PrivateKey struct {
PublicKey
Encrypted bool // if true then the private key is unavailable until Decrypt has been called.
encryptedData []byte
cipher CipherFunction
s2k func(out, in []byte)
PrivateKey interface{} // An *{rsa|dsa|ecdsa}.PrivateKey or a crypto.Signer.
sha1Checksum bool
iv []byte
}
func NewRSAPrivateKey(creationTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewDSAPrivateKey(creationTime time.Time, priv *dsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewElGamalPrivateKey(creationTime time.Time, priv *elgamal.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewECDSAPrivateKey(creationTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewECDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA or ECDSA.
func NewSignerPrivateKey(creationTime time.Time, signer crypto.Signer) *PrivateKey {
pk := new(PrivateKey)
// In general, the public Keys should be used as pointers. We still
// type-switch on the values, for backwards-compatibility.
switch pubkey := signer.Public().(type) {
case *rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, pubkey)
case rsa.PublicKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey)
case *ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, pubkey)
case ecdsa.PublicKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey)
default:
panic("openpgp: unknown crypto.Signer type in NewSignerPrivateKey")
}
pk.PrivateKey = signer
return pk
}
func (pk *PrivateKey) parse(r io.Reader) (err error) {
err = (&pk.PublicKey).parse(r)
if err != nil {
return
}
var buf [1]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
s2kType := buf[0]
switch s2kType {
case 0:
pk.s2k = nil
pk.Encrypted = false
case 254, 255:
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.cipher = CipherFunction(buf[0])
pk.Encrypted = true
pk.s2k, err = s2k.Parse(r)
if err != nil {
return
}
if s2kType == 254 {
pk.sha1Checksum = true
}
default:
return errors.UnsupportedError("deprecated s2k function in private key")
}
if pk.Encrypted {
blockSize := pk.cipher.blockSize()
if blockSize == 0 {
return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher)))
}
pk.iv = make([]byte, blockSize)
_, err = readFull(r, pk.iv)
if err != nil {
return
}
}
pk.encryptedData, err = ioutil.ReadAll(r)
if err != nil {
return
}
if !pk.Encrypted {
return pk.parsePrivateKey(pk.encryptedData)
}
return
}
func mod64kHash(d []byte) uint16 {
var h uint16
for _, b := range d {
h += uint16(b)
}
return h
}
func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
// TODO(agl): support encrypted private keys
buf := bytes.NewBuffer(nil)
err = pk.PublicKey.serializeWithoutHeaders(buf)
if err != nil {
return
}
buf.WriteByte(0 /* no encryption */)
privateKeyBuf := bytes.NewBuffer(nil)
switch priv := pk.PrivateKey.(type) {
case *rsa.PrivateKey:
err = serializeRSAPrivateKey(privateKeyBuf, priv)
case *dsa.PrivateKey:
err = serializeDSAPrivateKey(privateKeyBuf, priv)
case *elgamal.PrivateKey:
err = serializeElGamalPrivateKey(privateKeyBuf, priv)
case *ecdsa.PrivateKey:
err = serializeECDSAPrivateKey(privateKeyBuf, priv)
default:
err = errors.InvalidArgumentError("unknown private key type")
}
if err != nil {
return
}
ptype := packetTypePrivateKey
contents := buf.Bytes()
privateKeyBytes := privateKeyBuf.Bytes()
if pk.IsSubkey {
ptype = packetTypePrivateSubkey
}
err = serializeHeader(w, ptype, len(contents)+len(privateKeyBytes)+2)
if err != nil {
return
}
_, err = w.Write(contents)
if err != nil {
return
}
_, err = w.Write(privateKeyBytes)
if err != nil {
return
}
checksum := mod64kHash(privateKeyBytes)
var checksumBytes [2]byte
checksumBytes[0] = byte(checksum >> 8)
checksumBytes[1] = byte(checksum)
_, err = w.Write(checksumBytes[:])
return
}
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
err := writeBig(w, priv.D)
if err != nil {
return err
}
err = writeBig(w, priv.Primes[1])
if err != nil {
return err
}
err = writeBig(w, priv.Primes[0])
if err != nil {
return err
}
return writeBig(w, priv.Precomputed.Qinv)
}
func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error {
return writeBig(w, priv.X)
}
func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error {
return writeBig(w, priv.X)
}
func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
return writeBig(w, priv.D)
}
// Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
if !pk.Encrypted {
return nil
}
key := make([]byte, pk.cipher.KeySize())
pk.s2k(key, passphrase)
block := pk.cipher.new(key)
cfb := cipher.NewCFBDecrypter(block, pk.iv)
data := make([]byte, len(pk.encryptedData))
cfb.XORKeyStream(data, pk.encryptedData)
if pk.sha1Checksum {
if len(data) < sha1.Size {
return errors.StructuralError("truncated private key data")
}
h := sha1.New()
h.Write(data[:len(data)-sha1.Size])
sum := h.Sum(nil)
if !bytes.Equal(sum, data[len(data)-sha1.Size:]) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-sha1.Size]
} else {
if len(data) < 2 {
return errors.StructuralError("truncated private key data")
}
var sum uint16
for i := 0; i < len(data)-2; i++ {
sum += uint16(data[i])
}
if data[len(data)-2] != uint8(sum>>8) ||
data[len(data)-1] != uint8(sum) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-2]
}
return pk.parsePrivateKey(data)
}
func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
switch pk.PublicKey.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly:
return pk.parseRSAPrivateKey(data)
case PubKeyAlgoDSA:
return pk.parseDSAPrivateKey(data)
case PubKeyAlgoElGamal:
return pk.parseElGamalPrivateKey(data)
case PubKeyAlgoECDSA:
return pk.parseECDSAPrivateKey(data)
}
panic("impossible")
}
func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) {
rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey)
rsaPriv := new(rsa.PrivateKey)
rsaPriv.PublicKey = *rsaPub
buf := bytes.NewBuffer(data)
d, _, err := readMPI(buf)
if err != nil {
return
}
p, _, err := readMPI(buf)
if err != nil {
return
}
q, _, err := readMPI(buf)
if err != nil {
return
}
rsaPriv.D = new(big.Int).SetBytes(d)
rsaPriv.Primes = make([]*big.Int, 2)
rsaPriv.Primes[0] = new(big.Int).SetBytes(p)
rsaPriv.Primes[1] = new(big.Int).SetBytes(q)
if err := rsaPriv.Validate(); err != nil {
return err
}
rsaPriv.Precompute()
pk.PrivateKey = rsaPriv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) {
dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey)
dsaPriv := new(dsa.PrivateKey)
dsaPriv.PublicKey = *dsaPub
buf := bytes.NewBuffer(data)
x, _, err := readMPI(buf)
if err != nil {
return
}
dsaPriv.X = new(big.Int).SetBytes(x)
pk.PrivateKey = dsaPriv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey)
priv := new(elgamal.PrivateKey)
priv.PublicKey = *pub
buf := bytes.NewBuffer(data)
x, _, err := readMPI(buf)
if err != nil {
return
}
priv.X = new(big.Int).SetBytes(x)
pk.PrivateKey = priv
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
buf := bytes.NewBuffer(data)
d, _, err := readMPI(buf)
if err != nil {
return
}
pk.PrivateKey = &ecdsa.PrivateKey{
PublicKey: *ecdsaPub,
D: new(big.Int).SetBytes(d),
}
pk.Encrypted = false
pk.encryptedData = nil
return nil
}

View File

@ -1,753 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rsa"
"crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/binary"
"fmt"
"hash"
"io"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/elgamal"
"golang.org/x/crypto/openpgp/errors"
)
var (
// NIST curve P-256
oidCurveP256 []byte = []byte{0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07}
// NIST curve P-384
oidCurveP384 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x22}
// NIST curve P-521
oidCurveP521 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x23}
)
const maxOIDLength = 8
// ecdsaKey stores the algorithm-specific fields for ECDSA keys.
// as defined in RFC 6637, Section 9.
type ecdsaKey struct {
// oid contains the OID byte sequence identifying the elliptic curve used
oid []byte
// p contains the elliptic curve point that represents the public key
p parsedMPI
}
// parseOID reads the OID for the curve as defined in RFC 6637, Section 9.
func parseOID(r io.Reader) (oid []byte, err error) {
buf := make([]byte, maxOIDLength)
if _, err = readFull(r, buf[:1]); err != nil {
return
}
oidLen := buf[0]
if int(oidLen) > len(buf) {
err = errors.UnsupportedError("invalid oid length: " + strconv.Itoa(int(oidLen)))
return
}
oid = buf[:oidLen]
_, err = readFull(r, oid)
return
}
func (f *ecdsaKey) parse(r io.Reader) (err error) {
if f.oid, err = parseOID(r); err != nil {
return err
}
f.p.bytes, f.p.bitLength, err = readMPI(r)
return
}
func (f *ecdsaKey) serialize(w io.Writer) (err error) {
buf := make([]byte, maxOIDLength+1)
buf[0] = byte(len(f.oid))
copy(buf[1:], f.oid)
if _, err = w.Write(buf[:len(f.oid)+1]); err != nil {
return
}
return writeMPIs(w, f.p)
}
func (f *ecdsaKey) newECDSA() (*ecdsa.PublicKey, error) {
var c elliptic.Curve
if bytes.Equal(f.oid, oidCurveP256) {
c = elliptic.P256()
} else if bytes.Equal(f.oid, oidCurveP384) {
c = elliptic.P384()
} else if bytes.Equal(f.oid, oidCurveP521) {
c = elliptic.P521()
} else {
return nil, errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", f.oid))
}
x, y := elliptic.Unmarshal(c, f.p.bytes)
if x == nil {
return nil, errors.UnsupportedError("failed to parse EC point")
}
return &ecdsa.PublicKey{Curve: c, X: x, Y: y}, nil
}
func (f *ecdsaKey) byteLen() int {
return 1 + len(f.oid) + 2 + len(f.p.bytes)
}
type kdfHashFunction byte
type kdfAlgorithm byte
// ecdhKdf stores key derivation function parameters
// used for ECDH encryption. See RFC 6637, Section 9.
type ecdhKdf struct {
KdfHash kdfHashFunction
KdfAlgo kdfAlgorithm
}
func (f *ecdhKdf) parse(r io.Reader) (err error) {
buf := make([]byte, 1)
if _, err = readFull(r, buf); err != nil {
return
}
kdfLen := int(buf[0])
if kdfLen < 3 {
return errors.UnsupportedError("Unsupported ECDH KDF length: " + strconv.Itoa(kdfLen))
}
buf = make([]byte, kdfLen)
if _, err = readFull(r, buf); err != nil {
return
}
reserved := int(buf[0])
f.KdfHash = kdfHashFunction(buf[1])
f.KdfAlgo = kdfAlgorithm(buf[2])
if reserved != 0x01 {
return errors.UnsupportedError("Unsupported KDF reserved field: " + strconv.Itoa(reserved))
}
return
}
func (f *ecdhKdf) serialize(w io.Writer) (err error) {
buf := make([]byte, 4)
// See RFC 6637, Section 9, Algorithm-Specific Fields for ECDH keys.
buf[0] = byte(0x03) // Length of the following fields
buf[1] = byte(0x01) // Reserved for future extensions, must be 1 for now
buf[2] = byte(f.KdfHash)
buf[3] = byte(f.KdfAlgo)
_, err = w.Write(buf[:])
return
}
func (f *ecdhKdf) byteLen() int {
return 4
}
// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2.
type PublicKey struct {
CreationTime time.Time
PubKeyAlgo PublicKeyAlgorithm
PublicKey interface{} // *rsa.PublicKey, *dsa.PublicKey or *ecdsa.PublicKey
Fingerprint [20]byte
KeyId uint64
IsSubkey bool
n, e, p, q, g, y parsedMPI
// RFC 6637 fields
ec *ecdsaKey
ecdh *ecdhKdf
}
// signingKey provides a convenient abstraction over signature verification
// for v3 and v4 public keys.
type signingKey interface {
SerializeSignaturePrefix(io.Writer)
serializeWithoutHeaders(io.Writer) error
}
func fromBig(n *big.Int) parsedMPI {
return parsedMPI{
bytes: n.Bytes(),
bitLength: uint16(n.BitLen()),
}
}
// NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey.
func NewRSAPublicKey(creationTime time.Time, pub *rsa.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoRSA,
PublicKey: pub,
n: fromBig(pub.N),
e: fromBig(big.NewInt(int64(pub.E))),
}
pk.setFingerPrintAndKeyId()
return pk
}
// NewDSAPublicKey returns a PublicKey that wraps the given dsa.PublicKey.
func NewDSAPublicKey(creationTime time.Time, pub *dsa.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoDSA,
PublicKey: pub,
p: fromBig(pub.P),
q: fromBig(pub.Q),
g: fromBig(pub.G),
y: fromBig(pub.Y),
}
pk.setFingerPrintAndKeyId()
return pk
}
// NewElGamalPublicKey returns a PublicKey that wraps the given elgamal.PublicKey.
func NewElGamalPublicKey(creationTime time.Time, pub *elgamal.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoElGamal,
PublicKey: pub,
p: fromBig(pub.P),
g: fromBig(pub.G),
y: fromBig(pub.Y),
}
pk.setFingerPrintAndKeyId()
return pk
}
func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey {
pk := &PublicKey{
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoECDSA,
PublicKey: pub,
ec: new(ecdsaKey),
}
switch pub.Curve {
case elliptic.P256():
pk.ec.oid = oidCurveP256
case elliptic.P384():
pk.ec.oid = oidCurveP384
case elliptic.P521():
pk.ec.oid = oidCurveP521
default:
panic("unknown elliptic curve")
}
pk.ec.p.bytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
// The bit length is 3 (for the 0x04 specifying an uncompressed key)
// plus two field elements (for x and y), which are rounded up to the
// nearest byte. See https://tools.ietf.org/html/rfc6637#section-6
fieldBytes := (pub.Curve.Params().BitSize + 7) & ^7
pk.ec.p.bitLength = uint16(3 + fieldBytes + fieldBytes)
pk.setFingerPrintAndKeyId()
return pk
}
func (pk *PublicKey) parse(r io.Reader) (err error) {
// RFC 4880, section 5.5.2
var buf [6]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
if buf[0] != 4 {
return errors.UnsupportedError("public key version")
}
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0)
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5])
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
err = pk.parseRSA(r)
case PubKeyAlgoDSA:
err = pk.parseDSA(r)
case PubKeyAlgoElGamal:
err = pk.parseElGamal(r)
case PubKeyAlgoECDSA:
pk.ec = new(ecdsaKey)
if err = pk.ec.parse(r); err != nil {
return err
}
pk.PublicKey, err = pk.ec.newECDSA()
case PubKeyAlgoECDH:
pk.ec = new(ecdsaKey)
if err = pk.ec.parse(r); err != nil {
return
}
pk.ecdh = new(ecdhKdf)
if err = pk.ecdh.parse(r); err != nil {
return
}
// The ECDH key is stored in an ecdsa.PublicKey for convenience.
pk.PublicKey, err = pk.ec.newECDSA()
default:
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
}
if err != nil {
return
}
pk.setFingerPrintAndKeyId()
return
}
func (pk *PublicKey) setFingerPrintAndKeyId() {
// RFC 4880, section 12.2
fingerPrint := sha1.New()
pk.SerializeSignaturePrefix(fingerPrint)
pk.serializeWithoutHeaders(fingerPrint)
copy(pk.Fingerprint[:], fingerPrint.Sum(nil))
pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
}
// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseRSA(r io.Reader) (err error) {
pk.n.bytes, pk.n.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.e.bytes, pk.e.bitLength, err = readMPI(r)
if err != nil {
return
}
if len(pk.e.bytes) > 3 {
err = errors.UnsupportedError("large public exponent")
return
}
rsa := &rsa.PublicKey{
N: new(big.Int).SetBytes(pk.n.bytes),
E: 0,
}
for i := 0; i < len(pk.e.bytes); i++ {
rsa.E <<= 8
rsa.E |= int(pk.e.bytes[i])
}
pk.PublicKey = rsa
return
}
// parseDSA parses DSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseDSA(r io.Reader) (err error) {
pk.p.bytes, pk.p.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.q.bytes, pk.q.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.g.bytes, pk.g.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.y.bytes, pk.y.bitLength, err = readMPI(r)
if err != nil {
return
}
dsa := new(dsa.PublicKey)
dsa.P = new(big.Int).SetBytes(pk.p.bytes)
dsa.Q = new(big.Int).SetBytes(pk.q.bytes)
dsa.G = new(big.Int).SetBytes(pk.g.bytes)
dsa.Y = new(big.Int).SetBytes(pk.y.bytes)
pk.PublicKey = dsa
return
}
// parseElGamal parses ElGamal public key material from the given Reader. See
// RFC 4880, section 5.5.2.
func (pk *PublicKey) parseElGamal(r io.Reader) (err error) {
pk.p.bytes, pk.p.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.g.bytes, pk.g.bitLength, err = readMPI(r)
if err != nil {
return
}
pk.y.bytes, pk.y.bitLength, err = readMPI(r)
if err != nil {
return
}
elgamal := new(elgamal.PublicKey)
elgamal.P = new(big.Int).SetBytes(pk.p.bytes)
elgamal.G = new(big.Int).SetBytes(pk.g.bytes)
elgamal.Y = new(big.Int).SetBytes(pk.y.bytes)
pk.PublicKey = elgamal
return
}
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKey) SerializeSignaturePrefix(h io.Writer) {
var pLength uint16
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
pLength += 2 + uint16(len(pk.n.bytes))
pLength += 2 + uint16(len(pk.e.bytes))
case PubKeyAlgoDSA:
pLength += 2 + uint16(len(pk.p.bytes))
pLength += 2 + uint16(len(pk.q.bytes))
pLength += 2 + uint16(len(pk.g.bytes))
pLength += 2 + uint16(len(pk.y.bytes))
case PubKeyAlgoElGamal:
pLength += 2 + uint16(len(pk.p.bytes))
pLength += 2 + uint16(len(pk.g.bytes))
pLength += 2 + uint16(len(pk.y.bytes))
case PubKeyAlgoECDSA:
pLength += uint16(pk.ec.byteLen())
case PubKeyAlgoECDH:
pLength += uint16(pk.ec.byteLen())
pLength += uint16(pk.ecdh.byteLen())
default:
panic("unknown public key algorithm")
}
pLength += 6
h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
return
}
func (pk *PublicKey) Serialize(w io.Writer) (err error) {
length := 6 // 6 byte header
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
length += 2 + len(pk.n.bytes)
length += 2 + len(pk.e.bytes)
case PubKeyAlgoDSA:
length += 2 + len(pk.p.bytes)
length += 2 + len(pk.q.bytes)
length += 2 + len(pk.g.bytes)
length += 2 + len(pk.y.bytes)
case PubKeyAlgoElGamal:
length += 2 + len(pk.p.bytes)
length += 2 + len(pk.g.bytes)
length += 2 + len(pk.y.bytes)
case PubKeyAlgoECDSA:
length += pk.ec.byteLen()
case PubKeyAlgoECDH:
length += pk.ec.byteLen()
length += pk.ecdh.byteLen()
default:
panic("unknown public key algorithm")
}
packetType := packetTypePublicKey
if pk.IsSubkey {
packetType = packetTypePublicSubkey
}
err = serializeHeader(w, packetType, length)
if err != nil {
return
}
return pk.serializeWithoutHeaders(w)
}
// serializeWithoutHeaders marshals the PublicKey to w in the form of an
// OpenPGP public key packet, not including the packet header.
func (pk *PublicKey) serializeWithoutHeaders(w io.Writer) (err error) {
var buf [6]byte
buf[0] = 4
t := uint32(pk.CreationTime.Unix())
buf[1] = byte(t >> 24)
buf[2] = byte(t >> 16)
buf[3] = byte(t >> 8)
buf[4] = byte(t)
buf[5] = byte(pk.PubKeyAlgo)
_, err = w.Write(buf[:])
if err != nil {
return
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
return writeMPIs(w, pk.n, pk.e)
case PubKeyAlgoDSA:
return writeMPIs(w, pk.p, pk.q, pk.g, pk.y)
case PubKeyAlgoElGamal:
return writeMPIs(w, pk.p, pk.g, pk.y)
case PubKeyAlgoECDSA:
return pk.ec.serialize(w)
case PubKeyAlgoECDH:
if err = pk.ec.serialize(w); err != nil {
return
}
return pk.ecdh.serialize(w)
}
return errors.InvalidArgumentError("bad public-key algorithm")
}
// CanSign returns true iff this public key can generate signatures
func (pk *PublicKey) CanSign() bool {
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElGamal
}
// VerifySignature returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
signed.Write(sig.HashSuffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
rsaPublicKey, _ := pk.PublicKey.(*rsa.PublicKey)
err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, padToKeySize(rsaPublicKey, sig.RSASignature.bytes))
if err != nil {
return errors.SignatureError("RSA verification failure")
}
return nil
case PubKeyAlgoDSA:
dsaPublicKey, _ := pk.PublicKey.(*dsa.PublicKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8
if len(hashBytes) > subgroupSize {
hashBytes = hashBytes[:subgroupSize]
}
if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) {
return errors.SignatureError("DSA verification failure")
}
return nil
case PubKeyAlgoECDSA:
ecdsaPublicKey := pk.PublicKey.(*ecdsa.PublicKey)
if !ecdsa.Verify(ecdsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.ECDSASigR.bytes), new(big.Int).SetBytes(sig.ECDSASigS.bytes)) {
return errors.SignatureError("ECDSA verification failure")
}
return nil
default:
return errors.SignatureError("Unsupported public key algorithm used in signature")
}
}
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
suffix := make([]byte, 5)
suffix[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix()))
signed.Write(suffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
rsaPublicKey := pk.PublicKey.(*rsa.PublicKey)
if err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, padToKeySize(rsaPublicKey, sig.RSASignature.bytes)); err != nil {
return errors.SignatureError("RSA verification failure")
}
return
case PubKeyAlgoDSA:
dsaPublicKey := pk.PublicKey.(*dsa.PublicKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8
if len(hashBytes) > subgroupSize {
hashBytes = hashBytes[:subgroupSize]
}
if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) {
return errors.SignatureError("DSA verification failure")
}
return nil
default:
panic("shouldn't happen")
}
}
// keySignatureHash returns a Hash of the message that needs to be signed for
// pk to assert a subkey relationship to signed.
func keySignatureHash(pk, signed signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
if !hashFunc.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hashFunc.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
signed.SerializeSignaturePrefix(h)
signed.serializeWithoutHeaders(h)
return
}
// VerifyKeySignature returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) error {
h, err := keySignatureHash(pk, signed, sig.Hash)
if err != nil {
return err
}
if err = pk.VerifySignature(h, sig); err != nil {
return err
}
if sig.FlagSign {
// Signing subkeys must be cross-signed. See
// https://www.gnupg.org/faq/subkey-cross-certify.html.
if sig.EmbeddedSignature == nil {
return errors.StructuralError("signing subkey is missing cross-signature")
}
// Verify the cross-signature. This is calculated over the same
// data as the main signature, so we cannot just recursively
// call signed.VerifyKeySignature(...)
if h, err = keySignatureHash(pk, signed, sig.EmbeddedSignature.Hash); err != nil {
return errors.StructuralError("error while hashing for cross-signature: " + err.Error())
}
if err := signed.VerifySignature(h, sig.EmbeddedSignature); err != nil {
return errors.StructuralError("error while verifying cross-signature: " + err.Error())
}
}
return nil
}
func keyRevocationHash(pk signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
if !hashFunc.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hashFunc.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
return
}
// VerifyRevocationSignature returns nil iff sig is a valid signature, made by this
// public key.
func (pk *PublicKey) VerifyRevocationSignature(sig *Signature) (err error) {
h, err := keyRevocationHash(pk, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignature(h, sig)
}
// userIdSignatureHash returns a Hash of the message that needs to be signed
// to assert that pk is a valid key for id.
func userIdSignatureHash(id string, pk *PublicKey, hashFunc crypto.Hash) (h hash.Hash, err error) {
if !hashFunc.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hashFunc.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
var buf [5]byte
buf[0] = 0xb4
buf[1] = byte(len(id) >> 24)
buf[2] = byte(len(id) >> 16)
buf[3] = byte(len(id) >> 8)
buf[4] = byte(len(id))
h.Write(buf[:])
h.Write([]byte(id))
return
}
// VerifyUserIdSignature returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKey) VerifyUserIdSignature(id string, pub *PublicKey, sig *Signature) (err error) {
h, err := userIdSignatureHash(id, pub, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignature(h, sig)
}
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKey) VerifyUserIdSignatureV3(id string, pub *PublicKey, sig *SignatureV3) (err error) {
h, err := userIdSignatureV3Hash(id, pub, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// KeyIdString returns the public key's fingerprint in capital hex
// (e.g. "6C7EE1B8621CC013").
func (pk *PublicKey) KeyIdString() string {
return fmt.Sprintf("%X", pk.Fingerprint[12:20])
}
// KeyIdShortString returns the short form of public key's fingerprint
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013").
func (pk *PublicKey) KeyIdShortString() string {
return fmt.Sprintf("%X", pk.Fingerprint[16:20])
}
// A parsedMPI is used to store the contents of a big integer, along with the
// bit length that was specified in the original input. This allows the MPI to
// be reserialized exactly.
type parsedMPI struct {
bytes []byte
bitLength uint16
}
// writeMPIs is a utility function for serializing several big integers to the
// given Writer.
func writeMPIs(w io.Writer, mpis ...parsedMPI) (err error) {
for _, mpi := range mpis {
err = writeMPI(w, mpi.bitLength, mpi.bytes)
if err != nil {
return
}
}
return
}
// BitLength returns the bit length for the given public key.
func (pk *PublicKey) BitLength() (bitLength uint16, err error) {
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
bitLength = pk.n.bitLength
case PubKeyAlgoDSA:
bitLength = pk.p.bitLength
case PubKeyAlgoElGamal:
bitLength = pk.p.bitLength
default:
err = errors.InvalidArgumentError("bad public-key algorithm")
}
return
}

View File

@ -1,279 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"crypto/md5"
"crypto/rsa"
"encoding/binary"
"fmt"
"hash"
"io"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
)
// PublicKeyV3 represents older, version 3 public keys. These keys are less secure and
// should not be used for signing or encrypting. They are supported here only for
// parsing version 3 key material and validating signatures.
// See RFC 4880, section 5.5.2.
type PublicKeyV3 struct {
CreationTime time.Time
DaysToExpire uint16
PubKeyAlgo PublicKeyAlgorithm
PublicKey *rsa.PublicKey
Fingerprint [16]byte
KeyId uint64
IsSubkey bool
n, e parsedMPI
}
// newRSAPublicKeyV3 returns a PublicKey that wraps the given rsa.PublicKey.
// Included here for testing purposes only. RFC 4880, section 5.5.2:
// "an implementation MUST NOT generate a V3 key, but MAY accept it."
func newRSAPublicKeyV3(creationTime time.Time, pub *rsa.PublicKey) *PublicKeyV3 {
pk := &PublicKeyV3{
CreationTime: creationTime,
PublicKey: pub,
n: fromBig(pub.N),
e: fromBig(big.NewInt(int64(pub.E))),
}
pk.setFingerPrintAndKeyId()
return pk
}
func (pk *PublicKeyV3) parse(r io.Reader) (err error) {
// RFC 4880, section 5.5.2
var buf [8]byte
if _, err = readFull(r, buf[:]); err != nil {
return
}
if buf[0] < 2 || buf[0] > 3 {
return errors.UnsupportedError("public key version")
}
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0)
pk.DaysToExpire = binary.BigEndian.Uint16(buf[5:7])
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[7])
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
err = pk.parseRSA(r)
default:
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
}
if err != nil {
return
}
pk.setFingerPrintAndKeyId()
return
}
func (pk *PublicKeyV3) setFingerPrintAndKeyId() {
// RFC 4880, section 12.2
fingerPrint := md5.New()
fingerPrint.Write(pk.n.bytes)
fingerPrint.Write(pk.e.bytes)
fingerPrint.Sum(pk.Fingerprint[:0])
pk.KeyId = binary.BigEndian.Uint64(pk.n.bytes[len(pk.n.bytes)-8:])
}
// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKeyV3) parseRSA(r io.Reader) (err error) {
if pk.n.bytes, pk.n.bitLength, err = readMPI(r); err != nil {
return
}
if pk.e.bytes, pk.e.bitLength, err = readMPI(r); err != nil {
return
}
// RFC 4880 Section 12.2 requires the low 8 bytes of the
// modulus to form the key id.
if len(pk.n.bytes) < 8 {
return errors.StructuralError("v3 public key modulus is too short")
}
if len(pk.e.bytes) > 3 {
err = errors.UnsupportedError("large public exponent")
return
}
rsa := &rsa.PublicKey{N: new(big.Int).SetBytes(pk.n.bytes)}
for i := 0; i < len(pk.e.bytes); i++ {
rsa.E <<= 8
rsa.E |= int(pk.e.bytes[i])
}
pk.PublicKey = rsa
return
}
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKeyV3) SerializeSignaturePrefix(w io.Writer) {
var pLength uint16
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
pLength += 2 + uint16(len(pk.n.bytes))
pLength += 2 + uint16(len(pk.e.bytes))
default:
panic("unknown public key algorithm")
}
pLength += 6
w.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
return
}
func (pk *PublicKeyV3) Serialize(w io.Writer) (err error) {
length := 8 // 8 byte header
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
length += 2 + len(pk.n.bytes)
length += 2 + len(pk.e.bytes)
default:
panic("unknown public key algorithm")
}
packetType := packetTypePublicKey
if pk.IsSubkey {
packetType = packetTypePublicSubkey
}
if err = serializeHeader(w, packetType, length); err != nil {
return
}
return pk.serializeWithoutHeaders(w)
}
// serializeWithoutHeaders marshals the PublicKey to w in the form of an
// OpenPGP public key packet, not including the packet header.
func (pk *PublicKeyV3) serializeWithoutHeaders(w io.Writer) (err error) {
var buf [8]byte
// Version 3
buf[0] = 3
// Creation time
t := uint32(pk.CreationTime.Unix())
buf[1] = byte(t >> 24)
buf[2] = byte(t >> 16)
buf[3] = byte(t >> 8)
buf[4] = byte(t)
// Days to expire
buf[5] = byte(pk.DaysToExpire >> 8)
buf[6] = byte(pk.DaysToExpire)
// Public key algorithm
buf[7] = byte(pk.PubKeyAlgo)
if _, err = w.Write(buf[:]); err != nil {
return
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
return writeMPIs(w, pk.n, pk.e)
}
return errors.InvalidArgumentError("bad public-key algorithm")
}
// CanSign returns true iff this public key can generate signatures
func (pk *PublicKeyV3) CanSign() bool {
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly
}
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKeyV3) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
suffix := make([]byte, 5)
suffix[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix()))
signed.Write(suffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
if err = rsa.VerifyPKCS1v15(pk.PublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil {
return errors.SignatureError("RSA verification failure")
}
return
default:
// V3 public keys only support RSA.
panic("shouldn't happen")
}
}
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKeyV3) VerifyUserIdSignatureV3(id string, pub *PublicKeyV3, sig *SignatureV3) (err error) {
h, err := userIdSignatureV3Hash(id, pk, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// VerifyKeySignatureV3 returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKeyV3) VerifyKeySignatureV3(signed *PublicKeyV3, sig *SignatureV3) (err error) {
h, err := keySignatureHash(pk, signed, sig.Hash)
if err != nil {
return err
}
return pk.VerifySignatureV3(h, sig)
}
// userIdSignatureV3Hash returns a Hash of the message that needs to be signed
// to assert that pk is a valid key for id.
func userIdSignatureV3Hash(id string, pk signingKey, hfn crypto.Hash) (h hash.Hash, err error) {
if !hfn.Available() {
return nil, errors.UnsupportedError("hash function")
}
h = hfn.New()
// RFC 4880, section 5.2.4
pk.SerializeSignaturePrefix(h)
pk.serializeWithoutHeaders(h)
h.Write([]byte(id))
return
}
// KeyIdString returns the public key's fingerprint in capital hex
// (e.g. "6C7EE1B8621CC013").
func (pk *PublicKeyV3) KeyIdString() string {
return fmt.Sprintf("%X", pk.KeyId)
}
// KeyIdShortString returns the short form of public key's fingerprint
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013").
func (pk *PublicKeyV3) KeyIdShortString() string {
return fmt.Sprintf("%X", pk.KeyId&0xFFFFFFFF)
}
// BitLength returns the bit length for the given public key.
func (pk *PublicKeyV3) BitLength() (bitLength uint16, err error) {
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
bitLength = pk.n.bitLength
default:
err = errors.InvalidArgumentError("bad public-key algorithm")
}
return
}

View File

@ -1,76 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"golang.org/x/crypto/openpgp/errors"
"io"
)
// Reader reads packets from an io.Reader and allows packets to be 'unread' so
// that they result from the next call to Next.
type Reader struct {
q []Packet
readers []io.Reader
}
// New io.Readers are pushed when a compressed or encrypted packet is processed
// and recursively treated as a new source of packets. However, a carefully
// crafted packet can trigger an infinite recursive sequence of packets. See
// http://mumble.net/~campbell/misc/pgp-quine
// https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4402
// This constant limits the number of recursive packets that may be pushed.
const maxReaders = 32
// Next returns the most recently unread Packet, or reads another packet from
// the top-most io.Reader. Unknown packet types are skipped.
func (r *Reader) Next() (p Packet, err error) {
if len(r.q) > 0 {
p = r.q[len(r.q)-1]
r.q = r.q[:len(r.q)-1]
return
}
for len(r.readers) > 0 {
p, err = Read(r.readers[len(r.readers)-1])
if err == nil {
return
}
if err == io.EOF {
r.readers = r.readers[:len(r.readers)-1]
continue
}
if _, ok := err.(errors.UnknownPacketTypeError); !ok {
return nil, err
}
}
return nil, io.EOF
}
// Push causes the Reader to start reading from a new io.Reader. When an EOF
// error is seen from the new io.Reader, it is popped and the Reader continues
// to read from the next most recent io.Reader. Push returns a StructuralError
// if pushing the reader would exceed the maximum recursion level, otherwise it
// returns nil.
func (r *Reader) Push(reader io.Reader) (err error) {
if len(r.readers) >= maxReaders {
return errors.StructuralError("too many layers of packets")
}
r.readers = append(r.readers, reader)
return nil
}
// Unread causes the given Packet to be returned from the next call to Next.
func (r *Reader) Unread(p Packet) {
r.q = append(r.q, p)
}
func NewReader(r io.Reader) *Reader {
return &Reader{
q: nil,
readers: []io.Reader{r},
}
}

View File

@ -1,731 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"encoding/asn1"
"encoding/binary"
"hash"
"io"
"math/big"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
const (
// See RFC 4880, section 5.2.3.21 for details.
KeyFlagCertify = 1 << iota
KeyFlagSign
KeyFlagEncryptCommunications
KeyFlagEncryptStorage
)
// Signature represents a signature. See RFC 4880, section 5.2.
type Signature struct {
SigType SignatureType
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
// HashSuffix is extra data that is hashed in after the signed data.
HashSuffix []byte
// HashTag contains the first two bytes of the hash for fast rejection
// of bad signed data.
HashTag [2]byte
CreationTime time.Time
RSASignature parsedMPI
DSASigR, DSASigS parsedMPI
ECDSASigR, ECDSASigS parsedMPI
// rawSubpackets contains the unparsed subpackets, in order.
rawSubpackets []outputSubpacket
// The following are optional so are nil when not included in the
// signature.
SigLifetimeSecs, KeyLifetimeSecs *uint32
PreferredSymmetric, PreferredHash, PreferredCompression []uint8
IssuerKeyId *uint64
IsPrimaryId *bool
// FlagsValid is set if any flags were given. See RFC 4880, section
// 5.2.3.21 for details.
FlagsValid bool
FlagCertify, FlagSign, FlagEncryptCommunications, FlagEncryptStorage bool
// RevocationReason is set if this signature has been revoked.
// See RFC 4880, section 5.2.3.23 for details.
RevocationReason *uint8
RevocationReasonText string
// MDC is set if this signature has a feature packet that indicates
// support for MDC subpackets.
MDC bool
// EmbeddedSignature, if non-nil, is a signature of the parent key, by
// this key. This prevents an attacker from claiming another's signing
// subkey as their own.
EmbeddedSignature *Signature
outSubpackets []outputSubpacket
}
func (sig *Signature) parse(r io.Reader) (err error) {
// RFC 4880, section 5.2.3
var buf [5]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
if buf[0] != 4 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
_, err = readFull(r, buf[:5])
if err != nil {
return
}
sig.SigType = SignatureType(buf[0])
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
sig.Hash, ok = s2k.HashIdToHash(buf[2])
if !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
hashedSubpacketsLength := int(buf[3])<<8 | int(buf[4])
l := 6 + hashedSubpacketsLength
sig.HashSuffix = make([]byte, l+6)
sig.HashSuffix[0] = 4
copy(sig.HashSuffix[1:], buf[:5])
hashedSubpackets := sig.HashSuffix[6:l]
_, err = readFull(r, hashedSubpackets)
if err != nil {
return
}
// See RFC 4880, section 5.2.4
trailer := sig.HashSuffix[l:]
trailer[0] = 4
trailer[1] = 0xff
trailer[2] = uint8(l >> 24)
trailer[3] = uint8(l >> 16)
trailer[4] = uint8(l >> 8)
trailer[5] = uint8(l)
err = parseSignatureSubpackets(sig, hashedSubpackets, true)
if err != nil {
return
}
_, err = readFull(r, buf[:2])
if err != nil {
return
}
unhashedSubpacketsLength := int(buf[0])<<8 | int(buf[1])
unhashedSubpackets := make([]byte, unhashedSubpacketsLength)
_, err = readFull(r, unhashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, unhashedSubpackets, false)
if err != nil {
return
}
_, err = readFull(r, sig.HashTag[:2])
if err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r)
case PubKeyAlgoDSA:
sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r)
if err == nil {
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
}
case PubKeyAlgoECDSA:
sig.ECDSASigR.bytes, sig.ECDSASigR.bitLength, err = readMPI(r)
if err == nil {
sig.ECDSASigS.bytes, sig.ECDSASigS.bitLength, err = readMPI(r)
}
default:
panic("unreachable")
}
return
}
// parseSignatureSubpackets parses subpackets of the main signature packet. See
// RFC 4880, section 5.2.3.1.
func parseSignatureSubpackets(sig *Signature, subpackets []byte, isHashed bool) (err error) {
for len(subpackets) > 0 {
subpackets, err = parseSignatureSubpacket(sig, subpackets, isHashed)
if err != nil {
return
}
}
if sig.CreationTime.IsZero() {
err = errors.StructuralError("no creation time in signature")
}
return
}
type signatureSubpacketType uint8
const (
creationTimeSubpacket signatureSubpacketType = 2
signatureExpirationSubpacket signatureSubpacketType = 3
keyExpirationSubpacket signatureSubpacketType = 9
prefSymmetricAlgosSubpacket signatureSubpacketType = 11
issuerSubpacket signatureSubpacketType = 16
prefHashAlgosSubpacket signatureSubpacketType = 21
prefCompressionSubpacket signatureSubpacketType = 22
primaryUserIdSubpacket signatureSubpacketType = 25
keyFlagsSubpacket signatureSubpacketType = 27
reasonForRevocationSubpacket signatureSubpacketType = 29
featuresSubpacket signatureSubpacketType = 30
embeddedSignatureSubpacket signatureSubpacketType = 32
)
// parseSignatureSubpacket parses a single subpacket. len(subpacket) is >= 1.
func parseSignatureSubpacket(sig *Signature, subpacket []byte, isHashed bool) (rest []byte, err error) {
// RFC 4880, section 5.2.3.1
var (
length uint32
packetType signatureSubpacketType
isCritical bool
)
switch {
case subpacket[0] < 192:
length = uint32(subpacket[0])
subpacket = subpacket[1:]
case subpacket[0] < 255:
if len(subpacket) < 2 {
goto Truncated
}
length = uint32(subpacket[0]-192)<<8 + uint32(subpacket[1]) + 192
subpacket = subpacket[2:]
default:
if len(subpacket) < 5 {
goto Truncated
}
length = uint32(subpacket[1])<<24 |
uint32(subpacket[2])<<16 |
uint32(subpacket[3])<<8 |
uint32(subpacket[4])
subpacket = subpacket[5:]
}
if length > uint32(len(subpacket)) {
goto Truncated
}
rest = subpacket[length:]
subpacket = subpacket[:length]
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
packetType = signatureSubpacketType(subpacket[0] & 0x7f)
isCritical = subpacket[0]&0x80 == 0x80
subpacket = subpacket[1:]
sig.rawSubpackets = append(sig.rawSubpackets, outputSubpacket{isHashed, packetType, isCritical, subpacket})
switch packetType {
case creationTimeSubpacket:
if !isHashed {
err = errors.StructuralError("signature creation time in non-hashed area")
return
}
if len(subpacket) != 4 {
err = errors.StructuralError("signature creation time not four bytes")
return
}
t := binary.BigEndian.Uint32(subpacket)
sig.CreationTime = time.Unix(int64(t), 0)
case signatureExpirationSubpacket:
// Signature expiration time, section 5.2.3.10
if !isHashed {
return
}
if len(subpacket) != 4 {
err = errors.StructuralError("expiration subpacket with bad length")
return
}
sig.SigLifetimeSecs = new(uint32)
*sig.SigLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case keyExpirationSubpacket:
// Key expiration time, section 5.2.3.6
if !isHashed {
return
}
if len(subpacket) != 4 {
err = errors.StructuralError("key expiration subpacket with bad length")
return
}
sig.KeyLifetimeSecs = new(uint32)
*sig.KeyLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case prefSymmetricAlgosSubpacket:
// Preferred symmetric algorithms, section 5.2.3.7
if !isHashed {
return
}
sig.PreferredSymmetric = make([]byte, len(subpacket))
copy(sig.PreferredSymmetric, subpacket)
case issuerSubpacket:
// Issuer, section 5.2.3.5
if len(subpacket) != 8 {
err = errors.StructuralError("issuer subpacket with bad length")
return
}
sig.IssuerKeyId = new(uint64)
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket)
case prefHashAlgosSubpacket:
// Preferred hash algorithms, section 5.2.3.8
if !isHashed {
return
}
sig.PreferredHash = make([]byte, len(subpacket))
copy(sig.PreferredHash, subpacket)
case prefCompressionSubpacket:
// Preferred compression algorithms, section 5.2.3.9
if !isHashed {
return
}
sig.PreferredCompression = make([]byte, len(subpacket))
copy(sig.PreferredCompression, subpacket)
case primaryUserIdSubpacket:
// Primary User ID, section 5.2.3.19
if !isHashed {
return
}
if len(subpacket) != 1 {
err = errors.StructuralError("primary user id subpacket with bad length")
return
}
sig.IsPrimaryId = new(bool)
if subpacket[0] > 0 {
*sig.IsPrimaryId = true
}
case keyFlagsSubpacket:
// Key flags, section 5.2.3.21
if !isHashed {
return
}
if len(subpacket) == 0 {
err = errors.StructuralError("empty key flags subpacket")
return
}
sig.FlagsValid = true
if subpacket[0]&KeyFlagCertify != 0 {
sig.FlagCertify = true
}
if subpacket[0]&KeyFlagSign != 0 {
sig.FlagSign = true
}
if subpacket[0]&KeyFlagEncryptCommunications != 0 {
sig.FlagEncryptCommunications = true
}
if subpacket[0]&KeyFlagEncryptStorage != 0 {
sig.FlagEncryptStorage = true
}
case reasonForRevocationSubpacket:
// Reason For Revocation, section 5.2.3.23
if !isHashed {
return
}
if len(subpacket) == 0 {
err = errors.StructuralError("empty revocation reason subpacket")
return
}
sig.RevocationReason = new(uint8)
*sig.RevocationReason = subpacket[0]
sig.RevocationReasonText = string(subpacket[1:])
case featuresSubpacket:
// Features subpacket, section 5.2.3.24 specifies a very general
// mechanism for OpenPGP implementations to signal support for new
// features. In practice, the subpacket is used exclusively to
// indicate support for MDC-protected encryption.
sig.MDC = len(subpacket) >= 1 && subpacket[0]&1 == 1
case embeddedSignatureSubpacket:
// Only usage is in signatures that cross-certify
// signing subkeys. section 5.2.3.26 describes the
// format, with its usage described in section 11.1
if sig.EmbeddedSignature != nil {
err = errors.StructuralError("Cannot have multiple embedded signatures")
return
}
sig.EmbeddedSignature = new(Signature)
// Embedded signatures are required to be v4 signatures see
// section 12.1. However, we only parse v4 signatures in this
// file anyway.
if err := sig.EmbeddedSignature.parse(bytes.NewBuffer(subpacket)); err != nil {
return nil, err
}
if sigType := sig.EmbeddedSignature.SigType; sigType != SigTypePrimaryKeyBinding {
return nil, errors.StructuralError("cross-signature has unexpected type " + strconv.Itoa(int(sigType)))
}
default:
if isCritical {
err = errors.UnsupportedError("unknown critical signature subpacket type " + strconv.Itoa(int(packetType)))
return
}
}
return
Truncated:
err = errors.StructuralError("signature subpacket truncated")
return
}
// subpacketLengthLength returns the length, in bytes, of an encoded length value.
func subpacketLengthLength(length int) int {
if length < 192 {
return 1
}
if length < 16320 {
return 2
}
return 5
}
// serializeSubpacketLength marshals the given length into to.
func serializeSubpacketLength(to []byte, length int) int {
// RFC 4880, Section 4.2.2.
if length < 192 {
to[0] = byte(length)
return 1
}
if length < 16320 {
length -= 192
to[0] = byte((length >> 8) + 192)
to[1] = byte(length)
return 2
}
to[0] = 255
to[1] = byte(length >> 24)
to[2] = byte(length >> 16)
to[3] = byte(length >> 8)
to[4] = byte(length)
return 5
}
// subpacketsLength returns the serialized length, in bytes, of the given
// subpackets.
func subpacketsLength(subpackets []outputSubpacket, hashed bool) (length int) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
length += subpacketLengthLength(len(subpacket.contents) + 1)
length += 1 // type byte
length += len(subpacket.contents)
}
}
return
}
// serializeSubpackets marshals the given subpackets into to.
func serializeSubpackets(to []byte, subpackets []outputSubpacket, hashed bool) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
n := serializeSubpacketLength(to, len(subpacket.contents)+1)
to[n] = byte(subpacket.subpacketType)
to = to[1+n:]
n = copy(to, subpacket.contents)
to = to[n:]
}
}
return
}
// KeyExpired returns whether sig is a self-signature of a key that has
// expired.
func (sig *Signature) KeyExpired(currentTime time.Time) bool {
if sig.KeyLifetimeSecs == nil {
return false
}
expiry := sig.CreationTime.Add(time.Duration(*sig.KeyLifetimeSecs) * time.Second)
return currentTime.After(expiry)
}
// buildHashSuffix constructs the HashSuffix member of sig in preparation for signing.
func (sig *Signature) buildHashSuffix() (err error) {
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
var ok bool
l := 6 + hashedSubpacketsLen
sig.HashSuffix = make([]byte, l+6)
sig.HashSuffix[0] = 4
sig.HashSuffix[1] = uint8(sig.SigType)
sig.HashSuffix[2] = uint8(sig.PubKeyAlgo)
sig.HashSuffix[3], ok = s2k.HashToHashId(sig.Hash)
if !ok {
sig.HashSuffix = nil
return errors.InvalidArgumentError("hash cannot be represented in OpenPGP: " + strconv.Itoa(int(sig.Hash)))
}
sig.HashSuffix[4] = byte(hashedSubpacketsLen >> 8)
sig.HashSuffix[5] = byte(hashedSubpacketsLen)
serializeSubpackets(sig.HashSuffix[6:l], sig.outSubpackets, true)
trailer := sig.HashSuffix[l:]
trailer[0] = 4
trailer[1] = 0xff
trailer[2] = byte(l >> 24)
trailer[3] = byte(l >> 16)
trailer[4] = byte(l >> 8)
trailer[5] = byte(l)
return
}
func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err error) {
err = sig.buildHashSuffix()
if err != nil {
return
}
h.Write(sig.HashSuffix)
digest = h.Sum(nil)
copy(sig.HashTag[:], digest)
return
}
// Sign signs a message with a private key. The hash, h, must contain
// the hash of the message to be signed and will be mutated by this function.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err error) {
sig.outSubpackets = sig.buildSubpackets()
digest, err := sig.signPrepareHash(h)
if err != nil {
return
}
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
// supports both *rsa.PrivateKey and crypto.Signer
sig.RSASignature.bytes, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
sig.RSASignature.bitLength = uint16(8 * len(sig.RSASignature.bytes))
case PubKeyAlgoDSA:
dsaPriv := priv.PrivateKey.(*dsa.PrivateKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPriv.Q.BitLen() + 7) / 8
if len(digest) > subgroupSize {
digest = digest[:subgroupSize]
}
r, s, err := dsa.Sign(config.Random(), dsaPriv, digest)
if err == nil {
sig.DSASigR.bytes = r.Bytes()
sig.DSASigR.bitLength = uint16(8 * len(sig.DSASigR.bytes))
sig.DSASigS.bytes = s.Bytes()
sig.DSASigS.bitLength = uint16(8 * len(sig.DSASigS.bytes))
}
case PubKeyAlgoECDSA:
var r, s *big.Int
if pk, ok := priv.PrivateKey.(*ecdsa.PrivateKey); ok {
// direct support, avoid asn1 wrapping/unwrapping
r, s, err = ecdsa.Sign(config.Random(), pk, digest)
} else {
var b []byte
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
r, s, err = unwrapECDSASig(b)
}
}
if err == nil {
sig.ECDSASigR = fromBig(r)
sig.ECDSASigS = fromBig(s)
}
default:
err = errors.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
return
}
// unwrapECDSASig parses the two integer components of an ASN.1-encoded ECDSA
// signature.
func unwrapECDSASig(b []byte) (r, s *big.Int, err error) {
var ecsdaSig struct {
R, S *big.Int
}
_, err = asn1.Unmarshal(b, &ecsdaSig)
if err != nil {
return
}
return ecsdaSig.R, ecsdaSig.S, nil
}
// SignUserId computes a signature from priv, asserting that pub is a valid
// key for the identity id. On success, the signature is stored in sig. Call
// Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey, config *Config) error {
h, err := userIdSignatureHash(id, pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// SignKey computes a signature from priv, asserting that pub is a subkey. On
// success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
h, err := keySignatureHash(&priv.PublicKey, pub, sig.Hash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *Signature) Serialize(w io.Writer) (err error) {
if len(sig.outSubpackets) == 0 {
sig.outSubpackets = sig.rawSubpackets
}
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil && sig.ECDSASigR.bytes == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
sigLength := 0
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sigLength = 2 + len(sig.RSASignature.bytes)
case PubKeyAlgoDSA:
sigLength = 2 + len(sig.DSASigR.bytes)
sigLength += 2 + len(sig.DSASigS.bytes)
case PubKeyAlgoECDSA:
sigLength = 2 + len(sig.ECDSASigR.bytes)
sigLength += 2 + len(sig.ECDSASigS.bytes)
default:
panic("impossible")
}
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
length := len(sig.HashSuffix) - 6 /* trailer not included */ +
2 /* length of unhashed subpackets */ + unhashedSubpacketsLen +
2 /* hash tag */ + sigLength
err = serializeHeader(w, packetTypeSignature, length)
if err != nil {
return
}
_, err = w.Write(sig.HashSuffix[:len(sig.HashSuffix)-6])
if err != nil {
return
}
unhashedSubpackets := make([]byte, 2+unhashedSubpacketsLen)
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 8)
unhashedSubpackets[1] = byte(unhashedSubpacketsLen)
serializeSubpackets(unhashedSubpackets[2:], sig.outSubpackets, false)
_, err = w.Write(unhashedSubpackets)
if err != nil {
return
}
_, err = w.Write(sig.HashTag[:])
if err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
err = writeMPIs(w, sig.RSASignature)
case PubKeyAlgoDSA:
err = writeMPIs(w, sig.DSASigR, sig.DSASigS)
case PubKeyAlgoECDSA:
err = writeMPIs(w, sig.ECDSASigR, sig.ECDSASigS)
default:
panic("impossible")
}
return
}
// outputSubpacket represents a subpacket to be marshaled.
type outputSubpacket struct {
hashed bool // true if this subpacket is in the hashed area.
subpacketType signatureSubpacketType
isCritical bool
contents []byte
}
func (sig *Signature) buildSubpackets() (subpackets []outputSubpacket) {
creationTime := make([]byte, 4)
binary.BigEndian.PutUint32(creationTime, uint32(sig.CreationTime.Unix()))
subpackets = append(subpackets, outputSubpacket{true, creationTimeSubpacket, false, creationTime})
if sig.IssuerKeyId != nil {
keyId := make([]byte, 8)
binary.BigEndian.PutUint64(keyId, *sig.IssuerKeyId)
subpackets = append(subpackets, outputSubpacket{true, issuerSubpacket, false, keyId})
}
if sig.SigLifetimeSecs != nil && *sig.SigLifetimeSecs != 0 {
sigLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(sigLifetime, *sig.SigLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, signatureExpirationSubpacket, true, sigLifetime})
}
// Key flags may only appear in self-signatures or certification signatures.
if sig.FlagsValid {
var flags byte
if sig.FlagCertify {
flags |= KeyFlagCertify
}
if sig.FlagSign {
flags |= KeyFlagSign
}
if sig.FlagEncryptCommunications {
flags |= KeyFlagEncryptCommunications
}
if sig.FlagEncryptStorage {
flags |= KeyFlagEncryptStorage
}
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, false, []byte{flags}})
}
// The following subpackets may only appear in self-signatures
if sig.KeyLifetimeSecs != nil && *sig.KeyLifetimeSecs != 0 {
keyLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(keyLifetime, *sig.KeyLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, keyExpirationSubpacket, true, keyLifetime})
}
if sig.IsPrimaryId != nil && *sig.IsPrimaryId {
subpackets = append(subpackets, outputSubpacket{true, primaryUserIdSubpacket, false, []byte{1}})
}
if len(sig.PreferredSymmetric) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefSymmetricAlgosSubpacket, false, sig.PreferredSymmetric})
}
if len(sig.PreferredHash) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefHashAlgosSubpacket, false, sig.PreferredHash})
}
if len(sig.PreferredCompression) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefCompressionSubpacket, false, sig.PreferredCompression})
}
return
}

View File

@ -1,146 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"encoding/binary"
"fmt"
"io"
"strconv"
"time"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// SignatureV3 represents older version 3 signatures. These signatures are less secure
// than version 4 and should not be used to create new signatures. They are included
// here for backwards compatibility to read and validate with older key material.
// See RFC 4880, section 5.2.2.
type SignatureV3 struct {
SigType SignatureType
CreationTime time.Time
IssuerKeyId uint64
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
HashTag [2]byte
RSASignature parsedMPI
DSASigR, DSASigS parsedMPI
}
func (sig *SignatureV3) parse(r io.Reader) (err error) {
// RFC 4880, section 5.2.2
var buf [8]byte
if _, err = readFull(r, buf[:1]); err != nil {
return
}
if buf[0] < 2 || buf[0] > 3 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
if _, err = readFull(r, buf[:1]); err != nil {
return
}
if buf[0] != 5 {
err = errors.UnsupportedError(
"invalid hashed material length " + strconv.Itoa(int(buf[0])))
return
}
// Read hashed material: signature type + creation time
if _, err = readFull(r, buf[:5]); err != nil {
return
}
sig.SigType = SignatureType(buf[0])
t := binary.BigEndian.Uint32(buf[1:5])
sig.CreationTime = time.Unix(int64(t), 0)
// Eight-octet Key ID of signer.
if _, err = readFull(r, buf[:8]); err != nil {
return
}
sig.IssuerKeyId = binary.BigEndian.Uint64(buf[:])
// Public-key and hash algorithm
if _, err = readFull(r, buf[:2]); err != nil {
return
}
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[0])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
if sig.Hash, ok = s2k.HashIdToHash(buf[1]); !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
// Two-octet field holding left 16 bits of signed hash value.
if _, err = readFull(r, sig.HashTag[:2]); err != nil {
return
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r)
case PubKeyAlgoDSA:
if sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r); err != nil {
return
}
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r)
default:
panic("unreachable")
}
return
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *SignatureV3) Serialize(w io.Writer) (err error) {
buf := make([]byte, 8)
// Write the sig type and creation time
buf[0] = byte(sig.SigType)
binary.BigEndian.PutUint32(buf[1:5], uint32(sig.CreationTime.Unix()))
if _, err = w.Write(buf[:5]); err != nil {
return
}
// Write the issuer long key ID
binary.BigEndian.PutUint64(buf[:8], sig.IssuerKeyId)
if _, err = w.Write(buf[:8]); err != nil {
return
}
// Write public key algorithm, hash ID, and hash value
buf[0] = byte(sig.PubKeyAlgo)
hashId, ok := s2k.HashToHashId(sig.Hash)
if !ok {
return errors.UnsupportedError(fmt.Sprintf("hash function %v", sig.Hash))
}
buf[1] = hashId
copy(buf[2:4], sig.HashTag[:])
if _, err = w.Write(buf[:4]); err != nil {
return
}
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
err = writeMPIs(w, sig.RSASignature)
case PubKeyAlgoDSA:
err = writeMPIs(w, sig.DSASigR, sig.DSASigS)
default:
panic("impossible")
}
return
}

View File

@ -1,155 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/cipher"
"io"
"strconv"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/s2k"
)
// This is the largest session key that we'll support. Since no 512-bit cipher
// has even been seriously used, this is comfortably large.
const maxSessionKeySizeInBytes = 64
// SymmetricKeyEncrypted represents a passphrase protected session key. See RFC
// 4880, section 5.3.
type SymmetricKeyEncrypted struct {
CipherFunc CipherFunction
s2k func(out, in []byte)
encryptedKey []byte
}
const symmetricKeyEncryptedVersion = 4
func (ske *SymmetricKeyEncrypted) parse(r io.Reader) error {
// RFC 4880, section 5.3.
var buf [2]byte
if _, err := readFull(r, buf[:]); err != nil {
return err
}
if buf[0] != symmetricKeyEncryptedVersion {
return errors.UnsupportedError("SymmetricKeyEncrypted version")
}
ske.CipherFunc = CipherFunction(buf[1])
if ske.CipherFunc.KeySize() == 0 {
return errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(buf[1])))
}
var err error
ske.s2k, err = s2k.Parse(r)
if err != nil {
return err
}
encryptedKey := make([]byte, maxSessionKeySizeInBytes)
// The session key may follow. We just have to try and read to find
// out. If it exists then we limit it to maxSessionKeySizeInBytes.
n, err := readFull(r, encryptedKey)
if err != nil && err != io.ErrUnexpectedEOF {
return err
}
if n != 0 {
if n == maxSessionKeySizeInBytes {
return errors.UnsupportedError("oversized encrypted session key")
}
ske.encryptedKey = encryptedKey[:n]
}
return nil
}
// Decrypt attempts to decrypt an encrypted session key and returns the key and
// the cipher to use when decrypting a subsequent Symmetrically Encrypted Data
// packet.
func (ske *SymmetricKeyEncrypted) Decrypt(passphrase []byte) ([]byte, CipherFunction, error) {
key := make([]byte, ske.CipherFunc.KeySize())
ske.s2k(key, passphrase)
if len(ske.encryptedKey) == 0 {
return key, ske.CipherFunc, nil
}
// the IV is all zeros
iv := make([]byte, ske.CipherFunc.blockSize())
c := cipher.NewCFBDecrypter(ske.CipherFunc.new(key), iv)
plaintextKey := make([]byte, len(ske.encryptedKey))
c.XORKeyStream(plaintextKey, ske.encryptedKey)
cipherFunc := CipherFunction(plaintextKey[0])
if cipherFunc.blockSize() == 0 {
return nil, ske.CipherFunc, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc)))
}
plaintextKey = plaintextKey[1:]
if l, cipherKeySize := len(plaintextKey), cipherFunc.KeySize(); l != cipherFunc.KeySize() {
return nil, cipherFunc, errors.StructuralError("length of decrypted key (" + strconv.Itoa(l) + ") " +
"not equal to cipher keysize (" + strconv.Itoa(cipherKeySize) + ")")
}
return plaintextKey, cipherFunc, nil
}
// SerializeSymmetricKeyEncrypted serializes a symmetric key packet to w. The
// packet contains a random session key, encrypted by a key derived from the
// given passphrase. The session key is returned and must be passed to
// SerializeSymmetricallyEncrypted.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricKeyEncrypted(w io.Writer, passphrase []byte, config *Config) (key []byte, err error) {
cipherFunc := config.Cipher()
keySize := cipherFunc.KeySize()
if keySize == 0 {
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc)))
}
s2kBuf := new(bytes.Buffer)
keyEncryptingKey := make([]byte, keySize)
// s2k.Serialize salts and stretches the passphrase, and writes the
// resulting key to keyEncryptingKey and the s2k descriptor to s2kBuf.
err = s2k.Serialize(s2kBuf, keyEncryptingKey, config.Random(), passphrase, &s2k.Config{Hash: config.Hash(), S2KCount: config.PasswordHashIterations()})
if err != nil {
return
}
s2kBytes := s2kBuf.Bytes()
packetLength := 2 /* header */ + len(s2kBytes) + 1 /* cipher type */ + keySize
err = serializeHeader(w, packetTypeSymmetricKeyEncrypted, packetLength)
if err != nil {
return
}
var buf [2]byte
buf[0] = symmetricKeyEncryptedVersion
buf[1] = byte(cipherFunc)
_, err = w.Write(buf[:])
if err != nil {
return
}
_, err = w.Write(s2kBytes)
if err != nil {
return
}
sessionKey := make([]byte, keySize)
_, err = io.ReadFull(config.Random(), sessionKey)
if err != nil {
return
}
iv := make([]byte, cipherFunc.blockSize())
c := cipher.NewCFBEncrypter(cipherFunc.new(keyEncryptingKey), iv)
encryptedCipherAndKey := make([]byte, keySize+1)
c.XORKeyStream(encryptedCipherAndKey, buf[1:])
c.XORKeyStream(encryptedCipherAndKey[1:], sessionKey)
_, err = w.Write(encryptedCipherAndKey)
if err != nil {
return
}
key = sessionKey
return
}

View File

@ -1,290 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/cipher"
"crypto/sha1"
"crypto/subtle"
"golang.org/x/crypto/openpgp/errors"
"hash"
"io"
"strconv"
)
// SymmetricallyEncrypted represents a symmetrically encrypted byte string. The
// encrypted contents will consist of more OpenPGP packets. See RFC 4880,
// sections 5.7 and 5.13.
type SymmetricallyEncrypted struct {
MDC bool // true iff this is a type 18 packet and thus has an embedded MAC.
contents io.Reader
prefix []byte
}
const symmetricallyEncryptedVersion = 1
func (se *SymmetricallyEncrypted) parse(r io.Reader) error {
if se.MDC {
// See RFC 4880, section 5.13.
var buf [1]byte
_, err := readFull(r, buf[:])
if err != nil {
return err
}
if buf[0] != symmetricallyEncryptedVersion {
return errors.UnsupportedError("unknown SymmetricallyEncrypted version")
}
}
se.contents = r
return nil
}
// Decrypt returns a ReadCloser, from which the decrypted contents of the
// packet can be read. An incorrect key can, with high probability, be detected
// immediately and this will result in a KeyIncorrect error being returned.
func (se *SymmetricallyEncrypted) Decrypt(c CipherFunction, key []byte) (io.ReadCloser, error) {
keySize := c.KeySize()
if keySize == 0 {
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(c)))
}
if len(key) != keySize {
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted: incorrect key length")
}
if se.prefix == nil {
se.prefix = make([]byte, c.blockSize()+2)
_, err := readFull(se.contents, se.prefix)
if err != nil {
return nil, err
}
} else if len(se.prefix) != c.blockSize()+2 {
return nil, errors.InvalidArgumentError("can't try ciphers with different block lengths")
}
ocfbResync := OCFBResync
if se.MDC {
// MDC packets use a different form of OCFB mode.
ocfbResync = OCFBNoResync
}
s := NewOCFBDecrypter(c.new(key), se.prefix, ocfbResync)
if s == nil {
return nil, errors.ErrKeyIncorrect
}
plaintext := cipher.StreamReader{S: s, R: se.contents}
if se.MDC {
// MDC packets have an embedded hash that we need to check.
h := sha1.New()
h.Write(se.prefix)
return &seMDCReader{in: plaintext, h: h}, nil
}
// Otherwise, we just need to wrap plaintext so that it's a valid ReadCloser.
return seReader{plaintext}, nil
}
// seReader wraps an io.Reader with a no-op Close method.
type seReader struct {
in io.Reader
}
func (ser seReader) Read(buf []byte) (int, error) {
return ser.in.Read(buf)
}
func (ser seReader) Close() error {
return nil
}
const mdcTrailerSize = 1 /* tag byte */ + 1 /* length byte */ + sha1.Size
// An seMDCReader wraps an io.Reader, maintains a running hash and keeps hold
// of the most recent 22 bytes (mdcTrailerSize). Upon EOF, those bytes form an
// MDC packet containing a hash of the previous contents which is checked
// against the running hash. See RFC 4880, section 5.13.
type seMDCReader struct {
in io.Reader
h hash.Hash
trailer [mdcTrailerSize]byte
scratch [mdcTrailerSize]byte
trailerUsed int
error bool
eof bool
}
func (ser *seMDCReader) Read(buf []byte) (n int, err error) {
if ser.error {
err = io.ErrUnexpectedEOF
return
}
if ser.eof {
err = io.EOF
return
}
// If we haven't yet filled the trailer buffer then we must do that
// first.
for ser.trailerUsed < mdcTrailerSize {
n, err = ser.in.Read(ser.trailer[ser.trailerUsed:])
ser.trailerUsed += n
if err == io.EOF {
if ser.trailerUsed != mdcTrailerSize {
n = 0
err = io.ErrUnexpectedEOF
ser.error = true
return
}
ser.eof = true
n = 0
return
}
if err != nil {
n = 0
return
}
}
// If it's a short read then we read into a temporary buffer and shift
// the data into the caller's buffer.
if len(buf) <= mdcTrailerSize {
n, err = readFull(ser.in, ser.scratch[:len(buf)])
copy(buf, ser.trailer[:n])
ser.h.Write(buf[:n])
copy(ser.trailer[:], ser.trailer[n:])
copy(ser.trailer[mdcTrailerSize-n:], ser.scratch[:])
if n < len(buf) {
ser.eof = true
err = io.EOF
}
return
}
n, err = ser.in.Read(buf[mdcTrailerSize:])
copy(buf, ser.trailer[:])
ser.h.Write(buf[:n])
copy(ser.trailer[:], buf[n:])
if err == io.EOF {
ser.eof = true
}
return
}
// This is a new-format packet tag byte for a type 19 (MDC) packet.
const mdcPacketTagByte = byte(0x80) | 0x40 | 19
func (ser *seMDCReader) Close() error {
if ser.error {
return errors.SignatureError("error during reading")
}
for !ser.eof {
// We haven't seen EOF so we need to read to the end
var buf [1024]byte
_, err := ser.Read(buf[:])
if err == io.EOF {
break
}
if err != nil {
return errors.SignatureError("error during reading")
}
}
if ser.trailer[0] != mdcPacketTagByte || ser.trailer[1] != sha1.Size {
return errors.SignatureError("MDC packet not found")
}
ser.h.Write(ser.trailer[:2])
final := ser.h.Sum(nil)
if subtle.ConstantTimeCompare(final, ser.trailer[2:]) != 1 {
return errors.SignatureError("hash mismatch")
}
return nil
}
// An seMDCWriter writes through to an io.WriteCloser while maintains a running
// hash of the data written. On close, it emits an MDC packet containing the
// running hash.
type seMDCWriter struct {
w io.WriteCloser
h hash.Hash
}
func (w *seMDCWriter) Write(buf []byte) (n int, err error) {
w.h.Write(buf)
return w.w.Write(buf)
}
func (w *seMDCWriter) Close() (err error) {
var buf [mdcTrailerSize]byte
buf[0] = mdcPacketTagByte
buf[1] = sha1.Size
w.h.Write(buf[:2])
digest := w.h.Sum(nil)
copy(buf[2:], digest)
_, err = w.w.Write(buf[:])
if err != nil {
return
}
return w.w.Close()
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}
// SerializeSymmetricallyEncrypted serializes a symmetrically encrypted packet
// to w and returns a WriteCloser to which the to-be-encrypted packets can be
// written.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricallyEncrypted(w io.Writer, c CipherFunction, key []byte, config *Config) (contents io.WriteCloser, err error) {
if c.KeySize() != len(key) {
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted.Serialize: bad key length")
}
writeCloser := noOpCloser{w}
ciphertext, err := serializeStreamHeader(writeCloser, packetTypeSymmetricallyEncryptedMDC)
if err != nil {
return
}
_, err = ciphertext.Write([]byte{symmetricallyEncryptedVersion})
if err != nil {
return
}
block := c.new(key)
blockSize := block.BlockSize()
iv := make([]byte, blockSize)
_, err = config.Random().Read(iv)
if err != nil {
return
}
s, prefix := NewOCFBEncrypter(block, iv, OCFBNoResync)
_, err = ciphertext.Write(prefix)
if err != nil {
return
}
plaintext := cipher.StreamWriter{S: s, W: ciphertext}
h := sha1.New()
h.Write(iv)
h.Write(iv[blockSize-2:])
contents = &seMDCWriter{w: plaintext, h: h}
return
}

View File

@ -1,91 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"image"
"image/jpeg"
"io"
"io/ioutil"
)
const UserAttrImageSubpacket = 1
// UserAttribute is capable of storing other types of data about a user
// beyond name, email and a text comment. In practice, user attributes are typically used
// to store a signed thumbnail photo JPEG image of the user.
// See RFC 4880, section 5.12.
type UserAttribute struct {
Contents []*OpaqueSubpacket
}
// NewUserAttributePhoto creates a user attribute packet
// containing the given images.
func NewUserAttributePhoto(photos ...image.Image) (uat *UserAttribute, err error) {
uat = new(UserAttribute)
for _, photo := range photos {
var buf bytes.Buffer
// RFC 4880, Section 5.12.1.
data := []byte{
0x10, 0x00, // Little-endian image header length (16 bytes)
0x01, // Image header version 1
0x01, // JPEG
0, 0, 0, 0, // 12 reserved octets, must be all zero.
0, 0, 0, 0,
0, 0, 0, 0}
if _, err = buf.Write(data); err != nil {
return
}
if err = jpeg.Encode(&buf, photo, nil); err != nil {
return
}
uat.Contents = append(uat.Contents, &OpaqueSubpacket{
SubType: UserAttrImageSubpacket,
Contents: buf.Bytes()})
}
return
}
// NewUserAttribute creates a new user attribute packet containing the given subpackets.
func NewUserAttribute(contents ...*OpaqueSubpacket) *UserAttribute {
return &UserAttribute{Contents: contents}
}
func (uat *UserAttribute) parse(r io.Reader) (err error) {
// RFC 4880, section 5.13
b, err := ioutil.ReadAll(r)
if err != nil {
return
}
uat.Contents, err = OpaqueSubpackets(b)
return
}
// Serialize marshals the user attribute to w in the form of an OpenPGP packet, including
// header.
func (uat *UserAttribute) Serialize(w io.Writer) (err error) {
var buf bytes.Buffer
for _, sp := range uat.Contents {
sp.Serialize(&buf)
}
if err = serializeHeader(w, packetTypeUserAttribute, buf.Len()); err != nil {
return err
}
_, err = w.Write(buf.Bytes())
return
}
// ImageData returns zero or more byte slices, each containing
// JPEG File Interchange Format (JFIF), for each photo in the
// user attribute packet.
func (uat *UserAttribute) ImageData() (imageData [][]byte) {
for _, sp := range uat.Contents {
if sp.SubType == UserAttrImageSubpacket && len(sp.Contents) > 16 {
imageData = append(imageData, sp.Contents[16:])
}
}
return
}

View File

@ -1,160 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"io"
"io/ioutil"
"strings"
)
// UserId contains text that is intended to represent the name and email
// address of the key holder. See RFC 4880, section 5.11. By convention, this
// takes the form "Full Name (Comment) <email@example.com>"
type UserId struct {
Id string // By convention, this takes the form "Full Name (Comment) <email@example.com>" which is split out in the fields below.
Name, Comment, Email string
}
func hasInvalidCharacters(s string) bool {
for _, c := range s {
switch c {
case '(', ')', '<', '>', 0:
return true
}
}
return false
}
// NewUserId returns a UserId or nil if any of the arguments contain invalid
// characters. The invalid characters are '\x00', '(', ')', '<' and '>'
func NewUserId(name, comment, email string) *UserId {
// RFC 4880 doesn't deal with the structure of userid strings; the
// name, comment and email form is just a convention. However, there's
// no convention about escaping the metacharacters and GPG just refuses
// to create user ids where, say, the name contains a '('. We mirror
// this behaviour.
if hasInvalidCharacters(name) || hasInvalidCharacters(comment) || hasInvalidCharacters(email) {
return nil
}
uid := new(UserId)
uid.Name, uid.Comment, uid.Email = name, comment, email
uid.Id = name
if len(comment) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "("
uid.Id += comment
uid.Id += ")"
}
if len(email) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "<"
uid.Id += email
uid.Id += ">"
}
return uid
}
func (uid *UserId) parse(r io.Reader) (err error) {
// RFC 4880, section 5.11
b, err := ioutil.ReadAll(r)
if err != nil {
return
}
uid.Id = string(b)
uid.Name, uid.Comment, uid.Email = parseUserId(uid.Id)
return
}
// Serialize marshals uid to w in the form of an OpenPGP packet, including
// header.
func (uid *UserId) Serialize(w io.Writer) error {
err := serializeHeader(w, packetTypeUserId, len(uid.Id))
if err != nil {
return err
}
_, err = w.Write([]byte(uid.Id))
return err
}
// parseUserId extracts the name, comment and email from a user id string that
// is formatted as "Full Name (Comment) <email@example.com>".
func parseUserId(id string) (name, comment, email string) {
var n, c, e struct {
start, end int
}
var state int
for offset, rune := range id {
switch state {
case 0:
// Entering name
n.start = offset
state = 1
fallthrough
case 1:
// In name
if rune == '(' {
state = 2
n.end = offset
} else if rune == '<' {
state = 5
n.end = offset
}
case 2:
// Entering comment
c.start = offset
state = 3
fallthrough
case 3:
// In comment
if rune == ')' {
state = 4
c.end = offset
}
case 4:
// Between comment and email
if rune == '<' {
state = 5
}
case 5:
// Entering email
e.start = offset
state = 6
fallthrough
case 6:
// In email
if rune == '>' {
state = 7
e.end = offset
}
default:
// After email
}
}
switch state {
case 1:
// ended in the name
n.end = len(id)
case 3:
// ended in comment
c.end = len(id)
case 6:
// ended in email
e.end = len(id)
}
name = strings.TrimSpace(id[n.start:n.end])
comment = strings.TrimSpace(id[c.start:c.end])
email = strings.TrimSpace(id[e.start:e.end])
return
}

View File

@ -1,442 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package openpgp implements high level operations on OpenPGP messages.
package openpgp // import "golang.org/x/crypto/openpgp"
import (
"crypto"
_ "crypto/sha256"
"hash"
"io"
"strconv"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
)
// SignatureType is the armor type for a PGP signature.
var SignatureType = "PGP SIGNATURE"
// readArmored reads an armored block with the given type.
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
block, err := armor.Decode(r)
if err != nil {
return
}
if block.Type != expectedType {
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
}
return block.Body, nil
}
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
// signed message.
type MessageDetails struct {
IsEncrypted bool // true if the message was encrypted.
EncryptedToKeyIds []uint64 // the list of recipient key ids.
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
DecryptedWith Key // the private key used to decrypt the message, if any.
IsSigned bool // true if the message is signed.
SignedByKeyId uint64 // the key id of the signer, if any.
SignedBy *Key // the key of the signer, if available.
LiteralData *packet.LiteralData // the metadata of the contents
UnverifiedBody io.Reader // the contents of the message.
// If IsSigned is true and SignedBy is non-zero then the signature will
// be verified as UnverifiedBody is read. The signature cannot be
// checked until the whole of UnverifiedBody is read so UnverifiedBody
// must be consumed until EOF before the data can be trusted. Even if a
// message isn't signed (or the signer is unknown) the data may contain
// an authentication code that is only checked once UnverifiedBody has
// been consumed. Once EOF has been seen, the following fields are
// valid. (An authentication code failure is reported as a
// SignatureError error when reading from UnverifiedBody.)
SignatureError error // nil if the signature is good.
Signature *packet.Signature // the signature packet itself, if v4 (default)
SignatureV3 *packet.SignatureV3 // the signature packet if it is a v2 or v3 signature
decrypted io.ReadCloser
}
// A PromptFunction is used as a callback by functions that may need to decrypt
// a private key, or prompt for a passphrase. It is called with a list of
// acceptable, encrypted private keys and a boolean that indicates whether a
// passphrase is usable. It should either decrypt a private key or return a
// passphrase to try. If the decrypted private key or given passphrase isn't
// correct, the function will be called again, forever. Any error returned will
// be passed up.
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)
// A keyEnvelopePair is used to store a private key with the envelope that
// contains a symmetric key, encrypted with that key.
type keyEnvelopePair struct {
key Key
encryptedKey *packet.EncryptedKey
}
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
// The given KeyRing should contain both public keys (for signature
// verification) and, possibly encrypted, private keys for decrypting.
// If config is nil, sensible defaults will be used.
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
var p packet.Packet
var symKeys []*packet.SymmetricKeyEncrypted
var pubKeys []keyEnvelopePair
var se *packet.SymmetricallyEncrypted
packets := packet.NewReader(r)
md = new(MessageDetails)
md.IsEncrypted = true
// The message, if encrypted, starts with a number of packets
// containing an encrypted decryption key. The decryption key is either
// encrypted to a public key, or with a passphrase. This loop
// collects these packets.
ParsePackets:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.SymmetricKeyEncrypted:
// This packet contains the decryption key encrypted with a passphrase.
md.IsSymmetricallyEncrypted = true
symKeys = append(symKeys, p)
case *packet.EncryptedKey:
// This packet contains the decryption key encrypted to a public key.
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
switch p.Algo {
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal:
break
default:
continue
}
var keys []Key
if p.KeyId == 0 {
keys = keyring.DecryptionKeys()
} else {
keys = keyring.KeysById(p.KeyId)
}
for _, k := range keys {
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
}
case *packet.SymmetricallyEncrypted:
se = p
break ParsePackets
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
// This message isn't encrypted.
if len(symKeys) != 0 || len(pubKeys) != 0 {
return nil, errors.StructuralError("key material not followed by encrypted message")
}
packets.Unread(p)
return readSignedMessage(packets, nil, keyring)
}
}
var candidates []Key
var decrypted io.ReadCloser
// Now that we have the list of encrypted keys we need to decrypt at
// least one of them or, if we cannot, we need to call the prompt
// function so that it can decrypt a key or give us a passphrase.
FindKey:
for {
// See if any of the keys already have a private key available
candidates = candidates[:0]
candidateFingerprints := make(map[string]bool)
for _, pk := range pubKeys {
if pk.key.PrivateKey == nil {
continue
}
if !pk.key.PrivateKey.Encrypted {
if len(pk.encryptedKey.Key) == 0 {
pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
}
if len(pk.encryptedKey.Key) == 0 {
continue
}
decrypted, err = se.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
md.DecryptedWith = pk.key
break FindKey
}
} else {
fpr := string(pk.key.PublicKey.Fingerprint[:])
if v := candidateFingerprints[fpr]; v {
continue
}
candidates = append(candidates, pk.key)
candidateFingerprints[fpr] = true
}
}
if len(candidates) == 0 && len(symKeys) == 0 {
return nil, errors.ErrKeyIncorrect
}
if prompt == nil {
return nil, errors.ErrKeyIncorrect
}
passphrase, err := prompt(candidates, len(symKeys) != 0)
if err != nil {
return nil, err
}
// Try the symmetric passphrase first
if len(symKeys) != 0 && passphrase != nil {
for _, s := range symKeys {
key, cipherFunc, err := s.Decrypt(passphrase)
if err == nil {
decrypted, err = se.Decrypt(cipherFunc, key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
break FindKey
}
}
}
}
}
md.decrypted = decrypted
if err := packets.Push(decrypted); err != nil {
return nil, err
}
return readSignedMessage(packets, md, keyring)
}
// readSignedMessage reads a possibly signed message if mdin is non-zero then
// that structure is updated and returned. Otherwise a fresh MessageDetails is
// used.
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing) (md *MessageDetails, err error) {
if mdin == nil {
mdin = new(MessageDetails)
}
md = mdin
var p packet.Packet
var h hash.Hash
var wrappedHash hash.Hash
FindLiteralData:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.Compressed:
if err := packets.Push(p.Body); err != nil {
return nil, err
}
case *packet.OnePassSignature:
if !p.IsLast {
return nil, errors.UnsupportedError("nested signatures")
}
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType)
if err != nil {
md = nil
return
}
md.IsSigned = true
md.SignedByKeyId = p.KeyId
keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign)
if len(keys) > 0 {
md.SignedBy = &keys[0]
}
case *packet.LiteralData:
md.LiteralData = p
break FindLiteralData
}
}
if md.SignedBy != nil {
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md}
} else if md.decrypted != nil {
md.UnverifiedBody = checkReader{md}
} else {
md.UnverifiedBody = md.LiteralData.Body
}
return md, nil
}
// hashForSignature returns a pair of hashes that can be used to verify a
// signature. The signature may specify that the contents of the signed message
// should be preprocessed (i.e. to normalize line endings). Thus this function
// returns two hashes. The second should be used to hash the message itself and
// performs any needed preprocessing.
func hashForSignature(hashId crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, error) {
if !hashId.Available() {
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashId)))
}
h := hashId.New()
switch sigType {
case packet.SigTypeBinary:
return h, h, nil
case packet.SigTypeText:
return h, NewCanonicalTextHash(h), nil
}
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
// MDC checks.
type checkReader struct {
md *MessageDetails
}
func (cr checkReader) Read(buf []byte) (n int, err error) {
n, err = cr.md.LiteralData.Body.Read(buf)
if err == io.EOF {
mdcErr := cr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
return
}
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
// the data as it is read. When it sees an EOF from the underlying io.Reader
// it parses and checks a trailing Signature packet and triggers any MDC checks.
type signatureCheckReader struct {
packets *packet.Reader
h, wrappedHash hash.Hash
md *MessageDetails
}
func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) {
n, err = scr.md.LiteralData.Body.Read(buf)
scr.wrappedHash.Write(buf[:n])
if err == io.EOF {
var p packet.Packet
p, scr.md.SignatureError = scr.packets.Next()
if scr.md.SignatureError != nil {
return
}
var ok bool
if scr.md.Signature, ok = p.(*packet.Signature); ok {
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
} else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok {
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3)
} else {
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by Signature")
return
}
// The SymmetricallyEncrypted packet, if any, might have an
// unsigned hash of its own. In order to check this we need to
// close that Reader.
if scr.md.decrypted != nil {
mdcErr := scr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
}
return
}
// CheckDetachedSignature takes a signed file and a detached signature and
// returns the signer if the signature is valid. If the signer isn't known,
// ErrUnknownIssuer is returned.
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
var issuerKeyId uint64
var hashFunc crypto.Hash
var sigType packet.SignatureType
var keys []Key
var p packet.Packet
packets := packet.NewReader(signature)
for {
p, err = packets.Next()
if err == io.EOF {
return nil, errors.ErrUnknownIssuer
}
if err != nil {
return nil, err
}
switch sig := p.(type) {
case *packet.Signature:
if sig.IssuerKeyId == nil {
return nil, errors.StructuralError("signature doesn't have an issuer")
}
issuerKeyId = *sig.IssuerKeyId
hashFunc = sig.Hash
sigType = sig.SigType
case *packet.SignatureV3:
issuerKeyId = sig.IssuerKeyId
hashFunc = sig.Hash
sigType = sig.SigType
default:
return nil, errors.StructuralError("non signature packet found")
}
keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign)
if len(keys) > 0 {
break
}
}
if len(keys) == 0 {
panic("unreachable")
}
h, wrappedHash, err := hashForSignature(hashFunc, sigType)
if err != nil {
return nil, err
}
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
return nil, err
}
for _, key := range keys {
switch sig := p.(type) {
case *packet.Signature:
err = key.PublicKey.VerifySignature(h, sig)
case *packet.SignatureV3:
err = key.PublicKey.VerifySignatureV3(h, sig)
default:
panic("unreachable")
}
if err == nil {
return key.Entity, nil
}
}
return nil, err
}
// CheckArmoredDetachedSignature performs the same actions as
// CheckDetachedSignature but expects the signature to be armored.
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
body, err := readArmored(signature, SignatureType)
if err != nil {
return
}
return CheckDetachedSignature(keyring, signed, body)
}

View File

@ -1,273 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package s2k implements the various OpenPGP string-to-key transforms as
// specified in RFC 4800 section 3.7.1.
package s2k // import "golang.org/x/crypto/openpgp/s2k"
import (
"crypto"
"hash"
"io"
"strconv"
"golang.org/x/crypto/openpgp/errors"
)
// Config collects configuration parameters for s2k key-stretching
// transformatioms. A nil *Config is valid and results in all default
// values. Currently, Config is used only by the Serialize function in
// this package.
type Config struct {
// Hash is the default hash function to be used. If
// nil, SHA1 is used.
Hash crypto.Hash
// S2KCount is only used for symmetric encryption. It
// determines the strength of the passphrase stretching when
// the said passphrase is hashed to produce a key. S2KCount
// should be between 1024 and 65011712, inclusive. If Config
// is nil or S2KCount is 0, the value 65536 used. Not all
// values in the above range can be represented. S2KCount will
// be rounded up to the next representable value if it cannot
// be encoded exactly. When set, it is strongly encrouraged to
// use a value that is at least 65536. See RFC 4880 Section
// 3.7.1.3.
S2KCount int
}
func (c *Config) hash() crypto.Hash {
if c == nil || uint(c.Hash) == 0 {
// SHA1 is the historical default in this package.
return crypto.SHA1
}
return c.Hash
}
func (c *Config) encodedCount() uint8 {
if c == nil || c.S2KCount == 0 {
return 96 // The common case. Correspoding to 65536
}
i := c.S2KCount
switch {
// Behave like GPG. Should we make 65536 the lowest value used?
case i < 1024:
i = 1024
case i > 65011712:
i = 65011712
}
return encodeCount(i)
}
// encodeCount converts an iterative "count" in the range 1024 to
// 65011712, inclusive, to an encoded count. The return value is the
// octet that is actually stored in the GPG file. encodeCount panics
// if i is not in the above range (encodedCount above takes care to
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
func encodeCount(i int) uint8 {
if i < 1024 || i > 65011712 {
panic("count arg i outside the required range")
}
for encoded := 0; encoded < 256; encoded++ {
count := decodeCount(uint8(encoded))
if count >= i {
return uint8(encoded)
}
}
return 255
}
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
// the encoded octet c.
func decodeCount(c uint8) int {
return (16 + int(c&15)) << (uint32(c>>4) + 6)
}
// Simple writes to out the result of computing the Simple S2K function (RFC
// 4880, section 3.7.1.1) using the given hash and input passphrase.
func Simple(out []byte, h hash.Hash, in []byte) {
Salted(out, h, in, nil)
}
var zero [1]byte
// Salted writes to out the result of computing the Salted S2K function (RFC
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
h.Write(salt)
h.Write(in)
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Iterated writes to out the result of computing the Iterated and Salted S2K
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
// salt and iteration count.
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
combined := make([]byte, len(in)+len(salt))
copy(combined, salt)
copy(combined[len(salt):], in)
if count < len(combined) {
count = len(combined)
}
done := 0
var digest []byte
for i := 0; done < len(out); i++ {
h.Reset()
for j := 0; j < i; j++ {
h.Write(zero[:])
}
written := 0
for written < count {
if written+len(combined) > count {
todo := count - written
h.Write(combined[:todo])
written = count
} else {
h.Write(combined)
written += len(combined)
}
}
digest = h.Sum(digest[:0])
n := copy(out[done:], digest)
done += n
}
}
// Parse reads a binary specification for a string-to-key transformation from r
// and returns a function which performs that transform.
func Parse(r io.Reader) (f func(out, in []byte), err error) {
var buf [9]byte
_, err = io.ReadFull(r, buf[:2])
if err != nil {
return
}
hash, ok := HashIdToHash(buf[1])
if !ok {
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
}
if !hash.Available() {
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash)))
}
h := hash.New()
switch buf[0] {
case 0:
f := func(out, in []byte) {
Simple(out, h, in)
}
return f, nil
case 1:
_, err = io.ReadFull(r, buf[:8])
if err != nil {
return
}
f := func(out, in []byte) {
Salted(out, h, in, buf[:8])
}
return f, nil
case 3:
_, err = io.ReadFull(r, buf[:9])
if err != nil {
return
}
count := decodeCount(buf[8])
f := func(out, in []byte) {
Iterated(out, h, in, buf[:8], count)
}
return f, nil
}
return nil, errors.UnsupportedError("S2K function")
}
// Serialize salts and stretches the given passphrase and writes the
// resulting key into key. It also serializes an S2K descriptor to
// w. The key stretching can be configured with c, which may be
// nil. In that case, sensible defaults will be used.
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
var buf [11]byte
buf[0] = 3 /* iterated and salted */
buf[1], _ = HashToHashId(c.hash())
salt := buf[2:10]
if _, err := io.ReadFull(rand, salt); err != nil {
return err
}
encodedCount := c.encodedCount()
count := decodeCount(encodedCount)
buf[10] = encodedCount
if _, err := w.Write(buf[:]); err != nil {
return err
}
Iterated(key, c.hash().New(), passphrase, salt, count)
return nil
}
// hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
// Go's crypto.Hash type. See RFC 4880, section 9.4.
var hashToHashIdMapping = []struct {
id byte
hash crypto.Hash
name string
}{
{1, crypto.MD5, "MD5"},
{2, crypto.SHA1, "SHA1"},
{3, crypto.RIPEMD160, "RIPEMD160"},
{8, crypto.SHA256, "SHA256"},
{9, crypto.SHA384, "SHA384"},
{10, crypto.SHA512, "SHA512"},
{11, crypto.SHA224, "SHA224"},
}
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
// hash id.
func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
for _, m := range hashToHashIdMapping {
if m.id == id {
return m.hash, true
}
}
return 0, false
}
// HashIdToString returns the name of the hash function corresponding to the
// given OpenPGP hash id.
func HashIdToString(id byte) (name string, ok bool) {
for _, m := range hashToHashIdMapping {
if m.id == id {
return m.name, true
}
}
return "", false
}
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
func HashToHashId(h crypto.Hash) (id byte, ok bool) {
for _, m := range hashToHashIdMapping {
if m.hash == h {
return m.id, true
}
}
return 0, false
}

View File

@ -1,418 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package openpgp
import (
"crypto"
"hash"
"io"
"strconv"
"time"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/errors"
"golang.org/x/crypto/openpgp/packet"
"golang.org/x/crypto/openpgp/s2k"
)
// DetachSign signs message with the private key from signer (which must
// already have been decrypted) and writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeBinary, config)
}
// ArmoredDetachSign signs message with the private key from signer (which
// must already have been decrypted) and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) {
return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config)
}
// DetachSignText signs message (after canonicalising the line endings) with
// the private key from signer (which must already have been decrypted) and
// writes the signature to w.
// If config is nil, sensible defaults will be used.
func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return detachSign(w, signer, message, packet.SigTypeText, config)
}
// ArmoredDetachSignText signs message (after canonicalising the line endings)
// with the private key from signer (which must already have been decrypted)
// and writes an armored signature to w.
// If config is nil, sensible defaults will be used.
func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error {
return armoredDetachSign(w, signer, message, packet.SigTypeText, config)
}
func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
out, err := armor.Encode(w, SignatureType, nil)
if err != nil {
return
}
err = detachSign(out, signer, message, sigType, config)
if err != nil {
return
}
return out.Close()
}
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
if signer.PrivateKey == nil {
return errors.InvalidArgumentError("signing key doesn't have a private key")
}
if signer.PrivateKey.Encrypted {
return errors.InvalidArgumentError("signing key is encrypted")
}
sig := new(packet.Signature)
sig.SigType = sigType
sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo
sig.Hash = config.Hash()
sig.CreationTime = config.Now()
sig.IssuerKeyId = &signer.PrivateKey.KeyId
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
if err != nil {
return
}
io.Copy(wrappedHash, message)
err = sig.Sign(h, signer.PrivateKey, config)
if err != nil {
return
}
return sig.Serialize(w)
}
// FileHints contains metadata about encrypted files. This metadata is, itself,
// encrypted.
type FileHints struct {
// IsBinary can be set to hint that the contents are binary data.
IsBinary bool
// FileName hints at the name of the file that should be written. It's
// truncated to 255 bytes if longer. It may be empty to suggest that the
// file should not be written to disk. It may be equal to "_CONSOLE" to
// suggest the data should not be written to disk.
FileName string
// ModTime contains the modification time of the file, or the zero time if not applicable.
ModTime time.Time
}
// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase.
// The resulting WriteCloser must be closed after the contents of the file have
// been written.
// If config is nil, sensible defaults will be used.
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
if hints == nil {
hints = &FileHints{}
}
key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config)
if err != nil {
return
}
w, err := packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), key, config)
if err != nil {
return
}
literaldata := w
if algo := config.Compression(); algo != packet.CompressionNone {
var compConfig *packet.CompressionConfig
if config != nil {
compConfig = config.CompressionConfig
}
literaldata, err = packet.SerializeCompressed(w, algo, compConfig)
if err != nil {
return
}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
return packet.SerializeLiteral(literaldata, hints.IsBinary, hints.FileName, epochSeconds)
}
// intersectPreferences mutates and returns a prefix of a that contains only
// the values in the intersection of a and b. The order of a is preserved.
func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) {
var j int
for _, v := range a {
for _, v2 := range b {
if v == v2 {
a[j] = v
j++
break
}
}
}
return a[:j]
}
func hashToHashId(h crypto.Hash) uint8 {
v, ok := s2k.HashToHashId(h)
if !ok {
panic("tried to convert unknown hash")
}
return v
}
// writeAndSign writes the data as a payload package and, optionally, signs
// it. hints contains optional information, that is also encrypted,
// that aids the recipients in processing the message. The resulting
// WriteCloser must be closed after the contents of the file have been
// written. If config is nil, sensible defaults will be used.
func writeAndSign(payload io.WriteCloser, candidateHashes []uint8, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
var signer *packet.PrivateKey
if signed != nil {
signKey, ok := signed.signingKey(config.Now())
if !ok {
return nil, errors.InvalidArgumentError("no valid signing keys")
}
signer = signKey.PrivateKey
if signer == nil {
return nil, errors.InvalidArgumentError("no private key in signing key")
}
if signer.Encrypted {
return nil, errors.InvalidArgumentError("signing key must be decrypted")
}
}
var hash crypto.Hash
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() {
hash = h
break
}
}
// If the hash specified by config is a candidate, we'll use that.
if configuredHash := config.Hash(); configuredHash.Available() {
for _, hashId := range candidateHashes {
if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash {
hash = h
break
}
}
}
if hash == 0 {
hashId := candidateHashes[0]
name, ok := s2k.HashIdToString(hashId)
if !ok {
name = "#" + strconv.Itoa(int(hashId))
}
return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
}
if signer != nil {
ops := &packet.OnePassSignature{
SigType: packet.SigTypeBinary,
Hash: hash,
PubKeyAlgo: signer.PubKeyAlgo,
KeyId: signer.KeyId,
IsLast: true,
}
if err := ops.Serialize(payload); err != nil {
return nil, err
}
}
if hints == nil {
hints = &FileHints{}
}
w := payload
if signer != nil {
// If we need to write a signature packet after the literal
// data then we need to stop literalData from closing
// encryptedData.
w = noOpCloser{w}
}
var epochSeconds uint32
if !hints.ModTime.IsZero() {
epochSeconds = uint32(hints.ModTime.Unix())
}
literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
if err != nil {
return nil, err
}
if signer != nil {
return signatureWriter{payload, literalData, hash, hash.New(), signer, config}, nil
}
return literalData, nil
}
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
if len(to) == 0 {
return nil, errors.InvalidArgumentError("no encryption recipient provided")
}
// These are the possible ciphers that we'll use for the message.
candidateCiphers := []uint8{
uint8(packet.CipherAES128),
uint8(packet.CipherAES256),
uint8(packet.CipherCAST5),
}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA384),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA1),
hashToHashId(crypto.RIPEMD160),
}
// In the event that a recipient doesn't specify any supported ciphers
// or hash functions, these are the ones that we assume that every
// implementation supports.
defaultCiphers := candidateCiphers[len(candidateCiphers)-1:]
defaultHashes := candidateHashes[len(candidateHashes)-1:]
encryptKeys := make([]Key, len(to))
for i := range to {
var ok bool
encryptKeys[i], ok = to[i].encryptionKey(config.Now())
if !ok {
return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys")
}
sig := to[i].primaryIdentity().SelfSignature
preferredSymmetric := sig.PreferredSymmetric
if len(preferredSymmetric) == 0 {
preferredSymmetric = defaultCiphers
}
preferredHashes := sig.PreferredHash
if len(preferredHashes) == 0 {
preferredHashes = defaultHashes
}
candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric)
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
}
if len(candidateCiphers) == 0 || len(candidateHashes) == 0 {
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms")
}
cipher := packet.CipherFunction(candidateCiphers[0])
// If the cipher specified by config is a candidate, we'll use that.
configuredCipher := config.Cipher()
for _, c := range candidateCiphers {
cipherFunc := packet.CipherFunction(c)
if cipherFunc == configuredCipher {
cipher = cipherFunc
break
}
}
symKey := make([]byte, cipher.KeySize())
if _, err := io.ReadFull(config.Random(), symKey); err != nil {
return nil, err
}
for _, key := range encryptKeys {
if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil {
return nil, err
}
}
payload, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config)
if err != nil {
return
}
return writeAndSign(payload, candidateHashes, signed, hints, config)
}
// Sign signs a message. The resulting WriteCloser must be closed after the
// contents of the file have been written. hints contains optional information
// that aids the recipients in processing the message.
// If config is nil, sensible defaults will be used.
func Sign(output io.Writer, signed *Entity, hints *FileHints, config *packet.Config) (input io.WriteCloser, err error) {
if signed == nil {
return nil, errors.InvalidArgumentError("no signer provided")
}
// These are the possible hash functions that we'll use for the signature.
candidateHashes := []uint8{
hashToHashId(crypto.SHA256),
hashToHashId(crypto.SHA384),
hashToHashId(crypto.SHA512),
hashToHashId(crypto.SHA1),
hashToHashId(crypto.RIPEMD160),
}
defaultHashes := candidateHashes[len(candidateHashes)-1:]
preferredHashes := signed.primaryIdentity().SelfSignature.PreferredHash
if len(preferredHashes) == 0 {
preferredHashes = defaultHashes
}
candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
return writeAndSign(noOpCloser{output}, candidateHashes, signed, hints, config)
}
// signatureWriter hashes the contents of a message while passing it along to
// literalData. When closed, it closes literalData, writes a signature packet
// to encryptedData and then also closes encryptedData.
type signatureWriter struct {
encryptedData io.WriteCloser
literalData io.WriteCloser
hashType crypto.Hash
h hash.Hash
signer *packet.PrivateKey
config *packet.Config
}
func (s signatureWriter) Write(data []byte) (int, error) {
s.h.Write(data)
return s.literalData.Write(data)
}
func (s signatureWriter) Close() error {
sig := &packet.Signature{
SigType: packet.SigTypeBinary,
PubKeyAlgo: s.signer.PubKeyAlgo,
Hash: s.hashType,
CreationTime: s.config.Now(),
IssuerKeyId: &s.signer.KeyId,
}
if err := sig.Sign(s.h, s.signer, s.config); err != nil {
return err
}
if err := s.literalData.Close(); err != nil {
return err
}
if err := sig.Serialize(s.encryptedData); err != nil {
return err
}
return s.encryptedData.Close()
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
// TODO: we have two of these in OpenPGP packages alone. This probably needs
// to be promoted somewhere more common.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}

3
vendor/golang.org/x/net/AUTHORS generated vendored
View File

@ -1,3 +0,0 @@
# This source code refers to The Go Authors for copyright purposes.
# The master list of authors is in the main Go distribution,
# visible at http://tip.golang.org/AUTHORS.

View File

@ -1,3 +0,0 @@
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at http://tip.golang.org/CONTRIBUTORS.

27
vendor/golang.org/x/net/LICENSE generated vendored
View File

@ -1,27 +0,0 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/net/PATENTS generated vendored
View File

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View File

@ -1,56 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package context defines the Context type, which carries deadlines,
// cancelation signals, and other request-scoped values across API boundaries
// and between processes.
// As of Go 1.7 this package is available in the standard library under the
// name context. https://golang.org/pkg/context.
//
// Incoming requests to a server should create a Context, and outgoing calls to
// servers should accept a Context. The chain of function calls between must
// propagate the Context, optionally replacing it with a modified copy created
// using WithDeadline, WithTimeout, WithCancel, or WithValue.
//
// Programs that use Contexts should follow these rules to keep interfaces
// consistent across packages and enable static analysis tools to check context
// propagation:
//
// Do not store Contexts inside a struct type; instead, pass a Context
// explicitly to each function that needs it. The Context should be the first
// parameter, typically named ctx:
//
// func DoSomething(ctx context.Context, arg Arg) error {
// // ... use ctx ...
// }
//
// Do not pass a nil Context, even if a function permits it. Pass context.TODO
// if you are unsure about which Context to use.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
//
// The same Context may be passed to functions running in different goroutines;
// Contexts are safe for simultaneous use by multiple goroutines.
//
// See http://blog.golang.org/context for example code for a server that uses
// Contexts.
package context // import "golang.org/x/net/context"
// Background returns a non-nil, empty Context. It is never canceled, has no
// values, and has no deadline. It is typically used by the main function,
// initialization, and tests, and as the top-level Context for incoming
// requests.
func Background() Context {
return background
}
// TODO returns a non-nil, empty Context. Code should use context.TODO when
// it's unclear which Context to use or it is not yet available (because the
// surrounding function has not yet been extended to accept a Context
// parameter). TODO is recognized by static analysis tools that determine
// whether Contexts are propagated correctly in a program.
func TODO() Context {
return todo
}

View File

@ -1,71 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ctxhttp provides helper functions for performing context-aware HTTP requests.
package ctxhttp // import "golang.org/x/net/context/ctxhttp"
import (
"context"
"io"
"net/http"
"net/url"
"strings"
)
// Do sends an HTTP request with the provided http.Client and returns
// an HTTP response.
//
// If the client is nil, http.DefaultClient is used.
//
// The provided ctx must be non-nil. If it is canceled or times out,
// ctx.Err() will be returned.
func Do(ctx context.Context, client *http.Client, req *http.Request) (*http.Response, error) {
if client == nil {
client = http.DefaultClient
}
resp, err := client.Do(req.WithContext(ctx))
// If we got an error, and the context has been canceled,
// the context's error is probably more useful.
if err != nil {
select {
case <-ctx.Done():
err = ctx.Err()
default:
}
}
return resp, err
}
// Get issues a GET request via the Do function.
func Get(ctx context.Context, client *http.Client, url string) (*http.Response, error) {
req, err := http.NewRequest("GET", url, nil)
if err != nil {
return nil, err
}
return Do(ctx, client, req)
}
// Head issues a HEAD request via the Do function.
func Head(ctx context.Context, client *http.Client, url string) (*http.Response, error) {
req, err := http.NewRequest("HEAD", url, nil)
if err != nil {
return nil, err
}
return Do(ctx, client, req)
}
// Post issues a POST request via the Do function.
func Post(ctx context.Context, client *http.Client, url string, bodyType string, body io.Reader) (*http.Response, error) {
req, err := http.NewRequest("POST", url, body)
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", bodyType)
return Do(ctx, client, req)
}
// PostForm issues a POST request via the Do function.
func PostForm(ctx context.Context, client *http.Client, url string, data url.Values) (*http.Response, error) {
return Post(ctx, client, url, "application/x-www-form-urlencoded", strings.NewReader(data.Encode()))
}

View File

@ -1,72 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7
package context
import (
"context" // standard library's context, as of Go 1.7
"time"
)
var (
todo = context.TODO()
background = context.Background()
)
// Canceled is the error returned by Context.Err when the context is canceled.
var Canceled = context.Canceled
// DeadlineExceeded is the error returned by Context.Err when the context's
// deadline passes.
var DeadlineExceeded = context.DeadlineExceeded
// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
ctx, f := context.WithCancel(parent)
return ctx, CancelFunc(f)
}
// WithDeadline returns a copy of the parent context with the deadline adjusted
// to be no later than d. If the parent's deadline is already earlier than d,
// WithDeadline(parent, d) is semantically equivalent to parent. The returned
// context's Done channel is closed when the deadline expires, when the returned
// cancel function is called, or when the parent context's Done channel is
// closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) {
ctx, f := context.WithDeadline(parent, deadline)
return ctx, CancelFunc(f)
}
// WithTimeout returns WithDeadline(parent, time.Now().Add(timeout)).
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete:
//
// func slowOperationWithTimeout(ctx context.Context) (Result, error) {
// ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
// defer cancel() // releases resources if slowOperation completes before timeout elapses
// return slowOperation(ctx)
// }
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
return WithDeadline(parent, time.Now().Add(timeout))
}
// WithValue returns a copy of parent in which the value associated with key is
// val.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
func WithValue(parent Context, key interface{}, val interface{}) Context {
return context.WithValue(parent, key, val)
}

View File

@ -1,20 +0,0 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
package context
import "context" // standard library's context, as of Go 1.7
// A Context carries a deadline, a cancelation signal, and other values across
// API boundaries.
//
// Context's methods may be called by multiple goroutines simultaneously.
type Context = context.Context
// A CancelFunc tells an operation to abandon its work.
// A CancelFunc does not wait for the work to stop.
// After the first call, subsequent calls to a CancelFunc do nothing.
type CancelFunc = context.CancelFunc

View File

@ -1,300 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.7
package context
import (
"errors"
"fmt"
"sync"
"time"
)
// An emptyCtx is never canceled, has no values, and has no deadline. It is not
// struct{}, since vars of this type must have distinct addresses.
type emptyCtx int
func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
return
}
func (*emptyCtx) Done() <-chan struct{} {
return nil
}
func (*emptyCtx) Err() error {
return nil
}
func (*emptyCtx) Value(key interface{}) interface{} {
return nil
}
func (e *emptyCtx) String() string {
switch e {
case background:
return "context.Background"
case todo:
return "context.TODO"
}
return "unknown empty Context"
}
var (
background = new(emptyCtx)
todo = new(emptyCtx)
)
// Canceled is the error returned by Context.Err when the context is canceled.
var Canceled = errors.New("context canceled")
// DeadlineExceeded is the error returned by Context.Err when the context's
// deadline passes.
var DeadlineExceeded = errors.New("context deadline exceeded")
// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
c := newCancelCtx(parent)
propagateCancel(parent, c)
return c, func() { c.cancel(true, Canceled) }
}
// newCancelCtx returns an initialized cancelCtx.
func newCancelCtx(parent Context) *cancelCtx {
return &cancelCtx{
Context: parent,
done: make(chan struct{}),
}
}
// propagateCancel arranges for child to be canceled when parent is.
func propagateCancel(parent Context, child canceler) {
if parent.Done() == nil {
return // parent is never canceled
}
if p, ok := parentCancelCtx(parent); ok {
p.mu.Lock()
if p.err != nil {
// parent has already been canceled
child.cancel(false, p.err)
} else {
if p.children == nil {
p.children = make(map[canceler]bool)
}
p.children[child] = true
}
p.mu.Unlock()
} else {
go func() {
select {
case <-parent.Done():
child.cancel(false, parent.Err())
case <-child.Done():
}
}()
}
}
// parentCancelCtx follows a chain of parent references until it finds a
// *cancelCtx. This function understands how each of the concrete types in this
// package represents its parent.
func parentCancelCtx(parent Context) (*cancelCtx, bool) {
for {
switch c := parent.(type) {
case *cancelCtx:
return c, true
case *timerCtx:
return c.cancelCtx, true
case *valueCtx:
parent = c.Context
default:
return nil, false
}
}
}
// removeChild removes a context from its parent.
func removeChild(parent Context, child canceler) {
p, ok := parentCancelCtx(parent)
if !ok {
return
}
p.mu.Lock()
if p.children != nil {
delete(p.children, child)
}
p.mu.Unlock()
}
// A canceler is a context type that can be canceled directly. The
// implementations are *cancelCtx and *timerCtx.
type canceler interface {
cancel(removeFromParent bool, err error)
Done() <-chan struct{}
}
// A cancelCtx can be canceled. When canceled, it also cancels any children
// that implement canceler.
type cancelCtx struct {
Context
done chan struct{} // closed by the first cancel call.
mu sync.Mutex
children map[canceler]bool // set to nil by the first cancel call
err error // set to non-nil by the first cancel call
}
func (c *cancelCtx) Done() <-chan struct{} {
return c.done
}
func (c *cancelCtx) Err() error {
c.mu.Lock()
defer c.mu.Unlock()
return c.err
}
func (c *cancelCtx) String() string {
return fmt.Sprintf("%v.WithCancel", c.Context)
}
// cancel closes c.done, cancels each of c's children, and, if
// removeFromParent is true, removes c from its parent's children.
func (c *cancelCtx) cancel(removeFromParent bool, err error) {
if err == nil {
panic("context: internal error: missing cancel error")
}
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return // already canceled
}
c.err = err
close(c.done)
for child := range c.children {
// NOTE: acquiring the child's lock while holding parent's lock.
child.cancel(false, err)
}
c.children = nil
c.mu.Unlock()
if removeFromParent {
removeChild(c.Context, c)
}
}
// WithDeadline returns a copy of the parent context with the deadline adjusted
// to be no later than d. If the parent's deadline is already earlier than d,
// WithDeadline(parent, d) is semantically equivalent to parent. The returned
// context's Done channel is closed when the deadline expires, when the returned
// cancel function is called, or when the parent context's Done channel is
// closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) {
if cur, ok := parent.Deadline(); ok && cur.Before(deadline) {
// The current deadline is already sooner than the new one.
return WithCancel(parent)
}
c := &timerCtx{
cancelCtx: newCancelCtx(parent),
deadline: deadline,
}
propagateCancel(parent, c)
d := deadline.Sub(time.Now())
if d <= 0 {
c.cancel(true, DeadlineExceeded) // deadline has already passed
return c, func() { c.cancel(true, Canceled) }
}
c.mu.Lock()
defer c.mu.Unlock()
if c.err == nil {
c.timer = time.AfterFunc(d, func() {
c.cancel(true, DeadlineExceeded)
})
}
return c, func() { c.cancel(true, Canceled) }
}
// A timerCtx carries a timer and a deadline. It embeds a cancelCtx to
// implement Done and Err. It implements cancel by stopping its timer then
// delegating to cancelCtx.cancel.
type timerCtx struct {
*cancelCtx
timer *time.Timer // Under cancelCtx.mu.
deadline time.Time
}
func (c *timerCtx) Deadline() (deadline time.Time, ok bool) {
return c.deadline, true
}
func (c *timerCtx) String() string {
return fmt.Sprintf("%v.WithDeadline(%s [%s])", c.cancelCtx.Context, c.deadline, c.deadline.Sub(time.Now()))
}
func (c *timerCtx) cancel(removeFromParent bool, err error) {
c.cancelCtx.cancel(false, err)
if removeFromParent {
// Remove this timerCtx from its parent cancelCtx's children.
removeChild(c.cancelCtx.Context, c)
}
c.mu.Lock()
if c.timer != nil {
c.timer.Stop()
c.timer = nil
}
c.mu.Unlock()
}
// WithTimeout returns WithDeadline(parent, time.Now().Add(timeout)).
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete:
//
// func slowOperationWithTimeout(ctx context.Context) (Result, error) {
// ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
// defer cancel() // releases resources if slowOperation completes before timeout elapses
// return slowOperation(ctx)
// }
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
return WithDeadline(parent, time.Now().Add(timeout))
}
// WithValue returns a copy of parent in which the value associated with key is
// val.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
func WithValue(parent Context, key interface{}, val interface{}) Context {
return &valueCtx{parent, key, val}
}
// A valueCtx carries a key-value pair. It implements Value for that key and
// delegates all other calls to the embedded Context.
type valueCtx struct {
Context
key, val interface{}
}
func (c *valueCtx) String() string {
return fmt.Sprintf("%v.WithValue(%#v, %#v)", c.Context, c.key, c.val)
}
func (c *valueCtx) Value(key interface{}) interface{} {
if c.key == key {
return c.val
}
return c.Context.Value(key)
}

View File

@ -1,109 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.9
package context
import "time"
// A Context carries a deadline, a cancelation signal, and other values across
// API boundaries.
//
// Context's methods may be called by multiple goroutines simultaneously.
type Context interface {
// Deadline returns the time when work done on behalf of this context
// should be canceled. Deadline returns ok==false when no deadline is
// set. Successive calls to Deadline return the same results.
Deadline() (deadline time.Time, ok bool)
// Done returns a channel that's closed when work done on behalf of this
// context should be canceled. Done may return nil if this context can
// never be canceled. Successive calls to Done return the same value.
//
// WithCancel arranges for Done to be closed when cancel is called;
// WithDeadline arranges for Done to be closed when the deadline
// expires; WithTimeout arranges for Done to be closed when the timeout
// elapses.
//
// Done is provided for use in select statements:
//
// // Stream generates values with DoSomething and sends them to out
// // until DoSomething returns an error or ctx.Done is closed.
// func Stream(ctx context.Context, out chan<- Value) error {
// for {
// v, err := DoSomething(ctx)
// if err != nil {
// return err
// }
// select {
// case <-ctx.Done():
// return ctx.Err()
// case out <- v:
// }
// }
// }
//
// See http://blog.golang.org/pipelines for more examples of how to use
// a Done channel for cancelation.
Done() <-chan struct{}
// Err returns a non-nil error value after Done is closed. Err returns
// Canceled if the context was canceled or DeadlineExceeded if the
// context's deadline passed. No other values for Err are defined.
// After Done is closed, successive calls to Err return the same value.
Err() error
// Value returns the value associated with this context for key, or nil
// if no value is associated with key. Successive calls to Value with
// the same key returns the same result.
//
// Use context values only for request-scoped data that transits
// processes and API boundaries, not for passing optional parameters to
// functions.
//
// A key identifies a specific value in a Context. Functions that wish
// to store values in Context typically allocate a key in a global
// variable then use that key as the argument to context.WithValue and
// Context.Value. A key can be any type that supports equality;
// packages should define keys as an unexported type to avoid
// collisions.
//
// Packages that define a Context key should provide type-safe accessors
// for the values stores using that key:
//
// // Package user defines a User type that's stored in Contexts.
// package user
//
// import "golang.org/x/net/context"
//
// // User is the type of value stored in the Contexts.
// type User struct {...}
//
// // key is an unexported type for keys defined in this package.
// // This prevents collisions with keys defined in other packages.
// type key int
//
// // userKey is the key for user.User values in Contexts. It is
// // unexported; clients use user.NewContext and user.FromContext
// // instead of using this key directly.
// var userKey key = 0
//
// // NewContext returns a new Context that carries value u.
// func NewContext(ctx context.Context, u *User) context.Context {
// return context.WithValue(ctx, userKey, u)
// }
//
// // FromContext returns the User value stored in ctx, if any.
// func FromContext(ctx context.Context) (*User, bool) {
// u, ok := ctx.Value(userKey).(*User)
// return u, ok
// }
Value(key interface{}) interface{}
}
// A CancelFunc tells an operation to abandon its work.
// A CancelFunc does not wait for the work to stop.
// After the first call, subsequent calls to a CancelFunc do nothing.
type CancelFunc func()

View File

@ -1,78 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package atom provides integer codes (also known as atoms) for a fixed set of
// frequently occurring HTML strings: tag names and attribute keys such as "p"
// and "id".
//
// Sharing an atom's name between all elements with the same tag can result in
// fewer string allocations when tokenizing and parsing HTML. Integer
// comparisons are also generally faster than string comparisons.
//
// The value of an atom's particular code is not guaranteed to stay the same
// between versions of this package. Neither is any ordering guaranteed:
// whether atom.H1 < atom.H2 may also change. The codes are not guaranteed to
// be dense. The only guarantees are that e.g. looking up "div" will yield
// atom.Div, calling atom.Div.String will return "div", and atom.Div != 0.
package atom // import "golang.org/x/net/html/atom"
// Atom is an integer code for a string. The zero value maps to "".
type Atom uint32
// String returns the atom's name.
func (a Atom) String() string {
start := uint32(a >> 8)
n := uint32(a & 0xff)
if start+n > uint32(len(atomText)) {
return ""
}
return atomText[start : start+n]
}
func (a Atom) string() string {
return atomText[a>>8 : a>>8+a&0xff]
}
// fnv computes the FNV hash with an arbitrary starting value h.
func fnv(h uint32, s []byte) uint32 {
for i := range s {
h ^= uint32(s[i])
h *= 16777619
}
return h
}
func match(s string, t []byte) bool {
for i, c := range t {
if s[i] != c {
return false
}
}
return true
}
// Lookup returns the atom whose name is s. It returns zero if there is no
// such atom. The lookup is case sensitive.
func Lookup(s []byte) Atom {
if len(s) == 0 || len(s) > maxAtomLen {
return 0
}
h := fnv(hash0, s)
if a := table[h&uint32(len(table)-1)]; int(a&0xff) == len(s) && match(a.string(), s) {
return a
}
if a := table[(h>>16)&uint32(len(table)-1)]; int(a&0xff) == len(s) && match(a.string(), s) {
return a
}
return 0
}
// String returns a string whose contents are equal to s. In that sense, it is
// equivalent to string(s) but may be more efficient.
func String(s []byte) string {
if a := Lookup(s); a != 0 {
return a.String()
}
return string(s)
}

View File

@ -1,712 +0,0 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
//go:generate go run gen.go
//go:generate go run gen.go -test
package main
import (
"bytes"
"flag"
"fmt"
"go/format"
"io/ioutil"
"math/rand"
"os"
"sort"
"strings"
)
// identifier converts s to a Go exported identifier.
// It converts "div" to "Div" and "accept-charset" to "AcceptCharset".
func identifier(s string) string {
b := make([]byte, 0, len(s))
cap := true
for _, c := range s {
if c == '-' {
cap = true
continue
}
if cap && 'a' <= c && c <= 'z' {
c -= 'a' - 'A'
}
cap = false
b = append(b, byte(c))
}
return string(b)
}
var test = flag.Bool("test", false, "generate table_test.go")
func genFile(name string, buf *bytes.Buffer) {
b, err := format.Source(buf.Bytes())
if err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
if err := ioutil.WriteFile(name, b, 0644); err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
}
func main() {
flag.Parse()
var all []string
all = append(all, elements...)
all = append(all, attributes...)
all = append(all, eventHandlers...)
all = append(all, extra...)
sort.Strings(all)
// uniq - lists have dups
w := 0
for _, s := range all {
if w == 0 || all[w-1] != s {
all[w] = s
w++
}
}
all = all[:w]
if *test {
var buf bytes.Buffer
fmt.Fprintln(&buf, "// Code generated by go generate gen.go; DO NOT EDIT.\n")
fmt.Fprintln(&buf, "//go:generate go run gen.go -test\n")
fmt.Fprintln(&buf, "package atom\n")
fmt.Fprintln(&buf, "var testAtomList = []string{")
for _, s := range all {
fmt.Fprintf(&buf, "\t%q,\n", s)
}
fmt.Fprintln(&buf, "}")
genFile("table_test.go", &buf)
return
}
// Find hash that minimizes table size.
var best *table
for i := 0; i < 1000000; i++ {
if best != nil && 1<<(best.k-1) < len(all) {
break
}
h := rand.Uint32()
for k := uint(0); k <= 16; k++ {
if best != nil && k >= best.k {
break
}
var t table
if t.init(h, k, all) {
best = &t
break
}
}
}
if best == nil {
fmt.Fprintf(os.Stderr, "failed to construct string table\n")
os.Exit(1)
}
// Lay out strings, using overlaps when possible.
layout := append([]string{}, all...)
// Remove strings that are substrings of other strings
for changed := true; changed; {
changed = false
for i, s := range layout {
if s == "" {
continue
}
for j, t := range layout {
if i != j && t != "" && strings.Contains(s, t) {
changed = true
layout[j] = ""
}
}
}
}
// Join strings where one suffix matches another prefix.
for {
// Find best i, j, k such that layout[i][len-k:] == layout[j][:k],
// maximizing overlap length k.
besti := -1
bestj := -1
bestk := 0
for i, s := range layout {
if s == "" {
continue
}
for j, t := range layout {
if i == j {
continue
}
for k := bestk + 1; k <= len(s) && k <= len(t); k++ {
if s[len(s)-k:] == t[:k] {
besti = i
bestj = j
bestk = k
}
}
}
}
if bestk > 0 {
layout[besti] += layout[bestj][bestk:]
layout[bestj] = ""
continue
}
break
}
text := strings.Join(layout, "")
atom := map[string]uint32{}
for _, s := range all {
off := strings.Index(text, s)
if off < 0 {
panic("lost string " + s)
}
atom[s] = uint32(off<<8 | len(s))
}
var buf bytes.Buffer
// Generate the Go code.
fmt.Fprintln(&buf, "// Code generated by go generate gen.go; DO NOT EDIT.\n")
fmt.Fprintln(&buf, "//go:generate go run gen.go\n")
fmt.Fprintln(&buf, "package atom\n\nconst (")
// compute max len
maxLen := 0
for _, s := range all {
if maxLen < len(s) {
maxLen = len(s)
}
fmt.Fprintf(&buf, "\t%s Atom = %#x\n", identifier(s), atom[s])
}
fmt.Fprintln(&buf, ")\n")
fmt.Fprintf(&buf, "const hash0 = %#x\n\n", best.h0)
fmt.Fprintf(&buf, "const maxAtomLen = %d\n\n", maxLen)
fmt.Fprintf(&buf, "var table = [1<<%d]Atom{\n", best.k)
for i, s := range best.tab {
if s == "" {
continue
}
fmt.Fprintf(&buf, "\t%#x: %#x, // %s\n", i, atom[s], s)
}
fmt.Fprintf(&buf, "}\n")
datasize := (1 << best.k) * 4
fmt.Fprintln(&buf, "const atomText =")
textsize := len(text)
for len(text) > 60 {
fmt.Fprintf(&buf, "\t%q +\n", text[:60])
text = text[60:]
}
fmt.Fprintf(&buf, "\t%q\n\n", text)
genFile("table.go", &buf)
fmt.Fprintf(os.Stdout, "%d atoms; %d string bytes + %d tables = %d total data\n", len(all), textsize, datasize, textsize+datasize)
}
type byLen []string
func (x byLen) Less(i, j int) bool { return len(x[i]) > len(x[j]) }
func (x byLen) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byLen) Len() int { return len(x) }
// fnv computes the FNV hash with an arbitrary starting value h.
func fnv(h uint32, s string) uint32 {
for i := 0; i < len(s); i++ {
h ^= uint32(s[i])
h *= 16777619
}
return h
}
// A table represents an attempt at constructing the lookup table.
// The lookup table uses cuckoo hashing, meaning that each string
// can be found in one of two positions.
type table struct {
h0 uint32
k uint
mask uint32
tab []string
}
// hash returns the two hashes for s.
func (t *table) hash(s string) (h1, h2 uint32) {
h := fnv(t.h0, s)
h1 = h & t.mask
h2 = (h >> 16) & t.mask
return
}
// init initializes the table with the given parameters.
// h0 is the initial hash value,
// k is the number of bits of hash value to use, and
// x is the list of strings to store in the table.
// init returns false if the table cannot be constructed.
func (t *table) init(h0 uint32, k uint, x []string) bool {
t.h0 = h0
t.k = k
t.tab = make([]string, 1<<k)
t.mask = 1<<k - 1
for _, s := range x {
if !t.insert(s) {
return false
}
}
return true
}
// insert inserts s in the table.
func (t *table) insert(s string) bool {
h1, h2 := t.hash(s)
if t.tab[h1] == "" {
t.tab[h1] = s
return true
}
if t.tab[h2] == "" {
t.tab[h2] = s
return true
}
if t.push(h1, 0) {
t.tab[h1] = s
return true
}
if t.push(h2, 0) {
t.tab[h2] = s
return true
}
return false
}
// push attempts to push aside the entry in slot i.
func (t *table) push(i uint32, depth int) bool {
if depth > len(t.tab) {
return false
}
s := t.tab[i]
h1, h2 := t.hash(s)
j := h1 + h2 - i
if t.tab[j] != "" && !t.push(j, depth+1) {
return false
}
t.tab[j] = s
return true
}
// The lists of element names and attribute keys were taken from
// https://html.spec.whatwg.org/multipage/indices.html#index
// as of the "HTML Living Standard - Last Updated 16 April 2018" version.
// "command", "keygen" and "menuitem" have been removed from the spec,
// but are kept here for backwards compatibility.
var elements = []string{
"a",
"abbr",
"address",
"area",
"article",
"aside",
"audio",
"b",
"base",
"bdi",
"bdo",
"blockquote",
"body",
"br",
"button",
"canvas",
"caption",
"cite",
"code",
"col",
"colgroup",
"command",
"data",
"datalist",
"dd",
"del",
"details",
"dfn",
"dialog",
"div",
"dl",
"dt",
"em",
"embed",
"fieldset",
"figcaption",
"figure",
"footer",
"form",
"h1",
"h2",
"h3",
"h4",
"h5",
"h6",
"head",
"header",
"hgroup",
"hr",
"html",
"i",
"iframe",
"img",
"input",
"ins",
"kbd",
"keygen",
"label",
"legend",
"li",
"link",
"main",
"map",
"mark",
"menu",
"menuitem",
"meta",
"meter",
"nav",
"noscript",
"object",
"ol",
"optgroup",
"option",
"output",
"p",
"param",
"picture",
"pre",
"progress",
"q",
"rp",
"rt",
"ruby",
"s",
"samp",
"script",
"section",
"select",
"slot",
"small",
"source",
"span",
"strong",
"style",
"sub",
"summary",
"sup",
"table",
"tbody",
"td",
"template",
"textarea",
"tfoot",
"th",
"thead",
"time",
"title",
"tr",
"track",
"u",
"ul",
"var",
"video",
"wbr",
}
// https://html.spec.whatwg.org/multipage/indices.html#attributes-3
//
// "challenge", "command", "contextmenu", "dropzone", "icon", "keytype", "mediagroup",
// "radiogroup", "spellcheck", "scoped", "seamless", "sortable" and "sorted" have been removed from the spec,
// but are kept here for backwards compatibility.
var attributes = []string{
"abbr",
"accept",
"accept-charset",
"accesskey",
"action",
"allowfullscreen",
"allowpaymentrequest",
"allowusermedia",
"alt",
"as",
"async",
"autocomplete",
"autofocus",
"autoplay",
"challenge",
"charset",
"checked",
"cite",
"class",
"color",
"cols",
"colspan",
"command",
"content",
"contenteditable",
"contextmenu",
"controls",
"coords",
"crossorigin",
"data",
"datetime",
"default",
"defer",
"dir",
"dirname",
"disabled",
"download",
"draggable",
"dropzone",
"enctype",
"for",
"form",
"formaction",
"formenctype",
"formmethod",
"formnovalidate",
"formtarget",
"headers",
"height",
"hidden",
"high",
"href",
"hreflang",
"http-equiv",
"icon",
"id",
"inputmode",
"integrity",
"is",
"ismap",
"itemid",
"itemprop",
"itemref",
"itemscope",
"itemtype",
"keytype",
"kind",
"label",
"lang",
"list",
"loop",
"low",
"manifest",
"max",
"maxlength",
"media",
"mediagroup",
"method",
"min",
"minlength",
"multiple",
"muted",
"name",
"nomodule",
"nonce",
"novalidate",
"open",
"optimum",
"pattern",
"ping",
"placeholder",
"playsinline",
"poster",
"preload",
"radiogroup",
"readonly",
"referrerpolicy",
"rel",
"required",
"reversed",
"rows",
"rowspan",
"sandbox",
"spellcheck",
"scope",
"scoped",
"seamless",
"selected",
"shape",
"size",
"sizes",
"sortable",
"sorted",
"slot",
"span",
"spellcheck",
"src",
"srcdoc",
"srclang",
"srcset",
"start",
"step",
"style",
"tabindex",
"target",
"title",
"translate",
"type",
"typemustmatch",
"updateviacache",
"usemap",
"value",
"width",
"workertype",
"wrap",
}
// "onautocomplete", "onautocompleteerror", "onmousewheel",
// "onshow" and "onsort" have been removed from the spec,
// but are kept here for backwards compatibility.
var eventHandlers = []string{
"onabort",
"onautocomplete",
"onautocompleteerror",
"onauxclick",
"onafterprint",
"onbeforeprint",
"onbeforeunload",
"onblur",
"oncancel",
"oncanplay",
"oncanplaythrough",
"onchange",
"onclick",
"onclose",
"oncontextmenu",
"oncopy",
"oncuechange",
"oncut",
"ondblclick",
"ondrag",
"ondragend",
"ondragenter",
"ondragexit",
"ondragleave",
"ondragover",
"ondragstart",
"ondrop",
"ondurationchange",
"onemptied",
"onended",
"onerror",
"onfocus",
"onhashchange",
"oninput",
"oninvalid",
"onkeydown",
"onkeypress",
"onkeyup",
"onlanguagechange",
"onload",
"onloadeddata",
"onloadedmetadata",
"onloadend",
"onloadstart",
"onmessage",
"onmessageerror",
"onmousedown",
"onmouseenter",
"onmouseleave",
"onmousemove",
"onmouseout",
"onmouseover",
"onmouseup",
"onmousewheel",
"onwheel",
"onoffline",
"ononline",
"onpagehide",
"onpageshow",
"onpaste",
"onpause",
"onplay",
"onplaying",
"onpopstate",
"onprogress",
"onratechange",
"onreset",
"onresize",
"onrejectionhandled",
"onscroll",
"onsecuritypolicyviolation",
"onseeked",
"onseeking",
"onselect",
"onshow",
"onsort",
"onstalled",
"onstorage",
"onsubmit",
"onsuspend",
"ontimeupdate",
"ontoggle",
"onunhandledrejection",
"onunload",
"onvolumechange",
"onwaiting",
}
// extra are ad-hoc values not covered by any of the lists above.
var extra = []string{
"acronym",
"align",
"annotation",
"annotation-xml",
"applet",
"basefont",
"bgsound",
"big",
"blink",
"center",
"color",
"desc",
"face",
"font",
"foreignObject", // HTML is case-insensitive, but SVG-embedded-in-HTML is case-sensitive.
"foreignobject",
"frame",
"frameset",
"image",
"isindex",
"listing",
"malignmark",
"marquee",
"math",
"mglyph",
"mi",
"mn",
"mo",
"ms",
"mtext",
"nobr",
"noembed",
"noframes",
"plaintext",
"prompt",
"public",
"rb",
"rtc",
"spacer",
"strike",
"svg",
"system",
"tt",
"xmp",
}

View File

@ -1,783 +0,0 @@
// Code generated by go generate gen.go; DO NOT EDIT.
//go:generate go run gen.go
package atom
const (
A Atom = 0x1
Abbr Atom = 0x4
Accept Atom = 0x1a06
AcceptCharset Atom = 0x1a0e
Accesskey Atom = 0x2c09
Acronym Atom = 0xaa07
Action Atom = 0x27206
Address Atom = 0x6f307
Align Atom = 0xb105
Allowfullscreen Atom = 0x2080f
Allowpaymentrequest Atom = 0xc113
Allowusermedia Atom = 0xdd0e
Alt Atom = 0xf303
Annotation Atom = 0x1c90a
AnnotationXml Atom = 0x1c90e
Applet Atom = 0x31906
Area Atom = 0x35604
Article Atom = 0x3fc07
As Atom = 0x3c02
Aside Atom = 0x10705
Async Atom = 0xff05
Audio Atom = 0x11505
Autocomplete Atom = 0x2780c
Autofocus Atom = 0x12109
Autoplay Atom = 0x13c08
B Atom = 0x101
Base Atom = 0x3b04
Basefont Atom = 0x3b08
Bdi Atom = 0xba03
Bdo Atom = 0x14b03
Bgsound Atom = 0x15e07
Big Atom = 0x17003
Blink Atom = 0x17305
Blockquote Atom = 0x1870a
Body Atom = 0x2804
Br Atom = 0x202
Button Atom = 0x19106
Canvas Atom = 0x10306
Caption Atom = 0x23107
Center Atom = 0x22006
Challenge Atom = 0x29b09
Charset Atom = 0x2107
Checked Atom = 0x47907
Cite Atom = 0x19c04
Class Atom = 0x56405
Code Atom = 0x5c504
Col Atom = 0x1ab03
Colgroup Atom = 0x1ab08
Color Atom = 0x1bf05
Cols Atom = 0x1c404
Colspan Atom = 0x1c407
Command Atom = 0x1d707
Content Atom = 0x58b07
Contenteditable Atom = 0x58b0f
Contextmenu Atom = 0x3800b
Controls Atom = 0x1de08
Coords Atom = 0x1ea06
Crossorigin Atom = 0x1fb0b
Data Atom = 0x4a504
Datalist Atom = 0x4a508
Datetime Atom = 0x2b808
Dd Atom = 0x2d702
Default Atom = 0x10a07
Defer Atom = 0x5c705
Del Atom = 0x45203
Desc Atom = 0x56104
Details Atom = 0x7207
Dfn Atom = 0x8703
Dialog Atom = 0xbb06
Dir Atom = 0x9303
Dirname Atom = 0x9307
Disabled Atom = 0x16408
Div Atom = 0x16b03
Dl Atom = 0x5e602
Download Atom = 0x46308
Draggable Atom = 0x17a09
Dropzone Atom = 0x40508
Dt Atom = 0x64b02
Em Atom = 0x6e02
Embed Atom = 0x6e05
Enctype Atom = 0x28d07
Face Atom = 0x21e04
Fieldset Atom = 0x22608
Figcaption Atom = 0x22e0a
Figure Atom = 0x24806
Font Atom = 0x3f04
Footer Atom = 0xf606
For Atom = 0x25403
ForeignObject Atom = 0x2540d
Foreignobject Atom = 0x2610d
Form Atom = 0x26e04
Formaction Atom = 0x26e0a
Formenctype Atom = 0x2890b
Formmethod Atom = 0x2a40a
Formnovalidate Atom = 0x2ae0e
Formtarget Atom = 0x2c00a
Frame Atom = 0x8b05
Frameset Atom = 0x8b08
H1 Atom = 0x15c02
H2 Atom = 0x2de02
H3 Atom = 0x30d02
H4 Atom = 0x34502
H5 Atom = 0x34f02
H6 Atom = 0x64d02
Head Atom = 0x33104
Header Atom = 0x33106
Headers Atom = 0x33107
Height Atom = 0x5206
Hgroup Atom = 0x2ca06
Hidden Atom = 0x2d506
High Atom = 0x2db04
Hr Atom = 0x15702
Href Atom = 0x2e004
Hreflang Atom = 0x2e008
Html Atom = 0x5604
HttpEquiv Atom = 0x2e80a
I Atom = 0x601
Icon Atom = 0x58a04
Id Atom = 0x10902
Iframe Atom = 0x2fc06
Image Atom = 0x30205
Img Atom = 0x30703
Input Atom = 0x44b05
Inputmode Atom = 0x44b09
Ins Atom = 0x20403
Integrity Atom = 0x23f09
Is Atom = 0x16502
Isindex Atom = 0x30f07
Ismap Atom = 0x31605
Itemid Atom = 0x38b06
Itemprop Atom = 0x19d08
Itemref Atom = 0x3cd07
Itemscope Atom = 0x67109
Itemtype Atom = 0x31f08
Kbd Atom = 0xb903
Keygen Atom = 0x3206
Keytype Atom = 0xd607
Kind Atom = 0x17704
Label Atom = 0x5905
Lang Atom = 0x2e404
Legend Atom = 0x18106
Li Atom = 0xb202
Link Atom = 0x17404
List Atom = 0x4a904
Listing Atom = 0x4a907
Loop Atom = 0x5d04
Low Atom = 0xc303
Main Atom = 0x1004
Malignmark Atom = 0xb00a
Manifest Atom = 0x6d708
Map Atom = 0x31803
Mark Atom = 0xb604
Marquee Atom = 0x32707
Math Atom = 0x32e04
Max Atom = 0x33d03
Maxlength Atom = 0x33d09
Media Atom = 0xe605
Mediagroup Atom = 0xe60a
Menu Atom = 0x38704
Menuitem Atom = 0x38708
Meta Atom = 0x4b804
Meter Atom = 0x9805
Method Atom = 0x2a806
Mglyph Atom = 0x30806
Mi Atom = 0x34702
Min Atom = 0x34703
Minlength Atom = 0x34709
Mn Atom = 0x2b102
Mo Atom = 0xa402
Ms Atom = 0x67402
Mtext Atom = 0x35105
Multiple Atom = 0x35f08
Muted Atom = 0x36705
Name Atom = 0x9604
Nav Atom = 0x1303
Nobr Atom = 0x3704
Noembed Atom = 0x6c07
Noframes Atom = 0x8908
Nomodule Atom = 0xa208
Nonce Atom = 0x1a605
Noscript Atom = 0x21608
Novalidate Atom = 0x2b20a
Object Atom = 0x26806
Ol Atom = 0x13702
Onabort Atom = 0x19507
Onafterprint Atom = 0x2360c
Onautocomplete Atom = 0x2760e
Onautocompleteerror Atom = 0x27613
Onauxclick Atom = 0x61f0a
Onbeforeprint Atom = 0x69e0d
Onbeforeunload Atom = 0x6e70e
Onblur Atom = 0x56d06
Oncancel Atom = 0x11908
Oncanplay Atom = 0x14d09
Oncanplaythrough Atom = 0x14d10
Onchange Atom = 0x41b08
Onclick Atom = 0x2f507
Onclose Atom = 0x36c07
Oncontextmenu Atom = 0x37e0d
Oncopy Atom = 0x39106
Oncuechange Atom = 0x3970b
Oncut Atom = 0x3a205
Ondblclick Atom = 0x3a70a
Ondrag Atom = 0x3b106
Ondragend Atom = 0x3b109
Ondragenter Atom = 0x3ba0b
Ondragexit Atom = 0x3c50a
Ondragleave Atom = 0x3df0b
Ondragover Atom = 0x3ea0a
Ondragstart Atom = 0x3f40b
Ondrop Atom = 0x40306
Ondurationchange Atom = 0x41310
Onemptied Atom = 0x40a09
Onended Atom = 0x42307
Onerror Atom = 0x42a07
Onfocus Atom = 0x43107
Onhashchange Atom = 0x43d0c
Oninput Atom = 0x44907
Oninvalid Atom = 0x45509
Onkeydown Atom = 0x45e09
Onkeypress Atom = 0x46b0a
Onkeyup Atom = 0x48007
Onlanguagechange Atom = 0x48d10
Onload Atom = 0x49d06
Onloadeddata Atom = 0x49d0c
Onloadedmetadata Atom = 0x4b010
Onloadend Atom = 0x4c609
Onloadstart Atom = 0x4cf0b
Onmessage Atom = 0x4da09
Onmessageerror Atom = 0x4da0e
Onmousedown Atom = 0x4e80b
Onmouseenter Atom = 0x4f30c
Onmouseleave Atom = 0x4ff0c
Onmousemove Atom = 0x50b0b
Onmouseout Atom = 0x5160a
Onmouseover Atom = 0x5230b
Onmouseup Atom = 0x52e09
Onmousewheel Atom = 0x53c0c
Onoffline Atom = 0x54809
Ononline Atom = 0x55108
Onpagehide Atom = 0x5590a
Onpageshow Atom = 0x5730a
Onpaste Atom = 0x57f07
Onpause Atom = 0x59a07
Onplay Atom = 0x5a406
Onplaying Atom = 0x5a409
Onpopstate Atom = 0x5ad0a
Onprogress Atom = 0x5b70a
Onratechange Atom = 0x5cc0c
Onrejectionhandled Atom = 0x5d812
Onreset Atom = 0x5ea07
Onresize Atom = 0x5f108
Onscroll Atom = 0x60008
Onsecuritypolicyviolation Atom = 0x60819
Onseeked Atom = 0x62908
Onseeking Atom = 0x63109
Onselect Atom = 0x63a08
Onshow Atom = 0x64406
Onsort Atom = 0x64f06
Onstalled Atom = 0x65909
Onstorage Atom = 0x66209
Onsubmit Atom = 0x66b08
Onsuspend Atom = 0x67b09
Ontimeupdate Atom = 0x400c
Ontoggle Atom = 0x68408
Onunhandledrejection Atom = 0x68c14
Onunload Atom = 0x6ab08
Onvolumechange Atom = 0x6b30e
Onwaiting Atom = 0x6c109
Onwheel Atom = 0x6ca07
Open Atom = 0x1a304
Optgroup Atom = 0x5f08
Optimum Atom = 0x6d107
Option Atom = 0x6e306
Output Atom = 0x51d06
P Atom = 0xc01
Param Atom = 0xc05
Pattern Atom = 0x6607
Picture Atom = 0x7b07
Ping Atom = 0xef04
Placeholder Atom = 0x1310b
Plaintext Atom = 0x1b209
Playsinline Atom = 0x1400b
Poster Atom = 0x2cf06
Pre Atom = 0x47003
Preload Atom = 0x48607
Progress Atom = 0x5b908
Prompt Atom = 0x53606
Public Atom = 0x58606
Q Atom = 0xcf01
Radiogroup Atom = 0x30a
Rb Atom = 0x3a02
Readonly Atom = 0x35708
Referrerpolicy Atom = 0x3d10e
Rel Atom = 0x48703
Required Atom = 0x24c08
Reversed Atom = 0x8008
Rows Atom = 0x9c04
Rowspan Atom = 0x9c07
Rp Atom = 0x23c02
Rt Atom = 0x19a02
Rtc Atom = 0x19a03
Ruby Atom = 0xfb04
S Atom = 0x2501
Samp Atom = 0x7804
Sandbox Atom = 0x12907
Scope Atom = 0x67505
Scoped Atom = 0x67506
Script Atom = 0x21806
Seamless Atom = 0x37108
Section Atom = 0x56807
Select Atom = 0x63c06
Selected Atom = 0x63c08
Shape Atom = 0x1e505
Size Atom = 0x5f504
Sizes Atom = 0x5f505
Slot Atom = 0x1ef04
Small Atom = 0x20605
Sortable Atom = 0x65108
Sorted Atom = 0x33706
Source Atom = 0x37806
Spacer Atom = 0x43706
Span Atom = 0x9f04
Spellcheck Atom = 0x4740a
Src Atom = 0x5c003
Srcdoc Atom = 0x5c006
Srclang Atom = 0x5f907
Srcset Atom = 0x6f906
Start Atom = 0x3fa05
Step Atom = 0x58304
Strike Atom = 0xd206
Strong Atom = 0x6dd06
Style Atom = 0x6ff05
Sub Atom = 0x66d03
Summary Atom = 0x70407
Sup Atom = 0x70b03
Svg Atom = 0x70e03
System Atom = 0x71106
Tabindex Atom = 0x4be08
Table Atom = 0x59505
Target Atom = 0x2c406
Tbody Atom = 0x2705
Td Atom = 0x9202
Template Atom = 0x71408
Textarea Atom = 0x35208
Tfoot Atom = 0xf505
Th Atom = 0x15602
Thead Atom = 0x33005
Time Atom = 0x4204
Title Atom = 0x11005
Tr Atom = 0xcc02
Track Atom = 0x1ba05
Translate Atom = 0x1f209
Tt Atom = 0x6802
Type Atom = 0xd904
Typemustmatch Atom = 0x2900d
U Atom = 0xb01
Ul Atom = 0xa702
Updateviacache Atom = 0x460e
Usemap Atom = 0x59e06
Value Atom = 0x1505
Var Atom = 0x16d03
Video Atom = 0x2f105
Wbr Atom = 0x57c03
Width Atom = 0x64905
Workertype Atom = 0x71c0a
Wrap Atom = 0x72604
Xmp Atom = 0x12f03
)
const hash0 = 0x81cdf10e
const maxAtomLen = 25
var table = [1 << 9]Atom{
0x1: 0xe60a, // mediagroup
0x2: 0x2e404, // lang
0x4: 0x2c09, // accesskey
0x5: 0x8b08, // frameset
0x7: 0x63a08, // onselect
0x8: 0x71106, // system
0xa: 0x64905, // width
0xc: 0x2890b, // formenctype
0xd: 0x13702, // ol
0xe: 0x3970b, // oncuechange
0x10: 0x14b03, // bdo
0x11: 0x11505, // audio
0x12: 0x17a09, // draggable
0x14: 0x2f105, // video
0x15: 0x2b102, // mn
0x16: 0x38704, // menu
0x17: 0x2cf06, // poster
0x19: 0xf606, // footer
0x1a: 0x2a806, // method
0x1b: 0x2b808, // datetime
0x1c: 0x19507, // onabort
0x1d: 0x460e, // updateviacache
0x1e: 0xff05, // async
0x1f: 0x49d06, // onload
0x21: 0x11908, // oncancel
0x22: 0x62908, // onseeked
0x23: 0x30205, // image
0x24: 0x5d812, // onrejectionhandled
0x26: 0x17404, // link
0x27: 0x51d06, // output
0x28: 0x33104, // head
0x29: 0x4ff0c, // onmouseleave
0x2a: 0x57f07, // onpaste
0x2b: 0x5a409, // onplaying
0x2c: 0x1c407, // colspan
0x2f: 0x1bf05, // color
0x30: 0x5f504, // size
0x31: 0x2e80a, // http-equiv
0x33: 0x601, // i
0x34: 0x5590a, // onpagehide
0x35: 0x68c14, // onunhandledrejection
0x37: 0x42a07, // onerror
0x3a: 0x3b08, // basefont
0x3f: 0x1303, // nav
0x40: 0x17704, // kind
0x41: 0x35708, // readonly
0x42: 0x30806, // mglyph
0x44: 0xb202, // li
0x46: 0x2d506, // hidden
0x47: 0x70e03, // svg
0x48: 0x58304, // step
0x49: 0x23f09, // integrity
0x4a: 0x58606, // public
0x4c: 0x1ab03, // col
0x4d: 0x1870a, // blockquote
0x4e: 0x34f02, // h5
0x50: 0x5b908, // progress
0x51: 0x5f505, // sizes
0x52: 0x34502, // h4
0x56: 0x33005, // thead
0x57: 0xd607, // keytype
0x58: 0x5b70a, // onprogress
0x59: 0x44b09, // inputmode
0x5a: 0x3b109, // ondragend
0x5d: 0x3a205, // oncut
0x5e: 0x43706, // spacer
0x5f: 0x1ab08, // colgroup
0x62: 0x16502, // is
0x65: 0x3c02, // as
0x66: 0x54809, // onoffline
0x67: 0x33706, // sorted
0x69: 0x48d10, // onlanguagechange
0x6c: 0x43d0c, // onhashchange
0x6d: 0x9604, // name
0x6e: 0xf505, // tfoot
0x6f: 0x56104, // desc
0x70: 0x33d03, // max
0x72: 0x1ea06, // coords
0x73: 0x30d02, // h3
0x74: 0x6e70e, // onbeforeunload
0x75: 0x9c04, // rows
0x76: 0x63c06, // select
0x77: 0x9805, // meter
0x78: 0x38b06, // itemid
0x79: 0x53c0c, // onmousewheel
0x7a: 0x5c006, // srcdoc
0x7d: 0x1ba05, // track
0x7f: 0x31f08, // itemtype
0x82: 0xa402, // mo
0x83: 0x41b08, // onchange
0x84: 0x33107, // headers
0x85: 0x5cc0c, // onratechange
0x86: 0x60819, // onsecuritypolicyviolation
0x88: 0x4a508, // datalist
0x89: 0x4e80b, // onmousedown
0x8a: 0x1ef04, // slot
0x8b: 0x4b010, // onloadedmetadata
0x8c: 0x1a06, // accept
0x8d: 0x26806, // object
0x91: 0x6b30e, // onvolumechange
0x92: 0x2107, // charset
0x93: 0x27613, // onautocompleteerror
0x94: 0xc113, // allowpaymentrequest
0x95: 0x2804, // body
0x96: 0x10a07, // default
0x97: 0x63c08, // selected
0x98: 0x21e04, // face
0x99: 0x1e505, // shape
0x9b: 0x68408, // ontoggle
0x9e: 0x64b02, // dt
0x9f: 0xb604, // mark
0xa1: 0xb01, // u
0xa4: 0x6ab08, // onunload
0xa5: 0x5d04, // loop
0xa6: 0x16408, // disabled
0xaa: 0x42307, // onended
0xab: 0xb00a, // malignmark
0xad: 0x67b09, // onsuspend
0xae: 0x35105, // mtext
0xaf: 0x64f06, // onsort
0xb0: 0x19d08, // itemprop
0xb3: 0x67109, // itemscope
0xb4: 0x17305, // blink
0xb6: 0x3b106, // ondrag
0xb7: 0xa702, // ul
0xb8: 0x26e04, // form
0xb9: 0x12907, // sandbox
0xba: 0x8b05, // frame
0xbb: 0x1505, // value
0xbc: 0x66209, // onstorage
0xbf: 0xaa07, // acronym
0xc0: 0x19a02, // rt
0xc2: 0x202, // br
0xc3: 0x22608, // fieldset
0xc4: 0x2900d, // typemustmatch
0xc5: 0xa208, // nomodule
0xc6: 0x6c07, // noembed
0xc7: 0x69e0d, // onbeforeprint
0xc8: 0x19106, // button
0xc9: 0x2f507, // onclick
0xca: 0x70407, // summary
0xcd: 0xfb04, // ruby
0xce: 0x56405, // class
0xcf: 0x3f40b, // ondragstart
0xd0: 0x23107, // caption
0xd4: 0xdd0e, // allowusermedia
0xd5: 0x4cf0b, // onloadstart
0xd9: 0x16b03, // div
0xda: 0x4a904, // list
0xdb: 0x32e04, // math
0xdc: 0x44b05, // input
0xdf: 0x3ea0a, // ondragover
0xe0: 0x2de02, // h2
0xe2: 0x1b209, // plaintext
0xe4: 0x4f30c, // onmouseenter
0xe7: 0x47907, // checked
0xe8: 0x47003, // pre
0xea: 0x35f08, // multiple
0xeb: 0xba03, // bdi
0xec: 0x33d09, // maxlength
0xed: 0xcf01, // q
0xee: 0x61f0a, // onauxclick
0xf0: 0x57c03, // wbr
0xf2: 0x3b04, // base
0xf3: 0x6e306, // option
0xf5: 0x41310, // ondurationchange
0xf7: 0x8908, // noframes
0xf9: 0x40508, // dropzone
0xfb: 0x67505, // scope
0xfc: 0x8008, // reversed
0xfd: 0x3ba0b, // ondragenter
0xfe: 0x3fa05, // start
0xff: 0x12f03, // xmp
0x100: 0x5f907, // srclang
0x101: 0x30703, // img
0x104: 0x101, // b
0x105: 0x25403, // for
0x106: 0x10705, // aside
0x107: 0x44907, // oninput
0x108: 0x35604, // area
0x109: 0x2a40a, // formmethod
0x10a: 0x72604, // wrap
0x10c: 0x23c02, // rp
0x10d: 0x46b0a, // onkeypress
0x10e: 0x6802, // tt
0x110: 0x34702, // mi
0x111: 0x36705, // muted
0x112: 0xf303, // alt
0x113: 0x5c504, // code
0x114: 0x6e02, // em
0x115: 0x3c50a, // ondragexit
0x117: 0x9f04, // span
0x119: 0x6d708, // manifest
0x11a: 0x38708, // menuitem
0x11b: 0x58b07, // content
0x11d: 0x6c109, // onwaiting
0x11f: 0x4c609, // onloadend
0x121: 0x37e0d, // oncontextmenu
0x123: 0x56d06, // onblur
0x124: 0x3fc07, // article
0x125: 0x9303, // dir
0x126: 0xef04, // ping
0x127: 0x24c08, // required
0x128: 0x45509, // oninvalid
0x129: 0xb105, // align
0x12b: 0x58a04, // icon
0x12c: 0x64d02, // h6
0x12d: 0x1c404, // cols
0x12e: 0x22e0a, // figcaption
0x12f: 0x45e09, // onkeydown
0x130: 0x66b08, // onsubmit
0x131: 0x14d09, // oncanplay
0x132: 0x70b03, // sup
0x133: 0xc01, // p
0x135: 0x40a09, // onemptied
0x136: 0x39106, // oncopy
0x137: 0x19c04, // cite
0x138: 0x3a70a, // ondblclick
0x13a: 0x50b0b, // onmousemove
0x13c: 0x66d03, // sub
0x13d: 0x48703, // rel
0x13e: 0x5f08, // optgroup
0x142: 0x9c07, // rowspan
0x143: 0x37806, // source
0x144: 0x21608, // noscript
0x145: 0x1a304, // open
0x146: 0x20403, // ins
0x147: 0x2540d, // foreignObject
0x148: 0x5ad0a, // onpopstate
0x14a: 0x28d07, // enctype
0x14b: 0x2760e, // onautocomplete
0x14c: 0x35208, // textarea
0x14e: 0x2780c, // autocomplete
0x14f: 0x15702, // hr
0x150: 0x1de08, // controls
0x151: 0x10902, // id
0x153: 0x2360c, // onafterprint
0x155: 0x2610d, // foreignobject
0x156: 0x32707, // marquee
0x157: 0x59a07, // onpause
0x158: 0x5e602, // dl
0x159: 0x5206, // height
0x15a: 0x34703, // min
0x15b: 0x9307, // dirname
0x15c: 0x1f209, // translate
0x15d: 0x5604, // html
0x15e: 0x34709, // minlength
0x15f: 0x48607, // preload
0x160: 0x71408, // template
0x161: 0x3df0b, // ondragleave
0x162: 0x3a02, // rb
0x164: 0x5c003, // src
0x165: 0x6dd06, // strong
0x167: 0x7804, // samp
0x168: 0x6f307, // address
0x169: 0x55108, // ononline
0x16b: 0x1310b, // placeholder
0x16c: 0x2c406, // target
0x16d: 0x20605, // small
0x16e: 0x6ca07, // onwheel
0x16f: 0x1c90a, // annotation
0x170: 0x4740a, // spellcheck
0x171: 0x7207, // details
0x172: 0x10306, // canvas
0x173: 0x12109, // autofocus
0x174: 0xc05, // param
0x176: 0x46308, // download
0x177: 0x45203, // del
0x178: 0x36c07, // onclose
0x179: 0xb903, // kbd
0x17a: 0x31906, // applet
0x17b: 0x2e004, // href
0x17c: 0x5f108, // onresize
0x17e: 0x49d0c, // onloadeddata
0x180: 0xcc02, // tr
0x181: 0x2c00a, // formtarget
0x182: 0x11005, // title
0x183: 0x6ff05, // style
0x184: 0xd206, // strike
0x185: 0x59e06, // usemap
0x186: 0x2fc06, // iframe
0x187: 0x1004, // main
0x189: 0x7b07, // picture
0x18c: 0x31605, // ismap
0x18e: 0x4a504, // data
0x18f: 0x5905, // label
0x191: 0x3d10e, // referrerpolicy
0x192: 0x15602, // th
0x194: 0x53606, // prompt
0x195: 0x56807, // section
0x197: 0x6d107, // optimum
0x198: 0x2db04, // high
0x199: 0x15c02, // h1
0x19a: 0x65909, // onstalled
0x19b: 0x16d03, // var
0x19c: 0x4204, // time
0x19e: 0x67402, // ms
0x19f: 0x33106, // header
0x1a0: 0x4da09, // onmessage
0x1a1: 0x1a605, // nonce
0x1a2: 0x26e0a, // formaction
0x1a3: 0x22006, // center
0x1a4: 0x3704, // nobr
0x1a5: 0x59505, // table
0x1a6: 0x4a907, // listing
0x1a7: 0x18106, // legend
0x1a9: 0x29b09, // challenge
0x1aa: 0x24806, // figure
0x1ab: 0xe605, // media
0x1ae: 0xd904, // type
0x1af: 0x3f04, // font
0x1b0: 0x4da0e, // onmessageerror
0x1b1: 0x37108, // seamless
0x1b2: 0x8703, // dfn
0x1b3: 0x5c705, // defer
0x1b4: 0xc303, // low
0x1b5: 0x19a03, // rtc
0x1b6: 0x5230b, // onmouseover
0x1b7: 0x2b20a, // novalidate
0x1b8: 0x71c0a, // workertype
0x1ba: 0x3cd07, // itemref
0x1bd: 0x1, // a
0x1be: 0x31803, // map
0x1bf: 0x400c, // ontimeupdate
0x1c0: 0x15e07, // bgsound
0x1c1: 0x3206, // keygen
0x1c2: 0x2705, // tbody
0x1c5: 0x64406, // onshow
0x1c7: 0x2501, // s
0x1c8: 0x6607, // pattern
0x1cc: 0x14d10, // oncanplaythrough
0x1ce: 0x2d702, // dd
0x1cf: 0x6f906, // srcset
0x1d0: 0x17003, // big
0x1d2: 0x65108, // sortable
0x1d3: 0x48007, // onkeyup
0x1d5: 0x5a406, // onplay
0x1d7: 0x4b804, // meta
0x1d8: 0x40306, // ondrop
0x1da: 0x60008, // onscroll
0x1db: 0x1fb0b, // crossorigin
0x1dc: 0x5730a, // onpageshow
0x1dd: 0x4, // abbr
0x1de: 0x9202, // td
0x1df: 0x58b0f, // contenteditable
0x1e0: 0x27206, // action
0x1e1: 0x1400b, // playsinline
0x1e2: 0x43107, // onfocus
0x1e3: 0x2e008, // hreflang
0x1e5: 0x5160a, // onmouseout
0x1e6: 0x5ea07, // onreset
0x1e7: 0x13c08, // autoplay
0x1e8: 0x63109, // onseeking
0x1ea: 0x67506, // scoped
0x1ec: 0x30a, // radiogroup
0x1ee: 0x3800b, // contextmenu
0x1ef: 0x52e09, // onmouseup
0x1f1: 0x2ca06, // hgroup
0x1f2: 0x2080f, // allowfullscreen
0x1f3: 0x4be08, // tabindex
0x1f6: 0x30f07, // isindex
0x1f7: 0x1a0e, // accept-charset
0x1f8: 0x2ae0e, // formnovalidate
0x1fb: 0x1c90e, // annotation-xml
0x1fc: 0x6e05, // embed
0x1fd: 0x21806, // script
0x1fe: 0xbb06, // dialog
0x1ff: 0x1d707, // command
}
const atomText = "abbradiogrouparamainavalueaccept-charsetbodyaccesskeygenobrb" +
"asefontimeupdateviacacheightmlabelooptgroupatternoembedetail" +
"sampictureversedfnoframesetdirnameterowspanomoduleacronymali" +
"gnmarkbdialogallowpaymentrequestrikeytypeallowusermediagroup" +
"ingaltfooterubyasyncanvasidefaultitleaudioncancelautofocusan" +
"dboxmplaceholderautoplaysinlinebdoncanplaythrough1bgsoundisa" +
"bledivarbigblinkindraggablegendblockquotebuttonabortcitempro" +
"penoncecolgrouplaintextrackcolorcolspannotation-xmlcommandco" +
"ntrolshapecoordslotranslatecrossoriginsmallowfullscreenoscri" +
"ptfacenterfieldsetfigcaptionafterprintegrityfigurequiredfore" +
"ignObjectforeignobjectformactionautocompleteerrorformenctype" +
"mustmatchallengeformmethodformnovalidatetimeformtargethgroup" +
"osterhiddenhigh2hreflanghttp-equivideonclickiframeimageimgly" +
"ph3isindexismappletitemtypemarqueematheadersortedmaxlength4m" +
"inlength5mtextareadonlymultiplemutedoncloseamlessourceoncont" +
"extmenuitemidoncopyoncuechangeoncutondblclickondragendondrag" +
"enterondragexitemreferrerpolicyondragleaveondragoverondragst" +
"articleondropzonemptiedondurationchangeonendedonerroronfocus" +
"paceronhashchangeoninputmodeloninvalidonkeydownloadonkeypres" +
"spellcheckedonkeyupreloadonlanguagechangeonloadeddatalisting" +
"onloadedmetadatabindexonloadendonloadstartonmessageerroronmo" +
"usedownonmouseenteronmouseleaveonmousemoveonmouseoutputonmou" +
"seoveronmouseupromptonmousewheelonofflineononlineonpagehides" +
"classectionbluronpageshowbronpastepublicontenteditableonpaus" +
"emaponplayingonpopstateonprogressrcdocodeferonratechangeonre" +
"jectionhandledonresetonresizesrclangonscrollonsecuritypolicy" +
"violationauxclickonseekedonseekingonselectedonshowidth6onsor" +
"tableonstalledonstorageonsubmitemscopedonsuspendontoggleonun" +
"handledrejectionbeforeprintonunloadonvolumechangeonwaitingon" +
"wheeloptimumanifestrongoptionbeforeunloaddressrcsetstylesumm" +
"arysupsvgsystemplateworkertypewrap"

View File

@ -1,257 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package charset provides common text encodings for HTML documents.
//
// The mapping from encoding labels to encodings is defined at
// https://encoding.spec.whatwg.org/.
package charset // import "golang.org/x/net/html/charset"
import (
"bytes"
"fmt"
"io"
"mime"
"strings"
"unicode/utf8"
"golang.org/x/net/html"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/charmap"
"golang.org/x/text/encoding/htmlindex"
"golang.org/x/text/transform"
)
// Lookup returns the encoding with the specified label, and its canonical
// name. It returns nil and the empty string if label is not one of the
// standard encodings for HTML. Matching is case-insensitive and ignores
// leading and trailing whitespace. Encoders will use HTML escape sequences for
// runes that are not supported by the character set.
func Lookup(label string) (e encoding.Encoding, name string) {
e, err := htmlindex.Get(label)
if err != nil {
return nil, ""
}
name, _ = htmlindex.Name(e)
return &htmlEncoding{e}, name
}
type htmlEncoding struct{ encoding.Encoding }
func (h *htmlEncoding) NewEncoder() *encoding.Encoder {
// HTML requires a non-terminating legacy encoder. We use HTML escapes to
// substitute unsupported code points.
return encoding.HTMLEscapeUnsupported(h.Encoding.NewEncoder())
}
// DetermineEncoding determines the encoding of an HTML document by examining
// up to the first 1024 bytes of content and the declared Content-Type.
//
// See http://www.whatwg.org/specs/web-apps/current-work/multipage/parsing.html#determining-the-character-encoding
func DetermineEncoding(content []byte, contentType string) (e encoding.Encoding, name string, certain bool) {
if len(content) > 1024 {
content = content[:1024]
}
for _, b := range boms {
if bytes.HasPrefix(content, b.bom) {
e, name = Lookup(b.enc)
return e, name, true
}
}
if _, params, err := mime.ParseMediaType(contentType); err == nil {
if cs, ok := params["charset"]; ok {
if e, name = Lookup(cs); e != nil {
return e, name, true
}
}
}
if len(content) > 0 {
e, name = prescan(content)
if e != nil {
return e, name, false
}
}
// Try to detect UTF-8.
// First eliminate any partial rune at the end.
for i := len(content) - 1; i >= 0 && i > len(content)-4; i-- {
b := content[i]
if b < 0x80 {
break
}
if utf8.RuneStart(b) {
content = content[:i]
break
}
}
hasHighBit := false
for _, c := range content {
if c >= 0x80 {
hasHighBit = true
break
}
}
if hasHighBit && utf8.Valid(content) {
return encoding.Nop, "utf-8", false
}
// TODO: change default depending on user's locale?
return charmap.Windows1252, "windows-1252", false
}
// NewReader returns an io.Reader that converts the content of r to UTF-8.
// It calls DetermineEncoding to find out what r's encoding is.
func NewReader(r io.Reader, contentType string) (io.Reader, error) {
preview := make([]byte, 1024)
n, err := io.ReadFull(r, preview)
switch {
case err == io.ErrUnexpectedEOF:
preview = preview[:n]
r = bytes.NewReader(preview)
case err != nil:
return nil, err
default:
r = io.MultiReader(bytes.NewReader(preview), r)
}
if e, _, _ := DetermineEncoding(preview, contentType); e != encoding.Nop {
r = transform.NewReader(r, e.NewDecoder())
}
return r, nil
}
// NewReaderLabel returns a reader that converts from the specified charset to
// UTF-8. It uses Lookup to find the encoding that corresponds to label, and
// returns an error if Lookup returns nil. It is suitable for use as
// encoding/xml.Decoder's CharsetReader function.
func NewReaderLabel(label string, input io.Reader) (io.Reader, error) {
e, _ := Lookup(label)
if e == nil {
return nil, fmt.Errorf("unsupported charset: %q", label)
}
return transform.NewReader(input, e.NewDecoder()), nil
}
func prescan(content []byte) (e encoding.Encoding, name string) {
z := html.NewTokenizer(bytes.NewReader(content))
for {
switch z.Next() {
case html.ErrorToken:
return nil, ""
case html.StartTagToken, html.SelfClosingTagToken:
tagName, hasAttr := z.TagName()
if !bytes.Equal(tagName, []byte("meta")) {
continue
}
attrList := make(map[string]bool)
gotPragma := false
const (
dontKnow = iota
doNeedPragma
doNotNeedPragma
)
needPragma := dontKnow
name = ""
e = nil
for hasAttr {
var key, val []byte
key, val, hasAttr = z.TagAttr()
ks := string(key)
if attrList[ks] {
continue
}
attrList[ks] = true
for i, c := range val {
if 'A' <= c && c <= 'Z' {
val[i] = c + 0x20
}
}
switch ks {
case "http-equiv":
if bytes.Equal(val, []byte("content-type")) {
gotPragma = true
}
case "content":
if e == nil {
name = fromMetaElement(string(val))
if name != "" {
e, name = Lookup(name)
if e != nil {
needPragma = doNeedPragma
}
}
}
case "charset":
e, name = Lookup(string(val))
needPragma = doNotNeedPragma
}
}
if needPragma == dontKnow || needPragma == doNeedPragma && !gotPragma {
continue
}
if strings.HasPrefix(name, "utf-16") {
name = "utf-8"
e = encoding.Nop
}
if e != nil {
return e, name
}
}
}
}
func fromMetaElement(s string) string {
for s != "" {
csLoc := strings.Index(s, "charset")
if csLoc == -1 {
return ""
}
s = s[csLoc+len("charset"):]
s = strings.TrimLeft(s, " \t\n\f\r")
if !strings.HasPrefix(s, "=") {
continue
}
s = s[1:]
s = strings.TrimLeft(s, " \t\n\f\r")
if s == "" {
return ""
}
if q := s[0]; q == '"' || q == '\'' {
s = s[1:]
closeQuote := strings.IndexRune(s, rune(q))
if closeQuote == -1 {
return ""
}
return s[:closeQuote]
}
end := strings.IndexAny(s, "; \t\n\f\r")
if end == -1 {
end = len(s)
}
return s[:end]
}
return ""
}
var boms = []struct {
bom []byte
enc string
}{
{[]byte{0xfe, 0xff}, "utf-16be"},
{[]byte{0xff, 0xfe}, "utf-16le"},
{[]byte{0xef, 0xbb, 0xbf}, "utf-8"},
}

112
vendor/golang.org/x/net/html/const.go generated vendored
View File

@ -1,112 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
// Section 12.2.4.2 of the HTML5 specification says "The following elements
// have varying levels of special parsing rules".
// https://html.spec.whatwg.org/multipage/syntax.html#the-stack-of-open-elements
var isSpecialElementMap = map[string]bool{
"address": true,
"applet": true,
"area": true,
"article": true,
"aside": true,
"base": true,
"basefont": true,
"bgsound": true,
"blockquote": true,
"body": true,
"br": true,
"button": true,
"caption": true,
"center": true,
"col": true,
"colgroup": true,
"dd": true,
"details": true,
"dir": true,
"div": true,
"dl": true,
"dt": true,
"embed": true,
"fieldset": true,
"figcaption": true,
"figure": true,
"footer": true,
"form": true,
"frame": true,
"frameset": true,
"h1": true,
"h2": true,
"h3": true,
"h4": true,
"h5": true,
"h6": true,
"head": true,
"header": true,
"hgroup": true,
"hr": true,
"html": true,
"iframe": true,
"img": true,
"input": true,
"isindex": true, // The 'isindex' element has been removed, but keep it for backwards compatibility.
"keygen": true,
"li": true,
"link": true,
"listing": true,
"main": true,
"marquee": true,
"menu": true,
"meta": true,
"nav": true,
"noembed": true,
"noframes": true,
"noscript": true,
"object": true,
"ol": true,
"p": true,
"param": true,
"plaintext": true,
"pre": true,
"script": true,
"section": true,
"select": true,
"source": true,
"style": true,
"summary": true,
"table": true,
"tbody": true,
"td": true,
"template": true,
"textarea": true,
"tfoot": true,
"th": true,
"thead": true,
"title": true,
"tr": true,
"track": true,
"ul": true,
"wbr": true,
"xmp": true,
}
func isSpecialElement(element *Node) bool {
switch element.Namespace {
case "", "html":
return isSpecialElementMap[element.Data]
case "math":
switch element.Data {
case "mi", "mo", "mn", "ms", "mtext", "annotation-xml":
return true
}
case "svg":
switch element.Data {
case "foreignObject", "desc", "title":
return true
}
}
return false
}

106
vendor/golang.org/x/net/html/doc.go generated vendored
View File

@ -1,106 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package html implements an HTML5-compliant tokenizer and parser.
Tokenization is done by creating a Tokenizer for an io.Reader r. It is the
caller's responsibility to ensure that r provides UTF-8 encoded HTML.
z := html.NewTokenizer(r)
Given a Tokenizer z, the HTML is tokenized by repeatedly calling z.Next(),
which parses the next token and returns its type, or an error:
for {
tt := z.Next()
if tt == html.ErrorToken {
// ...
return ...
}
// Process the current token.
}
There are two APIs for retrieving the current token. The high-level API is to
call Token; the low-level API is to call Text or TagName / TagAttr. Both APIs
allow optionally calling Raw after Next but before Token, Text, TagName, or
TagAttr. In EBNF notation, the valid call sequence per token is:
Next {Raw} [ Token | Text | TagName {TagAttr} ]
Token returns an independent data structure that completely describes a token.
Entities (such as "&lt;") are unescaped, tag names and attribute keys are
lower-cased, and attributes are collected into a []Attribute. For example:
for {
if z.Next() == html.ErrorToken {
// Returning io.EOF indicates success.
return z.Err()
}
emitToken(z.Token())
}
The low-level API performs fewer allocations and copies, but the contents of
the []byte values returned by Text, TagName and TagAttr may change on the next
call to Next. For example, to extract an HTML page's anchor text:
depth := 0
for {
tt := z.Next()
switch tt {
case html.ErrorToken:
return z.Err()
case html.TextToken:
if depth > 0 {
// emitBytes should copy the []byte it receives,
// if it doesn't process it immediately.
emitBytes(z.Text())
}
case html.StartTagToken, html.EndTagToken:
tn, _ := z.TagName()
if len(tn) == 1 && tn[0] == 'a' {
if tt == html.StartTagToken {
depth++
} else {
depth--
}
}
}
}
Parsing is done by calling Parse with an io.Reader, which returns the root of
the parse tree (the document element) as a *Node. It is the caller's
responsibility to ensure that the Reader provides UTF-8 encoded HTML. For
example, to process each anchor node in depth-first order:
doc, err := html.Parse(r)
if err != nil {
// ...
}
var f func(*html.Node)
f = func(n *html.Node) {
if n.Type == html.ElementNode && n.Data == "a" {
// Do something with n...
}
for c := n.FirstChild; c != nil; c = c.NextSibling {
f(c)
}
}
f(doc)
The relevant specifications include:
https://html.spec.whatwg.org/multipage/syntax.html and
https://html.spec.whatwg.org/multipage/syntax.html#tokenization
*/
package html // import "golang.org/x/net/html"
// The tokenization algorithm implemented by this package is not a line-by-line
// transliteration of the relatively verbose state-machine in the WHATWG
// specification. A more direct approach is used instead, where the program
// counter implies the state, such as whether it is tokenizing a tag or a text
// node. Specification compliance is verified by checking expected and actual
// outputs over a test suite rather than aiming for algorithmic fidelity.
// TODO(nigeltao): Does a DOM API belong in this package or a separate one?
// TODO(nigeltao): How does parsing interact with a JavaScript engine?

View File

@ -1,156 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"strings"
)
// parseDoctype parses the data from a DoctypeToken into a name,
// public identifier, and system identifier. It returns a Node whose Type
// is DoctypeNode, whose Data is the name, and which has attributes
// named "system" and "public" for the two identifiers if they were present.
// quirks is whether the document should be parsed in "quirks mode".
func parseDoctype(s string) (n *Node, quirks bool) {
n = &Node{Type: DoctypeNode}
// Find the name.
space := strings.IndexAny(s, whitespace)
if space == -1 {
space = len(s)
}
n.Data = s[:space]
// The comparison to "html" is case-sensitive.
if n.Data != "html" {
quirks = true
}
n.Data = strings.ToLower(n.Data)
s = strings.TrimLeft(s[space:], whitespace)
if len(s) < 6 {
// It can't start with "PUBLIC" or "SYSTEM".
// Ignore the rest of the string.
return n, quirks || s != ""
}
key := strings.ToLower(s[:6])
s = s[6:]
for key == "public" || key == "system" {
s = strings.TrimLeft(s, whitespace)
if s == "" {
break
}
quote := s[0]
if quote != '"' && quote != '\'' {
break
}
s = s[1:]
q := strings.IndexRune(s, rune(quote))
var id string
if q == -1 {
id = s
s = ""
} else {
id = s[:q]
s = s[q+1:]
}
n.Attr = append(n.Attr, Attribute{Key: key, Val: id})
if key == "public" {
key = "system"
} else {
key = ""
}
}
if key != "" || s != "" {
quirks = true
} else if len(n.Attr) > 0 {
if n.Attr[0].Key == "public" {
public := strings.ToLower(n.Attr[0].Val)
switch public {
case "-//w3o//dtd w3 html strict 3.0//en//", "-/w3d/dtd html 4.0 transitional/en", "html":
quirks = true
default:
for _, q := range quirkyIDs {
if strings.HasPrefix(public, q) {
quirks = true
break
}
}
}
// The following two public IDs only cause quirks mode if there is no system ID.
if len(n.Attr) == 1 && (strings.HasPrefix(public, "-//w3c//dtd html 4.01 frameset//") ||
strings.HasPrefix(public, "-//w3c//dtd html 4.01 transitional//")) {
quirks = true
}
}
if lastAttr := n.Attr[len(n.Attr)-1]; lastAttr.Key == "system" &&
strings.ToLower(lastAttr.Val) == "http://www.ibm.com/data/dtd/v11/ibmxhtml1-transitional.dtd" {
quirks = true
}
}
return n, quirks
}
// quirkyIDs is a list of public doctype identifiers that cause a document
// to be interpreted in quirks mode. The identifiers should be in lower case.
var quirkyIDs = []string{
"+//silmaril//dtd html pro v0r11 19970101//",
"-//advasoft ltd//dtd html 3.0 aswedit + extensions//",
"-//as//dtd html 3.0 aswedit + extensions//",
"-//ietf//dtd html 2.0 level 1//",
"-//ietf//dtd html 2.0 level 2//",
"-//ietf//dtd html 2.0 strict level 1//",
"-//ietf//dtd html 2.0 strict level 2//",
"-//ietf//dtd html 2.0 strict//",
"-//ietf//dtd html 2.0//",
"-//ietf//dtd html 2.1e//",
"-//ietf//dtd html 3.0//",
"-//ietf//dtd html 3.2 final//",
"-//ietf//dtd html 3.2//",
"-//ietf//dtd html 3//",
"-//ietf//dtd html level 0//",
"-//ietf//dtd html level 1//",
"-//ietf//dtd html level 2//",
"-//ietf//dtd html level 3//",
"-//ietf//dtd html strict level 0//",
"-//ietf//dtd html strict level 1//",
"-//ietf//dtd html strict level 2//",
"-//ietf//dtd html strict level 3//",
"-//ietf//dtd html strict//",
"-//ietf//dtd html//",
"-//metrius//dtd metrius presentational//",
"-//microsoft//dtd internet explorer 2.0 html strict//",
"-//microsoft//dtd internet explorer 2.0 html//",
"-//microsoft//dtd internet explorer 2.0 tables//",
"-//microsoft//dtd internet explorer 3.0 html strict//",
"-//microsoft//dtd internet explorer 3.0 html//",
"-//microsoft//dtd internet explorer 3.0 tables//",
"-//netscape comm. corp.//dtd html//",
"-//netscape comm. corp.//dtd strict html//",
"-//o'reilly and associates//dtd html 2.0//",
"-//o'reilly and associates//dtd html extended 1.0//",
"-//o'reilly and associates//dtd html extended relaxed 1.0//",
"-//softquad software//dtd hotmetal pro 6.0::19990601::extensions to html 4.0//",
"-//softquad//dtd hotmetal pro 4.0::19971010::extensions to html 4.0//",
"-//spyglass//dtd html 2.0 extended//",
"-//sq//dtd html 2.0 hotmetal + extensions//",
"-//sun microsystems corp.//dtd hotjava html//",
"-//sun microsystems corp.//dtd hotjava strict html//",
"-//w3c//dtd html 3 1995-03-24//",
"-//w3c//dtd html 3.2 draft//",
"-//w3c//dtd html 3.2 final//",
"-//w3c//dtd html 3.2//",
"-//w3c//dtd html 3.2s draft//",
"-//w3c//dtd html 4.0 frameset//",
"-//w3c//dtd html 4.0 transitional//",
"-//w3c//dtd html experimental 19960712//",
"-//w3c//dtd html experimental 970421//",
"-//w3c//dtd w3 html//",
"-//w3o//dtd w3 html 3.0//",
"-//webtechs//dtd mozilla html 2.0//",
"-//webtechs//dtd mozilla html//",
}

2253
vendor/golang.org/x/net/html/entity.go generated vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,258 +0,0 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"bytes"
"strings"
"unicode/utf8"
)
// These replacements permit compatibility with old numeric entities that
// assumed Windows-1252 encoding.
// https://html.spec.whatwg.org/multipage/syntax.html#consume-a-character-reference
var replacementTable = [...]rune{
'\u20AC', // First entry is what 0x80 should be replaced with.
'\u0081',
'\u201A',
'\u0192',
'\u201E',
'\u2026',
'\u2020',
'\u2021',
'\u02C6',
'\u2030',
'\u0160',
'\u2039',
'\u0152',
'\u008D',
'\u017D',
'\u008F',
'\u0090',
'\u2018',
'\u2019',
'\u201C',
'\u201D',
'\u2022',
'\u2013',
'\u2014',
'\u02DC',
'\u2122',
'\u0161',
'\u203A',
'\u0153',
'\u009D',
'\u017E',
'\u0178', // Last entry is 0x9F.
// 0x00->'\uFFFD' is handled programmatically.
// 0x0D->'\u000D' is a no-op.
}
// unescapeEntity reads an entity like "&lt;" from b[src:] and writes the
// corresponding "<" to b[dst:], returning the incremented dst and src cursors.
// Precondition: b[src] == '&' && dst <= src.
// attribute should be true if parsing an attribute value.
func unescapeEntity(b []byte, dst, src int, attribute bool) (dst1, src1 int) {
// https://html.spec.whatwg.org/multipage/syntax.html#consume-a-character-reference
// i starts at 1 because we already know that s[0] == '&'.
i, s := 1, b[src:]
if len(s) <= 1 {
b[dst] = b[src]
return dst + 1, src + 1
}
if s[i] == '#' {
if len(s) <= 3 { // We need to have at least "&#.".
b[dst] = b[src]
return dst + 1, src + 1
}
i++
c := s[i]
hex := false
if c == 'x' || c == 'X' {
hex = true
i++
}
x := '\x00'
for i < len(s) {
c = s[i]
i++
if hex {
if '0' <= c && c <= '9' {
x = 16*x + rune(c) - '0'
continue
} else if 'a' <= c && c <= 'f' {
x = 16*x + rune(c) - 'a' + 10
continue
} else if 'A' <= c && c <= 'F' {
x = 16*x + rune(c) - 'A' + 10
continue
}
} else if '0' <= c && c <= '9' {
x = 10*x + rune(c) - '0'
continue
}
if c != ';' {
i--
}
break
}
if i <= 3 { // No characters matched.
b[dst] = b[src]
return dst + 1, src + 1
}
if 0x80 <= x && x <= 0x9F {
// Replace characters from Windows-1252 with UTF-8 equivalents.
x = replacementTable[x-0x80]
} else if x == 0 || (0xD800 <= x && x <= 0xDFFF) || x > 0x10FFFF {
// Replace invalid characters with the replacement character.
x = '\uFFFD'
}
return dst + utf8.EncodeRune(b[dst:], x), src + i
}
// Consume the maximum number of characters possible, with the
// consumed characters matching one of the named references.
for i < len(s) {
c := s[i]
i++
// Lower-cased characters are more common in entities, so we check for them first.
if 'a' <= c && c <= 'z' || 'A' <= c && c <= 'Z' || '0' <= c && c <= '9' {
continue
}
if c != ';' {
i--
}
break
}
entityName := string(s[1:i])
if entityName == "" {
// No-op.
} else if attribute && entityName[len(entityName)-1] != ';' && len(s) > i && s[i] == '=' {
// No-op.
} else if x := entity[entityName]; x != 0 {
return dst + utf8.EncodeRune(b[dst:], x), src + i
} else if x := entity2[entityName]; x[0] != 0 {
dst1 := dst + utf8.EncodeRune(b[dst:], x[0])
return dst1 + utf8.EncodeRune(b[dst1:], x[1]), src + i
} else if !attribute {
maxLen := len(entityName) - 1
if maxLen > longestEntityWithoutSemicolon {
maxLen = longestEntityWithoutSemicolon
}
for j := maxLen; j > 1; j-- {
if x := entity[entityName[:j]]; x != 0 {
return dst + utf8.EncodeRune(b[dst:], x), src + j + 1
}
}
}
dst1, src1 = dst+i, src+i
copy(b[dst:dst1], b[src:src1])
return dst1, src1
}
// unescape unescapes b's entities in-place, so that "a&lt;b" becomes "a<b".
// attribute should be true if parsing an attribute value.
func unescape(b []byte, attribute bool) []byte {
for i, c := range b {
if c == '&' {
dst, src := unescapeEntity(b, i, i, attribute)
for src < len(b) {
c := b[src]
if c == '&' {
dst, src = unescapeEntity(b, dst, src, attribute)
} else {
b[dst] = c
dst, src = dst+1, src+1
}
}
return b[0:dst]
}
}
return b
}
// lower lower-cases the A-Z bytes in b in-place, so that "aBc" becomes "abc".
func lower(b []byte) []byte {
for i, c := range b {
if 'A' <= c && c <= 'Z' {
b[i] = c + 'a' - 'A'
}
}
return b
}
const escapedChars = "&'<>\"\r"
func escape(w writer, s string) error {
i := strings.IndexAny(s, escapedChars)
for i != -1 {
if _, err := w.WriteString(s[:i]); err != nil {
return err
}
var esc string
switch s[i] {
case '&':
esc = "&amp;"
case '\'':
// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
esc = "&#39;"
case '<':
esc = "&lt;"
case '>':
esc = "&gt;"
case '"':
// "&#34;" is shorter than "&quot;".
esc = "&#34;"
case '\r':
esc = "&#13;"
default:
panic("unrecognized escape character")
}
s = s[i+1:]
if _, err := w.WriteString(esc); err != nil {
return err
}
i = strings.IndexAny(s, escapedChars)
}
_, err := w.WriteString(s)
return err
}
// EscapeString escapes special characters like "<" to become "&lt;". It
// escapes only five such characters: <, >, &, ' and ".
// UnescapeString(EscapeString(s)) == s always holds, but the converse isn't
// always true.
func EscapeString(s string) string {
if strings.IndexAny(s, escapedChars) == -1 {
return s
}
var buf bytes.Buffer
escape(&buf, s)
return buf.String()
}
// UnescapeString unescapes entities like "&lt;" to become "<". It unescapes a
// larger range of entities than EscapeString escapes. For example, "&aacute;"
// unescapes to "á", as does "&#225;" and "&xE1;".
// UnescapeString(EscapeString(s)) == s always holds, but the converse isn't
// always true.
func UnescapeString(s string) string {
for _, c := range s {
if c == '&' {
return string(unescape([]byte(s), false))
}
}
return s
}

View File

@ -1,226 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"strings"
)
func adjustAttributeNames(aa []Attribute, nameMap map[string]string) {
for i := range aa {
if newName, ok := nameMap[aa[i].Key]; ok {
aa[i].Key = newName
}
}
}
func adjustForeignAttributes(aa []Attribute) {
for i, a := range aa {
if a.Key == "" || a.Key[0] != 'x' {
continue
}
switch a.Key {
case "xlink:actuate", "xlink:arcrole", "xlink:href", "xlink:role", "xlink:show",
"xlink:title", "xlink:type", "xml:base", "xml:lang", "xml:space", "xmlns:xlink":
j := strings.Index(a.Key, ":")
aa[i].Namespace = a.Key[:j]
aa[i].Key = a.Key[j+1:]
}
}
}
func htmlIntegrationPoint(n *Node) bool {
if n.Type != ElementNode {
return false
}
switch n.Namespace {
case "math":
if n.Data == "annotation-xml" {
for _, a := range n.Attr {
if a.Key == "encoding" {
val := strings.ToLower(a.Val)
if val == "text/html" || val == "application/xhtml+xml" {
return true
}
}
}
}
case "svg":
switch n.Data {
case "desc", "foreignObject", "title":
return true
}
}
return false
}
func mathMLTextIntegrationPoint(n *Node) bool {
if n.Namespace != "math" {
return false
}
switch n.Data {
case "mi", "mo", "mn", "ms", "mtext":
return true
}
return false
}
// Section 12.2.6.5.
var breakout = map[string]bool{
"b": true,
"big": true,
"blockquote": true,
"body": true,
"br": true,
"center": true,
"code": true,
"dd": true,
"div": true,
"dl": true,
"dt": true,
"em": true,
"embed": true,
"h1": true,
"h2": true,
"h3": true,
"h4": true,
"h5": true,
"h6": true,
"head": true,
"hr": true,
"i": true,
"img": true,
"li": true,
"listing": true,
"menu": true,
"meta": true,
"nobr": true,
"ol": true,
"p": true,
"pre": true,
"ruby": true,
"s": true,
"small": true,
"span": true,
"strong": true,
"strike": true,
"sub": true,
"sup": true,
"table": true,
"tt": true,
"u": true,
"ul": true,
"var": true,
}
// Section 12.2.6.5.
var svgTagNameAdjustments = map[string]string{
"altglyph": "altGlyph",
"altglyphdef": "altGlyphDef",
"altglyphitem": "altGlyphItem",
"animatecolor": "animateColor",
"animatemotion": "animateMotion",
"animatetransform": "animateTransform",
"clippath": "clipPath",
"feblend": "feBlend",
"fecolormatrix": "feColorMatrix",
"fecomponenttransfer": "feComponentTransfer",
"fecomposite": "feComposite",
"feconvolvematrix": "feConvolveMatrix",
"fediffuselighting": "feDiffuseLighting",
"fedisplacementmap": "feDisplacementMap",
"fedistantlight": "feDistantLight",
"feflood": "feFlood",
"fefunca": "feFuncA",
"fefuncb": "feFuncB",
"fefuncg": "feFuncG",
"fefuncr": "feFuncR",
"fegaussianblur": "feGaussianBlur",
"feimage": "feImage",
"femerge": "feMerge",
"femergenode": "feMergeNode",
"femorphology": "feMorphology",
"feoffset": "feOffset",
"fepointlight": "fePointLight",
"fespecularlighting": "feSpecularLighting",
"fespotlight": "feSpotLight",
"fetile": "feTile",
"feturbulence": "feTurbulence",
"foreignobject": "foreignObject",
"glyphref": "glyphRef",
"lineargradient": "linearGradient",
"radialgradient": "radialGradient",
"textpath": "textPath",
}
// Section 12.2.6.1
var mathMLAttributeAdjustments = map[string]string{
"definitionurl": "definitionURL",
}
var svgAttributeAdjustments = map[string]string{
"attributename": "attributeName",
"attributetype": "attributeType",
"basefrequency": "baseFrequency",
"baseprofile": "baseProfile",
"calcmode": "calcMode",
"clippathunits": "clipPathUnits",
"contentscripttype": "contentScriptType",
"contentstyletype": "contentStyleType",
"diffuseconstant": "diffuseConstant",
"edgemode": "edgeMode",
"externalresourcesrequired": "externalResourcesRequired",
"filterres": "filterRes",
"filterunits": "filterUnits",
"glyphref": "glyphRef",
"gradienttransform": "gradientTransform",
"gradientunits": "gradientUnits",
"kernelmatrix": "kernelMatrix",
"kernelunitlength": "kernelUnitLength",
"keypoints": "keyPoints",
"keysplines": "keySplines",
"keytimes": "keyTimes",
"lengthadjust": "lengthAdjust",
"limitingconeangle": "limitingConeAngle",
"markerheight": "markerHeight",
"markerunits": "markerUnits",
"markerwidth": "markerWidth",
"maskcontentunits": "maskContentUnits",
"maskunits": "maskUnits",
"numoctaves": "numOctaves",
"pathlength": "pathLength",
"patterncontentunits": "patternContentUnits",
"patterntransform": "patternTransform",
"patternunits": "patternUnits",
"pointsatx": "pointsAtX",
"pointsaty": "pointsAtY",
"pointsatz": "pointsAtZ",
"preservealpha": "preserveAlpha",
"preserveaspectratio": "preserveAspectRatio",
"primitiveunits": "primitiveUnits",
"refx": "refX",
"refy": "refY",
"repeatcount": "repeatCount",
"repeatdur": "repeatDur",
"requiredextensions": "requiredExtensions",
"requiredfeatures": "requiredFeatures",
"specularconstant": "specularConstant",
"specularexponent": "specularExponent",
"spreadmethod": "spreadMethod",
"startoffset": "startOffset",
"stddeviation": "stdDeviation",
"stitchtiles": "stitchTiles",
"surfacescale": "surfaceScale",
"systemlanguage": "systemLanguage",
"tablevalues": "tableValues",
"targetx": "targetX",
"targety": "targetY",
"textlength": "textLength",
"viewbox": "viewBox",
"viewtarget": "viewTarget",
"xchannelselector": "xChannelSelector",
"ychannelselector": "yChannelSelector",
"zoomandpan": "zoomAndPan",
}

220
vendor/golang.org/x/net/html/node.go generated vendored
View File

@ -1,220 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"golang.org/x/net/html/atom"
)
// A NodeType is the type of a Node.
type NodeType uint32
const (
ErrorNode NodeType = iota
TextNode
DocumentNode
ElementNode
CommentNode
DoctypeNode
scopeMarkerNode
)
// Section 12.2.4.3 says "The markers are inserted when entering applet,
// object, marquee, template, td, th, and caption elements, and are used
// to prevent formatting from "leaking" into applet, object, marquee,
// template, td, th, and caption elements".
var scopeMarker = Node{Type: scopeMarkerNode}
// A Node consists of a NodeType and some Data (tag name for element nodes,
// content for text) and are part of a tree of Nodes. Element nodes may also
// have a Namespace and contain a slice of Attributes. Data is unescaped, so
// that it looks like "a<b" rather than "a&lt;b". For element nodes, DataAtom
// is the atom for Data, or zero if Data is not a known tag name.
//
// An empty Namespace implies a "http://www.w3.org/1999/xhtml" namespace.
// Similarly, "math" is short for "http://www.w3.org/1998/Math/MathML", and
// "svg" is short for "http://www.w3.org/2000/svg".
type Node struct {
Parent, FirstChild, LastChild, PrevSibling, NextSibling *Node
Type NodeType
DataAtom atom.Atom
Data string
Namespace string
Attr []Attribute
}
// InsertBefore inserts newChild as a child of n, immediately before oldChild
// in the sequence of n's children. oldChild may be nil, in which case newChild
// is appended to the end of n's children.
//
// It will panic if newChild already has a parent or siblings.
func (n *Node) InsertBefore(newChild, oldChild *Node) {
if newChild.Parent != nil || newChild.PrevSibling != nil || newChild.NextSibling != nil {
panic("html: InsertBefore called for an attached child Node")
}
var prev, next *Node
if oldChild != nil {
prev, next = oldChild.PrevSibling, oldChild
} else {
prev = n.LastChild
}
if prev != nil {
prev.NextSibling = newChild
} else {
n.FirstChild = newChild
}
if next != nil {
next.PrevSibling = newChild
} else {
n.LastChild = newChild
}
newChild.Parent = n
newChild.PrevSibling = prev
newChild.NextSibling = next
}
// AppendChild adds a node c as a child of n.
//
// It will panic if c already has a parent or siblings.
func (n *Node) AppendChild(c *Node) {
if c.Parent != nil || c.PrevSibling != nil || c.NextSibling != nil {
panic("html: AppendChild called for an attached child Node")
}
last := n.LastChild
if last != nil {
last.NextSibling = c
} else {
n.FirstChild = c
}
n.LastChild = c
c.Parent = n
c.PrevSibling = last
}
// RemoveChild removes a node c that is a child of n. Afterwards, c will have
// no parent and no siblings.
//
// It will panic if c's parent is not n.
func (n *Node) RemoveChild(c *Node) {
if c.Parent != n {
panic("html: RemoveChild called for a non-child Node")
}
if n.FirstChild == c {
n.FirstChild = c.NextSibling
}
if c.NextSibling != nil {
c.NextSibling.PrevSibling = c.PrevSibling
}
if n.LastChild == c {
n.LastChild = c.PrevSibling
}
if c.PrevSibling != nil {
c.PrevSibling.NextSibling = c.NextSibling
}
c.Parent = nil
c.PrevSibling = nil
c.NextSibling = nil
}
// reparentChildren reparents all of src's child nodes to dst.
func reparentChildren(dst, src *Node) {
for {
child := src.FirstChild
if child == nil {
break
}
src.RemoveChild(child)
dst.AppendChild(child)
}
}
// clone returns a new node with the same type, data and attributes.
// The clone has no parent, no siblings and no children.
func (n *Node) clone() *Node {
m := &Node{
Type: n.Type,
DataAtom: n.DataAtom,
Data: n.Data,
Attr: make([]Attribute, len(n.Attr)),
}
copy(m.Attr, n.Attr)
return m
}
// nodeStack is a stack of nodes.
type nodeStack []*Node
// pop pops the stack. It will panic if s is empty.
func (s *nodeStack) pop() *Node {
i := len(*s)
n := (*s)[i-1]
*s = (*s)[:i-1]
return n
}
// top returns the most recently pushed node, or nil if s is empty.
func (s *nodeStack) top() *Node {
if i := len(*s); i > 0 {
return (*s)[i-1]
}
return nil
}
// index returns the index of the top-most occurrence of n in the stack, or -1
// if n is not present.
func (s *nodeStack) index(n *Node) int {
for i := len(*s) - 1; i >= 0; i-- {
if (*s)[i] == n {
return i
}
}
return -1
}
// contains returns whether a is within s.
func (s *nodeStack) contains(a atom.Atom) bool {
for _, n := range *s {
if n.DataAtom == a && n.Namespace == "" {
return true
}
}
return false
}
// insert inserts a node at the given index.
func (s *nodeStack) insert(i int, n *Node) {
(*s) = append(*s, nil)
copy((*s)[i+1:], (*s)[i:])
(*s)[i] = n
}
// remove removes a node from the stack. It is a no-op if n is not present.
func (s *nodeStack) remove(n *Node) {
i := s.index(n)
if i == -1 {
return
}
copy((*s)[i:], (*s)[i+1:])
j := len(*s) - 1
(*s)[j] = nil
*s = (*s)[:j]
}
type insertionModeStack []insertionMode
func (s *insertionModeStack) pop() (im insertionMode) {
i := len(*s)
im = (*s)[i-1]
*s = (*s)[:i-1]
return im
}
func (s *insertionModeStack) top() insertionMode {
if i := len(*s); i > 0 {
return (*s)[i-1]
}
return nil
}

2417
vendor/golang.org/x/net/html/parse.go generated vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,271 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"bufio"
"errors"
"fmt"
"io"
"strings"
)
type writer interface {
io.Writer
io.ByteWriter
WriteString(string) (int, error)
}
// Render renders the parse tree n to the given writer.
//
// Rendering is done on a 'best effort' basis: calling Parse on the output of
// Render will always result in something similar to the original tree, but it
// is not necessarily an exact clone unless the original tree was 'well-formed'.
// 'Well-formed' is not easily specified; the HTML5 specification is
// complicated.
//
// Calling Parse on arbitrary input typically results in a 'well-formed' parse
// tree. However, it is possible for Parse to yield a 'badly-formed' parse tree.
// For example, in a 'well-formed' parse tree, no <a> element is a child of
// another <a> element: parsing "<a><a>" results in two sibling elements.
// Similarly, in a 'well-formed' parse tree, no <a> element is a child of a
// <table> element: parsing "<p><table><a>" results in a <p> with two sibling
// children; the <a> is reparented to the <table>'s parent. However, calling
// Parse on "<a><table><a>" does not return an error, but the result has an <a>
// element with an <a> child, and is therefore not 'well-formed'.
//
// Programmatically constructed trees are typically also 'well-formed', but it
// is possible to construct a tree that looks innocuous but, when rendered and
// re-parsed, results in a different tree. A simple example is that a solitary
// text node would become a tree containing <html>, <head> and <body> elements.
// Another example is that the programmatic equivalent of "a<head>b</head>c"
// becomes "<html><head><head/><body>abc</body></html>".
func Render(w io.Writer, n *Node) error {
if x, ok := w.(writer); ok {
return render(x, n)
}
buf := bufio.NewWriter(w)
if err := render(buf, n); err != nil {
return err
}
return buf.Flush()
}
// plaintextAbort is returned from render1 when a <plaintext> element
// has been rendered. No more end tags should be rendered after that.
var plaintextAbort = errors.New("html: internal error (plaintext abort)")
func render(w writer, n *Node) error {
err := render1(w, n)
if err == plaintextAbort {
err = nil
}
return err
}
func render1(w writer, n *Node) error {
// Render non-element nodes; these are the easy cases.
switch n.Type {
case ErrorNode:
return errors.New("html: cannot render an ErrorNode node")
case TextNode:
return escape(w, n.Data)
case DocumentNode:
for c := n.FirstChild; c != nil; c = c.NextSibling {
if err := render1(w, c); err != nil {
return err
}
}
return nil
case ElementNode:
// No-op.
case CommentNode:
if _, err := w.WriteString("<!--"); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
if _, err := w.WriteString("-->"); err != nil {
return err
}
return nil
case DoctypeNode:
if _, err := w.WriteString("<!DOCTYPE "); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
if n.Attr != nil {
var p, s string
for _, a := range n.Attr {
switch a.Key {
case "public":
p = a.Val
case "system":
s = a.Val
}
}
if p != "" {
if _, err := w.WriteString(" PUBLIC "); err != nil {
return err
}
if err := writeQuoted(w, p); err != nil {
return err
}
if s != "" {
if err := w.WriteByte(' '); err != nil {
return err
}
if err := writeQuoted(w, s); err != nil {
return err
}
}
} else if s != "" {
if _, err := w.WriteString(" SYSTEM "); err != nil {
return err
}
if err := writeQuoted(w, s); err != nil {
return err
}
}
}
return w.WriteByte('>')
default:
return errors.New("html: unknown node type")
}
// Render the <xxx> opening tag.
if err := w.WriteByte('<'); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
for _, a := range n.Attr {
if err := w.WriteByte(' '); err != nil {
return err
}
if a.Namespace != "" {
if _, err := w.WriteString(a.Namespace); err != nil {
return err
}
if err := w.WriteByte(':'); err != nil {
return err
}
}
if _, err := w.WriteString(a.Key); err != nil {
return err
}
if _, err := w.WriteString(`="`); err != nil {
return err
}
if err := escape(w, a.Val); err != nil {
return err
}
if err := w.WriteByte('"'); err != nil {
return err
}
}
if voidElements[n.Data] {
if n.FirstChild != nil {
return fmt.Errorf("html: void element <%s> has child nodes", n.Data)
}
_, err := w.WriteString("/>")
return err
}
if err := w.WriteByte('>'); err != nil {
return err
}
// Add initial newline where there is danger of a newline beging ignored.
if c := n.FirstChild; c != nil && c.Type == TextNode && strings.HasPrefix(c.Data, "\n") {
switch n.Data {
case "pre", "listing", "textarea":
if err := w.WriteByte('\n'); err != nil {
return err
}
}
}
// Render any child nodes.
switch n.Data {
case "iframe", "noembed", "noframes", "noscript", "plaintext", "script", "style", "xmp":
for c := n.FirstChild; c != nil; c = c.NextSibling {
if c.Type == TextNode {
if _, err := w.WriteString(c.Data); err != nil {
return err
}
} else {
if err := render1(w, c); err != nil {
return err
}
}
}
if n.Data == "plaintext" {
// Don't render anything else. <plaintext> must be the
// last element in the file, with no closing tag.
return plaintextAbort
}
default:
for c := n.FirstChild; c != nil; c = c.NextSibling {
if err := render1(w, c); err != nil {
return err
}
}
}
// Render the </xxx> closing tag.
if _, err := w.WriteString("</"); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
return w.WriteByte('>')
}
// writeQuoted writes s to w surrounded by quotes. Normally it will use double
// quotes, but if s contains a double quote, it will use single quotes.
// It is used for writing the identifiers in a doctype declaration.
// In valid HTML, they can't contain both types of quotes.
func writeQuoted(w writer, s string) error {
var q byte = '"'
if strings.Contains(s, `"`) {
q = '\''
}
if err := w.WriteByte(q); err != nil {
return err
}
if _, err := w.WriteString(s); err != nil {
return err
}
if err := w.WriteByte(q); err != nil {
return err
}
return nil
}
// Section 12.1.2, "Elements", gives this list of void elements. Void elements
// are those that can't have any contents.
var voidElements = map[string]bool{
"area": true,
"base": true,
"br": true,
"col": true,
"command": true,
"embed": true,
"hr": true,
"img": true,
"input": true,
"keygen": true,
"link": true,
"meta": true,
"param": true,
"source": true,
"track": true,
"wbr": true,
}

1219
vendor/golang.org/x/net/html/token.go generated vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,50 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package httpguts provides functions implementing various details
// of the HTTP specification.
//
// This package is shared by the standard library (which vendors it)
// and x/net/http2. It comes with no API stability promise.
package httpguts
import (
"net/textproto"
"strings"
)
// ValidTrailerHeader reports whether name is a valid header field name to appear
// in trailers.
// See RFC 7230, Section 4.1.2
func ValidTrailerHeader(name string) bool {
name = textproto.CanonicalMIMEHeaderKey(name)
if strings.HasPrefix(name, "If-") || badTrailer[name] {
return false
}
return true
}
var badTrailer = map[string]bool{
"Authorization": true,
"Cache-Control": true,
"Connection": true,
"Content-Encoding": true,
"Content-Length": true,
"Content-Range": true,
"Content-Type": true,
"Expect": true,
"Host": true,
"Keep-Alive": true,
"Max-Forwards": true,
"Pragma": true,
"Proxy-Authenticate": true,
"Proxy-Authorization": true,
"Proxy-Connection": true,
"Range": true,
"Realm": true,
"Te": true,
"Trailer": true,
"Transfer-Encoding": true,
"Www-Authenticate": true,
}

View File

@ -1,346 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package httpguts
import (
"net"
"strings"
"unicode/utf8"
"golang.org/x/net/idna"
)
var isTokenTable = [127]bool{
'!': true,
'#': true,
'$': true,
'%': true,
'&': true,
'\'': true,
'*': true,
'+': true,
'-': true,
'.': true,
'0': true,
'1': true,
'2': true,
'3': true,
'4': true,
'5': true,
'6': true,
'7': true,
'8': true,
'9': true,
'A': true,
'B': true,
'C': true,
'D': true,
'E': true,
'F': true,
'G': true,
'H': true,
'I': true,
'J': true,
'K': true,
'L': true,
'M': true,
'N': true,
'O': true,
'P': true,
'Q': true,
'R': true,
'S': true,
'T': true,
'U': true,
'W': true,
'V': true,
'X': true,
'Y': true,
'Z': true,
'^': true,
'_': true,
'`': true,
'a': true,
'b': true,
'c': true,
'd': true,
'e': true,
'f': true,
'g': true,
'h': true,
'i': true,
'j': true,
'k': true,
'l': true,
'm': true,
'n': true,
'o': true,
'p': true,
'q': true,
'r': true,
's': true,
't': true,
'u': true,
'v': true,
'w': true,
'x': true,
'y': true,
'z': true,
'|': true,
'~': true,
}
func IsTokenRune(r rune) bool {
i := int(r)
return i < len(isTokenTable) && isTokenTable[i]
}
func isNotToken(r rune) bool {
return !IsTokenRune(r)
}
// HeaderValuesContainsToken reports whether any string in values
// contains the provided token, ASCII case-insensitively.
func HeaderValuesContainsToken(values []string, token string) bool {
for _, v := range values {
if headerValueContainsToken(v, token) {
return true
}
}
return false
}
// isOWS reports whether b is an optional whitespace byte, as defined
// by RFC 7230 section 3.2.3.
func isOWS(b byte) bool { return b == ' ' || b == '\t' }
// trimOWS returns x with all optional whitespace removes from the
// beginning and end.
func trimOWS(x string) string {
// TODO: consider using strings.Trim(x, " \t") instead,
// if and when it's fast enough. See issue 10292.
// But this ASCII-only code will probably always beat UTF-8
// aware code.
for len(x) > 0 && isOWS(x[0]) {
x = x[1:]
}
for len(x) > 0 && isOWS(x[len(x)-1]) {
x = x[:len(x)-1]
}
return x
}
// headerValueContainsToken reports whether v (assumed to be a
// 0#element, in the ABNF extension described in RFC 7230 section 7)
// contains token amongst its comma-separated tokens, ASCII
// case-insensitively.
func headerValueContainsToken(v string, token string) bool {
v = trimOWS(v)
if comma := strings.IndexByte(v, ','); comma != -1 {
return tokenEqual(trimOWS(v[:comma]), token) || headerValueContainsToken(v[comma+1:], token)
}
return tokenEqual(v, token)
}
// lowerASCII returns the ASCII lowercase version of b.
func lowerASCII(b byte) byte {
if 'A' <= b && b <= 'Z' {
return b + ('a' - 'A')
}
return b
}
// tokenEqual reports whether t1 and t2 are equal, ASCII case-insensitively.
func tokenEqual(t1, t2 string) bool {
if len(t1) != len(t2) {
return false
}
for i, b := range t1 {
if b >= utf8.RuneSelf {
// No UTF-8 or non-ASCII allowed in tokens.
return false
}
if lowerASCII(byte(b)) != lowerASCII(t2[i]) {
return false
}
}
return true
}
// isLWS reports whether b is linear white space, according
// to http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2
// LWS = [CRLF] 1*( SP | HT )
func isLWS(b byte) bool { return b == ' ' || b == '\t' }
// isCTL reports whether b is a control byte, according
// to http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2
// CTL = <any US-ASCII control character
// (octets 0 - 31) and DEL (127)>
func isCTL(b byte) bool {
const del = 0x7f // a CTL
return b < ' ' || b == del
}
// ValidHeaderFieldName reports whether v is a valid HTTP/1.x header name.
// HTTP/2 imposes the additional restriction that uppercase ASCII
// letters are not allowed.
//
// RFC 7230 says:
// header-field = field-name ":" OWS field-value OWS
// field-name = token
// token = 1*tchar
// tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
// "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
func ValidHeaderFieldName(v string) bool {
if len(v) == 0 {
return false
}
for _, r := range v {
if !IsTokenRune(r) {
return false
}
}
return true
}
// ValidHostHeader reports whether h is a valid host header.
func ValidHostHeader(h string) bool {
// The latest spec is actually this:
//
// http://tools.ietf.org/html/rfc7230#section-5.4
// Host = uri-host [ ":" port ]
//
// Where uri-host is:
// http://tools.ietf.org/html/rfc3986#section-3.2.2
//
// But we're going to be much more lenient for now and just
// search for any byte that's not a valid byte in any of those
// expressions.
for i := 0; i < len(h); i++ {
if !validHostByte[h[i]] {
return false
}
}
return true
}
// See the validHostHeader comment.
var validHostByte = [256]bool{
'0': true, '1': true, '2': true, '3': true, '4': true, '5': true, '6': true, '7': true,
'8': true, '9': true,
'a': true, 'b': true, 'c': true, 'd': true, 'e': true, 'f': true, 'g': true, 'h': true,
'i': true, 'j': true, 'k': true, 'l': true, 'm': true, 'n': true, 'o': true, 'p': true,
'q': true, 'r': true, 's': true, 't': true, 'u': true, 'v': true, 'w': true, 'x': true,
'y': true, 'z': true,
'A': true, 'B': true, 'C': true, 'D': true, 'E': true, 'F': true, 'G': true, 'H': true,
'I': true, 'J': true, 'K': true, 'L': true, 'M': true, 'N': true, 'O': true, 'P': true,
'Q': true, 'R': true, 'S': true, 'T': true, 'U': true, 'V': true, 'W': true, 'X': true,
'Y': true, 'Z': true,
'!': true, // sub-delims
'$': true, // sub-delims
'%': true, // pct-encoded (and used in IPv6 zones)
'&': true, // sub-delims
'(': true, // sub-delims
')': true, // sub-delims
'*': true, // sub-delims
'+': true, // sub-delims
',': true, // sub-delims
'-': true, // unreserved
'.': true, // unreserved
':': true, // IPv6address + Host expression's optional port
';': true, // sub-delims
'=': true, // sub-delims
'[': true,
'\'': true, // sub-delims
']': true,
'_': true, // unreserved
'~': true, // unreserved
}
// ValidHeaderFieldValue reports whether v is a valid "field-value" according to
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2 :
//
// message-header = field-name ":" [ field-value ]
// field-value = *( field-content | LWS )
// field-content = <the OCTETs making up the field-value
// and consisting of either *TEXT or combinations
// of token, separators, and quoted-string>
//
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2 :
//
// TEXT = <any OCTET except CTLs,
// but including LWS>
// LWS = [CRLF] 1*( SP | HT )
// CTL = <any US-ASCII control character
// (octets 0 - 31) and DEL (127)>
//
// RFC 7230 says:
// field-value = *( field-content / obs-fold )
// obj-fold = N/A to http2, and deprecated
// field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ]
// field-vchar = VCHAR / obs-text
// obs-text = %x80-FF
// VCHAR = "any visible [USASCII] character"
//
// http2 further says: "Similarly, HTTP/2 allows header field values
// that are not valid. While most of the values that can be encoded
// will not alter header field parsing, carriage return (CR, ASCII
// 0xd), line feed (LF, ASCII 0xa), and the zero character (NUL, ASCII
// 0x0) might be exploited by an attacker if they are translated
// verbatim. Any request or response that contains a character not
// permitted in a header field value MUST be treated as malformed
// (Section 8.1.2.6). Valid characters are defined by the
// field-content ABNF rule in Section 3.2 of [RFC7230]."
//
// This function does not (yet?) properly handle the rejection of
// strings that begin or end with SP or HTAB.
func ValidHeaderFieldValue(v string) bool {
for i := 0; i < len(v); i++ {
b := v[i]
if isCTL(b) && !isLWS(b) {
return false
}
}
return true
}
func isASCII(s string) bool {
for i := 0; i < len(s); i++ {
if s[i] >= utf8.RuneSelf {
return false
}
}
return true
}
// PunycodeHostPort returns the IDNA Punycode version
// of the provided "host" or "host:port" string.
func PunycodeHostPort(v string) (string, error) {
if isASCII(v) {
return v, nil
}
host, port, err := net.SplitHostPort(v)
if err != nil {
// The input 'v' argument was just a "host" argument,
// without a port. This error should not be returned
// to the caller.
host = v
port = ""
}
host, err = idna.ToASCII(host)
if err != nil {
// Non-UTF-8? Not representable in Punycode, in any
// case.
return "", err
}
if port == "" {
return host, nil
}
return net.JoinHostPort(host, port), nil
}

View File

@ -1,2 +0,0 @@
*~
h2i/h2i

View File

@ -1,51 +0,0 @@
#
# This Dockerfile builds a recent curl with HTTP/2 client support, using
# a recent nghttp2 build.
#
# See the Makefile for how to tag it. If Docker and that image is found, the
# Go tests use this curl binary for integration tests.
#
FROM ubuntu:trusty
RUN apt-get update && \
apt-get upgrade -y && \
apt-get install -y git-core build-essential wget
RUN apt-get install -y --no-install-recommends \
autotools-dev libtool pkg-config zlib1g-dev \
libcunit1-dev libssl-dev libxml2-dev libevent-dev \
automake autoconf
# The list of packages nghttp2 recommends for h2load:
RUN apt-get install -y --no-install-recommends make binutils \
autoconf automake autotools-dev \
libtool pkg-config zlib1g-dev libcunit1-dev libssl-dev libxml2-dev \
libev-dev libevent-dev libjansson-dev libjemalloc-dev \
cython python3.4-dev python-setuptools
# Note: setting NGHTTP2_VER before the git clone, so an old git clone isn't cached:
ENV NGHTTP2_VER 895da9a
RUN cd /root && git clone https://github.com/tatsuhiro-t/nghttp2.git
WORKDIR /root/nghttp2
RUN git reset --hard $NGHTTP2_VER
RUN autoreconf -i
RUN automake
RUN autoconf
RUN ./configure
RUN make
RUN make install
WORKDIR /root
RUN wget http://curl.haxx.se/download/curl-7.45.0.tar.gz
RUN tar -zxvf curl-7.45.0.tar.gz
WORKDIR /root/curl-7.45.0
RUN ./configure --with-ssl --with-nghttp2=/usr/local
RUN make
RUN make install
RUN ldconfig
CMD ["-h"]
ENTRYPOINT ["/usr/local/bin/curl"]

View File

@ -1,3 +0,0 @@
curlimage:
docker build -t gohttp2/curl .

20
vendor/golang.org/x/net/http2/README generated vendored
View File

@ -1,20 +0,0 @@
This is a work-in-progress HTTP/2 implementation for Go.
It will eventually live in the Go standard library and won't require
any changes to your code to use. It will just be automatic.
Status:
* The server support is pretty good. A few things are missing
but are being worked on.
* The client work has just started but shares a lot of code
is coming along much quicker.
Docs are at https://godoc.org/golang.org/x/net/http2
Demo test server at https://http2.golang.org/
Help & bug reports welcome!
Contributing: https://golang.org/doc/contribute.html
Bugs: https://golang.org/issue/new?title=x/net/http2:+

View File

@ -1,641 +0,0 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
// A list of the possible cipher suite ids. Taken from
// https://www.iana.org/assignments/tls-parameters/tls-parameters.txt
const (
cipher_TLS_NULL_WITH_NULL_NULL uint16 = 0x0000
cipher_TLS_RSA_WITH_NULL_MD5 uint16 = 0x0001
cipher_TLS_RSA_WITH_NULL_SHA uint16 = 0x0002
cipher_TLS_RSA_EXPORT_WITH_RC4_40_MD5 uint16 = 0x0003
cipher_TLS_RSA_WITH_RC4_128_MD5 uint16 = 0x0004
cipher_TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
cipher_TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 uint16 = 0x0006
cipher_TLS_RSA_WITH_IDEA_CBC_SHA uint16 = 0x0007
cipher_TLS_RSA_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x0008
cipher_TLS_RSA_WITH_DES_CBC_SHA uint16 = 0x0009
cipher_TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000A
cipher_TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x000B
cipher_TLS_DH_DSS_WITH_DES_CBC_SHA uint16 = 0x000C
cipher_TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA uint16 = 0x000D
cipher_TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x000E
cipher_TLS_DH_RSA_WITH_DES_CBC_SHA uint16 = 0x000F
cipher_TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x0010
cipher_TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x0011
cipher_TLS_DHE_DSS_WITH_DES_CBC_SHA uint16 = 0x0012
cipher_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA uint16 = 0x0013
cipher_TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x0014
cipher_TLS_DHE_RSA_WITH_DES_CBC_SHA uint16 = 0x0015
cipher_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x0016
cipher_TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 uint16 = 0x0017
cipher_TLS_DH_anon_WITH_RC4_128_MD5 uint16 = 0x0018
cipher_TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA uint16 = 0x0019
cipher_TLS_DH_anon_WITH_DES_CBC_SHA uint16 = 0x001A
cipher_TLS_DH_anon_WITH_3DES_EDE_CBC_SHA uint16 = 0x001B
// Reserved uint16 = 0x001C-1D
cipher_TLS_KRB5_WITH_DES_CBC_SHA uint16 = 0x001E
cipher_TLS_KRB5_WITH_3DES_EDE_CBC_SHA uint16 = 0x001F
cipher_TLS_KRB5_WITH_RC4_128_SHA uint16 = 0x0020
cipher_TLS_KRB5_WITH_IDEA_CBC_SHA uint16 = 0x0021
cipher_TLS_KRB5_WITH_DES_CBC_MD5 uint16 = 0x0022
cipher_TLS_KRB5_WITH_3DES_EDE_CBC_MD5 uint16 = 0x0023
cipher_TLS_KRB5_WITH_RC4_128_MD5 uint16 = 0x0024
cipher_TLS_KRB5_WITH_IDEA_CBC_MD5 uint16 = 0x0025
cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA uint16 = 0x0026
cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA uint16 = 0x0027
cipher_TLS_KRB5_EXPORT_WITH_RC4_40_SHA uint16 = 0x0028
cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 uint16 = 0x0029
cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 uint16 = 0x002A
cipher_TLS_KRB5_EXPORT_WITH_RC4_40_MD5 uint16 = 0x002B
cipher_TLS_PSK_WITH_NULL_SHA uint16 = 0x002C
cipher_TLS_DHE_PSK_WITH_NULL_SHA uint16 = 0x002D
cipher_TLS_RSA_PSK_WITH_NULL_SHA uint16 = 0x002E
cipher_TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002F
cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA uint16 = 0x0030
cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA uint16 = 0x0031
cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA uint16 = 0x0032
cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0x0033
cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA uint16 = 0x0034
cipher_TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA uint16 = 0x0036
cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0037
cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA uint16 = 0x0038
cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0039
cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA uint16 = 0x003A
cipher_TLS_RSA_WITH_NULL_SHA256 uint16 = 0x003B
cipher_TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003C
cipher_TLS_RSA_WITH_AES_256_CBC_SHA256 uint16 = 0x003D
cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA256 uint16 = 0x003E
cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003F
cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 uint16 = 0x0040
cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0041
cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0042
cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0043
cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0044
cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0045
cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA uint16 = 0x0046
// Reserved uint16 = 0x0047-4F
// Reserved uint16 = 0x0050-58
// Reserved uint16 = 0x0059-5C
// Unassigned uint16 = 0x005D-5F
// Reserved uint16 = 0x0060-66
cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x0067
cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA256 uint16 = 0x0068
cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA256 uint16 = 0x0069
cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 uint16 = 0x006A
cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 uint16 = 0x006B
cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA256 uint16 = 0x006C
cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA256 uint16 = 0x006D
// Unassigned uint16 = 0x006E-83
cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA uint16 = 0x0084
cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA uint16 = 0x0085
cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA uint16 = 0x0086
cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA uint16 = 0x0087
cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA uint16 = 0x0088
cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA uint16 = 0x0089
cipher_TLS_PSK_WITH_RC4_128_SHA uint16 = 0x008A
cipher_TLS_PSK_WITH_3DES_EDE_CBC_SHA uint16 = 0x008B
cipher_TLS_PSK_WITH_AES_128_CBC_SHA uint16 = 0x008C
cipher_TLS_PSK_WITH_AES_256_CBC_SHA uint16 = 0x008D
cipher_TLS_DHE_PSK_WITH_RC4_128_SHA uint16 = 0x008E
cipher_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA uint16 = 0x008F
cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA uint16 = 0x0090
cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA uint16 = 0x0091
cipher_TLS_RSA_PSK_WITH_RC4_128_SHA uint16 = 0x0092
cipher_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA uint16 = 0x0093
cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA uint16 = 0x0094
cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA uint16 = 0x0095
cipher_TLS_RSA_WITH_SEED_CBC_SHA uint16 = 0x0096
cipher_TLS_DH_DSS_WITH_SEED_CBC_SHA uint16 = 0x0097
cipher_TLS_DH_RSA_WITH_SEED_CBC_SHA uint16 = 0x0098
cipher_TLS_DHE_DSS_WITH_SEED_CBC_SHA uint16 = 0x0099
cipher_TLS_DHE_RSA_WITH_SEED_CBC_SHA uint16 = 0x009A
cipher_TLS_DH_anon_WITH_SEED_CBC_SHA uint16 = 0x009B
cipher_TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009C
cipher_TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009D
cipher_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009E
cipher_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009F
cipher_TLS_DH_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x00A0
cipher_TLS_DH_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x00A1
cipher_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 uint16 = 0x00A2
cipher_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 uint16 = 0x00A3
cipher_TLS_DH_DSS_WITH_AES_128_GCM_SHA256 uint16 = 0x00A4
cipher_TLS_DH_DSS_WITH_AES_256_GCM_SHA384 uint16 = 0x00A5
cipher_TLS_DH_anon_WITH_AES_128_GCM_SHA256 uint16 = 0x00A6
cipher_TLS_DH_anon_WITH_AES_256_GCM_SHA384 uint16 = 0x00A7
cipher_TLS_PSK_WITH_AES_128_GCM_SHA256 uint16 = 0x00A8
cipher_TLS_PSK_WITH_AES_256_GCM_SHA384 uint16 = 0x00A9
cipher_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 uint16 = 0x00AA
cipher_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 uint16 = 0x00AB
cipher_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 uint16 = 0x00AC
cipher_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 uint16 = 0x00AD
cipher_TLS_PSK_WITH_AES_128_CBC_SHA256 uint16 = 0x00AE
cipher_TLS_PSK_WITH_AES_256_CBC_SHA384 uint16 = 0x00AF
cipher_TLS_PSK_WITH_NULL_SHA256 uint16 = 0x00B0
cipher_TLS_PSK_WITH_NULL_SHA384 uint16 = 0x00B1
cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 uint16 = 0x00B2
cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 uint16 = 0x00B3
cipher_TLS_DHE_PSK_WITH_NULL_SHA256 uint16 = 0x00B4
cipher_TLS_DHE_PSK_WITH_NULL_SHA384 uint16 = 0x00B5
cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 uint16 = 0x00B6
cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 uint16 = 0x00B7
cipher_TLS_RSA_PSK_WITH_NULL_SHA256 uint16 = 0x00B8
cipher_TLS_RSA_PSK_WITH_NULL_SHA384 uint16 = 0x00B9
cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BA
cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BB
cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BC
cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BD
cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BE
cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0x00BF
cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C0
cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C1
cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C2
cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C3
cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C4
cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256 uint16 = 0x00C5
// Unassigned uint16 = 0x00C6-FE
cipher_TLS_EMPTY_RENEGOTIATION_INFO_SCSV uint16 = 0x00FF
// Unassigned uint16 = 0x01-55,*
cipher_TLS_FALLBACK_SCSV uint16 = 0x5600
// Unassigned uint16 = 0x5601 - 0xC000
cipher_TLS_ECDH_ECDSA_WITH_NULL_SHA uint16 = 0xC001
cipher_TLS_ECDH_ECDSA_WITH_RC4_128_SHA uint16 = 0xC002
cipher_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xC003
cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xC004
cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xC005
cipher_TLS_ECDHE_ECDSA_WITH_NULL_SHA uint16 = 0xC006
cipher_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xC007
cipher_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xC008
cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xC009
cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xC00A
cipher_TLS_ECDH_RSA_WITH_NULL_SHA uint16 = 0xC00B
cipher_TLS_ECDH_RSA_WITH_RC4_128_SHA uint16 = 0xC00C
cipher_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xC00D
cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA uint16 = 0xC00E
cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA uint16 = 0xC00F
cipher_TLS_ECDHE_RSA_WITH_NULL_SHA uint16 = 0xC010
cipher_TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xC011
cipher_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xC012
cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xC013
cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xC014
cipher_TLS_ECDH_anon_WITH_NULL_SHA uint16 = 0xC015
cipher_TLS_ECDH_anon_WITH_RC4_128_SHA uint16 = 0xC016
cipher_TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA uint16 = 0xC017
cipher_TLS_ECDH_anon_WITH_AES_128_CBC_SHA uint16 = 0xC018
cipher_TLS_ECDH_anon_WITH_AES_256_CBC_SHA uint16 = 0xC019
cipher_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA uint16 = 0xC01A
cipher_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xC01B
cipher_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA uint16 = 0xC01C
cipher_TLS_SRP_SHA_WITH_AES_128_CBC_SHA uint16 = 0xC01D
cipher_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA uint16 = 0xC01E
cipher_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA uint16 = 0xC01F
cipher_TLS_SRP_SHA_WITH_AES_256_CBC_SHA uint16 = 0xC020
cipher_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA uint16 = 0xC021
cipher_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA uint16 = 0xC022
cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xC023
cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 uint16 = 0xC024
cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xC025
cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 uint16 = 0xC026
cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xC027
cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 uint16 = 0xC028
cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xC029
cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 uint16 = 0xC02A
cipher_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xC02B
cipher_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xC02C
cipher_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xC02D
cipher_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xC02E
cipher_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xC02F
cipher_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xC030
cipher_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xC031
cipher_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xC032
cipher_TLS_ECDHE_PSK_WITH_RC4_128_SHA uint16 = 0xC033
cipher_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA uint16 = 0xC034
cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA uint16 = 0xC035
cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA uint16 = 0xC036
cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 uint16 = 0xC037
cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 uint16 = 0xC038
cipher_TLS_ECDHE_PSK_WITH_NULL_SHA uint16 = 0xC039
cipher_TLS_ECDHE_PSK_WITH_NULL_SHA256 uint16 = 0xC03A
cipher_TLS_ECDHE_PSK_WITH_NULL_SHA384 uint16 = 0xC03B
cipher_TLS_RSA_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC03C
cipher_TLS_RSA_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC03D
cipher_TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC03E
cipher_TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC03F
cipher_TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC040
cipher_TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC041
cipher_TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC042
cipher_TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC043
cipher_TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC044
cipher_TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC045
cipher_TLS_DH_anon_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC046
cipher_TLS_DH_anon_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC047
cipher_TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC048
cipher_TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC049
cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC04A
cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC04B
cipher_TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC04C
cipher_TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC04D
cipher_TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC04E
cipher_TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC04F
cipher_TLS_RSA_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC050
cipher_TLS_RSA_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC051
cipher_TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC052
cipher_TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC053
cipher_TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC054
cipher_TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC055
cipher_TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC056
cipher_TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC057
cipher_TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC058
cipher_TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC059
cipher_TLS_DH_anon_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC05A
cipher_TLS_DH_anon_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC05B
cipher_TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC05C
cipher_TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC05D
cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC05E
cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC05F
cipher_TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC060
cipher_TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC061
cipher_TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC062
cipher_TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC063
cipher_TLS_PSK_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC064
cipher_TLS_PSK_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC065
cipher_TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC066
cipher_TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC067
cipher_TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC068
cipher_TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC069
cipher_TLS_PSK_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC06A
cipher_TLS_PSK_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC06B
cipher_TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC06C
cipher_TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC06D
cipher_TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 uint16 = 0xC06E
cipher_TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 uint16 = 0xC06F
cipher_TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 uint16 = 0xC070
cipher_TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384 uint16 = 0xC071
cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC072
cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC073
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC074
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC075
cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC076
cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC077
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC078
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC079
cipher_TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC07A
cipher_TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC07B
cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC07C
cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC07D
cipher_TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC07E
cipher_TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC07F
cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC080
cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC081
cipher_TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC082
cipher_TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC083
cipher_TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC084
cipher_TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC085
cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC086
cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC087
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC088
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC089
cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC08A
cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC08B
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC08C
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC08D
cipher_TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC08E
cipher_TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC08F
cipher_TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC090
cipher_TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC091
cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256 uint16 = 0xC092
cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384 uint16 = 0xC093
cipher_TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC094
cipher_TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC095
cipher_TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC096
cipher_TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC097
cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC098
cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC099
cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 uint16 = 0xC09A
cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 uint16 = 0xC09B
cipher_TLS_RSA_WITH_AES_128_CCM uint16 = 0xC09C
cipher_TLS_RSA_WITH_AES_256_CCM uint16 = 0xC09D
cipher_TLS_DHE_RSA_WITH_AES_128_CCM uint16 = 0xC09E
cipher_TLS_DHE_RSA_WITH_AES_256_CCM uint16 = 0xC09F
cipher_TLS_RSA_WITH_AES_128_CCM_8 uint16 = 0xC0A0
cipher_TLS_RSA_WITH_AES_256_CCM_8 uint16 = 0xC0A1
cipher_TLS_DHE_RSA_WITH_AES_128_CCM_8 uint16 = 0xC0A2
cipher_TLS_DHE_RSA_WITH_AES_256_CCM_8 uint16 = 0xC0A3
cipher_TLS_PSK_WITH_AES_128_CCM uint16 = 0xC0A4
cipher_TLS_PSK_WITH_AES_256_CCM uint16 = 0xC0A5
cipher_TLS_DHE_PSK_WITH_AES_128_CCM uint16 = 0xC0A6
cipher_TLS_DHE_PSK_WITH_AES_256_CCM uint16 = 0xC0A7
cipher_TLS_PSK_WITH_AES_128_CCM_8 uint16 = 0xC0A8
cipher_TLS_PSK_WITH_AES_256_CCM_8 uint16 = 0xC0A9
cipher_TLS_PSK_DHE_WITH_AES_128_CCM_8 uint16 = 0xC0AA
cipher_TLS_PSK_DHE_WITH_AES_256_CCM_8 uint16 = 0xC0AB
cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CCM uint16 = 0xC0AC
cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CCM uint16 = 0xC0AD
cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 uint16 = 0xC0AE
cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 uint16 = 0xC0AF
// Unassigned uint16 = 0xC0B0-FF
// Unassigned uint16 = 0xC1-CB,*
// Unassigned uint16 = 0xCC00-A7
cipher_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCA8
cipher_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCA9
cipher_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCAA
cipher_TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCAB
cipher_TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCAC
cipher_TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCAD
cipher_TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xCCAE
)
// isBadCipher reports whether the cipher is blacklisted by the HTTP/2 spec.
// References:
// https://tools.ietf.org/html/rfc7540#appendix-A
// Reject cipher suites from Appendix A.
// "This list includes those cipher suites that do not
// offer an ephemeral key exchange and those that are
// based on the TLS null, stream or block cipher type"
func isBadCipher(cipher uint16) bool {
switch cipher {
case cipher_TLS_NULL_WITH_NULL_NULL,
cipher_TLS_RSA_WITH_NULL_MD5,
cipher_TLS_RSA_WITH_NULL_SHA,
cipher_TLS_RSA_EXPORT_WITH_RC4_40_MD5,
cipher_TLS_RSA_WITH_RC4_128_MD5,
cipher_TLS_RSA_WITH_RC4_128_SHA,
cipher_TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5,
cipher_TLS_RSA_WITH_IDEA_CBC_SHA,
cipher_TLS_RSA_EXPORT_WITH_DES40_CBC_SHA,
cipher_TLS_RSA_WITH_DES_CBC_SHA,
cipher_TLS_RSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA,
cipher_TLS_DH_DSS_WITH_DES_CBC_SHA,
cipher_TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA,
cipher_TLS_DH_RSA_WITH_DES_CBC_SHA,
cipher_TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA,
cipher_TLS_DHE_DSS_WITH_DES_CBC_SHA,
cipher_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_DES_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_DH_anon_EXPORT_WITH_RC4_40_MD5,
cipher_TLS_DH_anon_WITH_RC4_128_MD5,
cipher_TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA,
cipher_TLS_DH_anon_WITH_DES_CBC_SHA,
cipher_TLS_DH_anon_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_KRB5_WITH_DES_CBC_SHA,
cipher_TLS_KRB5_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_KRB5_WITH_RC4_128_SHA,
cipher_TLS_KRB5_WITH_IDEA_CBC_SHA,
cipher_TLS_KRB5_WITH_DES_CBC_MD5,
cipher_TLS_KRB5_WITH_3DES_EDE_CBC_MD5,
cipher_TLS_KRB5_WITH_RC4_128_MD5,
cipher_TLS_KRB5_WITH_IDEA_CBC_MD5,
cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA,
cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA,
cipher_TLS_KRB5_EXPORT_WITH_RC4_40_SHA,
cipher_TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5,
cipher_TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5,
cipher_TLS_KRB5_EXPORT_WITH_RC4_40_MD5,
cipher_TLS_PSK_WITH_NULL_SHA,
cipher_TLS_DHE_PSK_WITH_NULL_SHA,
cipher_TLS_RSA_PSK_WITH_NULL_SHA,
cipher_TLS_RSA_WITH_AES_128_CBC_SHA,
cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA,
cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA,
cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA,
cipher_TLS_RSA_WITH_AES_256_CBC_SHA,
cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA,
cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA,
cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA,
cipher_TLS_RSA_WITH_NULL_SHA256,
cipher_TLS_RSA_WITH_AES_128_CBC_SHA256,
cipher_TLS_RSA_WITH_AES_256_CBC_SHA256,
cipher_TLS_DH_DSS_WITH_AES_128_CBC_SHA256,
cipher_TLS_DH_RSA_WITH_AES_128_CBC_SHA256,
cipher_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,
cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA,
cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA,
cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA,
cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
cipher_TLS_DH_DSS_WITH_AES_256_CBC_SHA256,
cipher_TLS_DH_RSA_WITH_AES_256_CBC_SHA256,
cipher_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,
cipher_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
cipher_TLS_DH_anon_WITH_AES_128_CBC_SHA256,
cipher_TLS_DH_anon_WITH_AES_256_CBC_SHA256,
cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA,
cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA,
cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA,
cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA,
cipher_TLS_PSK_WITH_RC4_128_SHA,
cipher_TLS_PSK_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_PSK_WITH_AES_128_CBC_SHA,
cipher_TLS_PSK_WITH_AES_256_CBC_SHA,
cipher_TLS_DHE_PSK_WITH_RC4_128_SHA,
cipher_TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA,
cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA,
cipher_TLS_RSA_PSK_WITH_RC4_128_SHA,
cipher_TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA,
cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA,
cipher_TLS_RSA_WITH_SEED_CBC_SHA,
cipher_TLS_DH_DSS_WITH_SEED_CBC_SHA,
cipher_TLS_DH_RSA_WITH_SEED_CBC_SHA,
cipher_TLS_DHE_DSS_WITH_SEED_CBC_SHA,
cipher_TLS_DHE_RSA_WITH_SEED_CBC_SHA,
cipher_TLS_DH_anon_WITH_SEED_CBC_SHA,
cipher_TLS_RSA_WITH_AES_128_GCM_SHA256,
cipher_TLS_RSA_WITH_AES_256_GCM_SHA384,
cipher_TLS_DH_RSA_WITH_AES_128_GCM_SHA256,
cipher_TLS_DH_RSA_WITH_AES_256_GCM_SHA384,
cipher_TLS_DH_DSS_WITH_AES_128_GCM_SHA256,
cipher_TLS_DH_DSS_WITH_AES_256_GCM_SHA384,
cipher_TLS_DH_anon_WITH_AES_128_GCM_SHA256,
cipher_TLS_DH_anon_WITH_AES_256_GCM_SHA384,
cipher_TLS_PSK_WITH_AES_128_GCM_SHA256,
cipher_TLS_PSK_WITH_AES_256_GCM_SHA384,
cipher_TLS_RSA_PSK_WITH_AES_128_GCM_SHA256,
cipher_TLS_RSA_PSK_WITH_AES_256_GCM_SHA384,
cipher_TLS_PSK_WITH_AES_128_CBC_SHA256,
cipher_TLS_PSK_WITH_AES_256_CBC_SHA384,
cipher_TLS_PSK_WITH_NULL_SHA256,
cipher_TLS_PSK_WITH_NULL_SHA384,
cipher_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256,
cipher_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384,
cipher_TLS_DHE_PSK_WITH_NULL_SHA256,
cipher_TLS_DHE_PSK_WITH_NULL_SHA384,
cipher_TLS_RSA_PSK_WITH_AES_128_CBC_SHA256,
cipher_TLS_RSA_PSK_WITH_AES_256_CBC_SHA384,
cipher_TLS_RSA_PSK_WITH_NULL_SHA256,
cipher_TLS_RSA_PSK_WITH_NULL_SHA384,
cipher_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256,
cipher_TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256,
cipher_TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256,
cipher_TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256,
cipher_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256,
cipher_TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256,
cipher_TLS_EMPTY_RENEGOTIATION_INFO_SCSV,
cipher_TLS_ECDH_ECDSA_WITH_NULL_SHA,
cipher_TLS_ECDH_ECDSA_WITH_RC4_128_SHA,
cipher_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
cipher_TLS_ECDHE_ECDSA_WITH_NULL_SHA,
cipher_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
cipher_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
cipher_TLS_ECDH_RSA_WITH_NULL_SHA,
cipher_TLS_ECDH_RSA_WITH_RC4_128_SHA,
cipher_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
cipher_TLS_ECDHE_RSA_WITH_NULL_SHA,
cipher_TLS_ECDHE_RSA_WITH_RC4_128_SHA,
cipher_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
cipher_TLS_ECDH_anon_WITH_NULL_SHA,
cipher_TLS_ECDH_anon_WITH_RC4_128_SHA,
cipher_TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
cipher_TLS_ECDH_anon_WITH_AES_256_CBC_SHA,
cipher_TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_SRP_SHA_WITH_AES_128_CBC_SHA,
cipher_TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA,
cipher_TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA,
cipher_TLS_SRP_SHA_WITH_AES_256_CBC_SHA,
cipher_TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA,
cipher_TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA,
cipher_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
cipher_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
cipher_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256,
cipher_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384,
cipher_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
cipher_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
cipher_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256,
cipher_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384,
cipher_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,
cipher_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,
cipher_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256,
cipher_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384,
cipher_TLS_ECDHE_PSK_WITH_RC4_128_SHA,
cipher_TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA,
cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA,
cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA,
cipher_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256,
cipher_TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384,
cipher_TLS_ECDHE_PSK_WITH_NULL_SHA,
cipher_TLS_ECDHE_PSK_WITH_NULL_SHA256,
cipher_TLS_ECDHE_PSK_WITH_NULL_SHA384,
cipher_TLS_RSA_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_RSA_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_DH_anon_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_DH_anon_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_RSA_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_RSA_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_DH_anon_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_DH_anon_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_PSK_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_PSK_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_PSK_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_PSK_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256,
cipher_TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384,
cipher_TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256,
cipher_TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384,
cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256,
cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384,
cipher_TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256,
cipher_TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384,
cipher_TLS_RSA_WITH_AES_128_CCM,
cipher_TLS_RSA_WITH_AES_256_CCM,
cipher_TLS_RSA_WITH_AES_128_CCM_8,
cipher_TLS_RSA_WITH_AES_256_CCM_8,
cipher_TLS_PSK_WITH_AES_128_CCM,
cipher_TLS_PSK_WITH_AES_256_CCM,
cipher_TLS_PSK_WITH_AES_128_CCM_8,
cipher_TLS_PSK_WITH_AES_256_CCM_8:
return true
default:
return false
}
}

View File

@ -1,282 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Transport code's client connection pooling.
package http2
import (
"crypto/tls"
"net/http"
"sync"
)
// ClientConnPool manages a pool of HTTP/2 client connections.
type ClientConnPool interface {
GetClientConn(req *http.Request, addr string) (*ClientConn, error)
MarkDead(*ClientConn)
}
// clientConnPoolIdleCloser is the interface implemented by ClientConnPool
// implementations which can close their idle connections.
type clientConnPoolIdleCloser interface {
ClientConnPool
closeIdleConnections()
}
var (
_ clientConnPoolIdleCloser = (*clientConnPool)(nil)
_ clientConnPoolIdleCloser = noDialClientConnPool{}
)
// TODO: use singleflight for dialing and addConnCalls?
type clientConnPool struct {
t *Transport
mu sync.Mutex // TODO: maybe switch to RWMutex
// TODO: add support for sharing conns based on cert names
// (e.g. share conn for googleapis.com and appspot.com)
conns map[string][]*ClientConn // key is host:port
dialing map[string]*dialCall // currently in-flight dials
keys map[*ClientConn][]string
addConnCalls map[string]*addConnCall // in-flight addConnIfNeede calls
}
func (p *clientConnPool) GetClientConn(req *http.Request, addr string) (*ClientConn, error) {
return p.getClientConn(req, addr, dialOnMiss)
}
const (
dialOnMiss = true
noDialOnMiss = false
)
// shouldTraceGetConn reports whether getClientConn should call any
// ClientTrace.GetConn hook associated with the http.Request.
//
// This complexity is needed to avoid double calls of the GetConn hook
// during the back-and-forth between net/http and x/net/http2 (when the
// net/http.Transport is upgraded to also speak http2), as well as support
// the case where x/net/http2 is being used directly.
func (p *clientConnPool) shouldTraceGetConn(st clientConnIdleState) bool {
// If our Transport wasn't made via ConfigureTransport, always
// trace the GetConn hook if provided, because that means the
// http2 package is being used directly and it's the one
// dialing, as opposed to net/http.
if _, ok := p.t.ConnPool.(noDialClientConnPool); !ok {
return true
}
// Otherwise, only use the GetConn hook if this connection has
// been used previously for other requests. For fresh
// connections, the net/http package does the dialing.
return !st.freshConn
}
func (p *clientConnPool) getClientConn(req *http.Request, addr string, dialOnMiss bool) (*ClientConn, error) {
if isConnectionCloseRequest(req) && dialOnMiss {
// It gets its own connection.
traceGetConn(req, addr)
const singleUse = true
cc, err := p.t.dialClientConn(addr, singleUse)
if err != nil {
return nil, err
}
return cc, nil
}
p.mu.Lock()
for _, cc := range p.conns[addr] {
if st := cc.idleState(); st.canTakeNewRequest {
if p.shouldTraceGetConn(st) {
traceGetConn(req, addr)
}
p.mu.Unlock()
return cc, nil
}
}
if !dialOnMiss {
p.mu.Unlock()
return nil, ErrNoCachedConn
}
traceGetConn(req, addr)
call := p.getStartDialLocked(addr)
p.mu.Unlock()
<-call.done
return call.res, call.err
}
// dialCall is an in-flight Transport dial call to a host.
type dialCall struct {
p *clientConnPool
done chan struct{} // closed when done
res *ClientConn // valid after done is closed
err error // valid after done is closed
}
// requires p.mu is held.
func (p *clientConnPool) getStartDialLocked(addr string) *dialCall {
if call, ok := p.dialing[addr]; ok {
// A dial is already in-flight. Don't start another.
return call
}
call := &dialCall{p: p, done: make(chan struct{})}
if p.dialing == nil {
p.dialing = make(map[string]*dialCall)
}
p.dialing[addr] = call
go call.dial(addr)
return call
}
// run in its own goroutine.
func (c *dialCall) dial(addr string) {
const singleUse = false // shared conn
c.res, c.err = c.p.t.dialClientConn(addr, singleUse)
close(c.done)
c.p.mu.Lock()
delete(c.p.dialing, addr)
if c.err == nil {
c.p.addConnLocked(addr, c.res)
}
c.p.mu.Unlock()
}
// addConnIfNeeded makes a NewClientConn out of c if a connection for key doesn't
// already exist. It coalesces concurrent calls with the same key.
// This is used by the http1 Transport code when it creates a new connection. Because
// the http1 Transport doesn't de-dup TCP dials to outbound hosts (because it doesn't know
// the protocol), it can get into a situation where it has multiple TLS connections.
// This code decides which ones live or die.
// The return value used is whether c was used.
// c is never closed.
func (p *clientConnPool) addConnIfNeeded(key string, t *Transport, c *tls.Conn) (used bool, err error) {
p.mu.Lock()
for _, cc := range p.conns[key] {
if cc.CanTakeNewRequest() {
p.mu.Unlock()
return false, nil
}
}
call, dup := p.addConnCalls[key]
if !dup {
if p.addConnCalls == nil {
p.addConnCalls = make(map[string]*addConnCall)
}
call = &addConnCall{
p: p,
done: make(chan struct{}),
}
p.addConnCalls[key] = call
go call.run(t, key, c)
}
p.mu.Unlock()
<-call.done
if call.err != nil {
return false, call.err
}
return !dup, nil
}
type addConnCall struct {
p *clientConnPool
done chan struct{} // closed when done
err error
}
func (c *addConnCall) run(t *Transport, key string, tc *tls.Conn) {
cc, err := t.NewClientConn(tc)
p := c.p
p.mu.Lock()
if err != nil {
c.err = err
} else {
p.addConnLocked(key, cc)
}
delete(p.addConnCalls, key)
p.mu.Unlock()
close(c.done)
}
func (p *clientConnPool) addConn(key string, cc *ClientConn) {
p.mu.Lock()
p.addConnLocked(key, cc)
p.mu.Unlock()
}
// p.mu must be held
func (p *clientConnPool) addConnLocked(key string, cc *ClientConn) {
for _, v := range p.conns[key] {
if v == cc {
return
}
}
if p.conns == nil {
p.conns = make(map[string][]*ClientConn)
}
if p.keys == nil {
p.keys = make(map[*ClientConn][]string)
}
p.conns[key] = append(p.conns[key], cc)
p.keys[cc] = append(p.keys[cc], key)
}
func (p *clientConnPool) MarkDead(cc *ClientConn) {
p.mu.Lock()
defer p.mu.Unlock()
for _, key := range p.keys[cc] {
vv, ok := p.conns[key]
if !ok {
continue
}
newList := filterOutClientConn(vv, cc)
if len(newList) > 0 {
p.conns[key] = newList
} else {
delete(p.conns, key)
}
}
delete(p.keys, cc)
}
func (p *clientConnPool) closeIdleConnections() {
p.mu.Lock()
defer p.mu.Unlock()
// TODO: don't close a cc if it was just added to the pool
// milliseconds ago and has never been used. There's currently
// a small race window with the HTTP/1 Transport's integration
// where it can add an idle conn just before using it, and
// somebody else can concurrently call CloseIdleConns and
// break some caller's RoundTrip.
for _, vv := range p.conns {
for _, cc := range vv {
cc.closeIfIdle()
}
}
}
func filterOutClientConn(in []*ClientConn, exclude *ClientConn) []*ClientConn {
out := in[:0]
for _, v := range in {
if v != exclude {
out = append(out, v)
}
}
// If we filtered it out, zero out the last item to prevent
// the GC from seeing it.
if len(in) != len(out) {
in[len(in)-1] = nil
}
return out
}
// noDialClientConnPool is an implementation of http2.ClientConnPool
// which never dials. We let the HTTP/1.1 client dial and use its TLS
// connection instead.
type noDialClientConnPool struct{ *clientConnPool }
func (p noDialClientConnPool) GetClientConn(req *http.Request, addr string) (*ClientConn, error) {
return p.getClientConn(req, addr, noDialOnMiss)
}

View File

@ -1,146 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"errors"
"fmt"
"sync"
)
// Buffer chunks are allocated from a pool to reduce pressure on GC.
// The maximum wasted space per dataBuffer is 2x the largest size class,
// which happens when the dataBuffer has multiple chunks and there is
// one unread byte in both the first and last chunks. We use a few size
// classes to minimize overheads for servers that typically receive very
// small request bodies.
//
// TODO: Benchmark to determine if the pools are necessary. The GC may have
// improved enough that we can instead allocate chunks like this:
// make([]byte, max(16<<10, expectedBytesRemaining))
var (
dataChunkSizeClasses = []int{
1 << 10,
2 << 10,
4 << 10,
8 << 10,
16 << 10,
}
dataChunkPools = [...]sync.Pool{
{New: func() interface{} { return make([]byte, 1<<10) }},
{New: func() interface{} { return make([]byte, 2<<10) }},
{New: func() interface{} { return make([]byte, 4<<10) }},
{New: func() interface{} { return make([]byte, 8<<10) }},
{New: func() interface{} { return make([]byte, 16<<10) }},
}
)
func getDataBufferChunk(size int64) []byte {
i := 0
for ; i < len(dataChunkSizeClasses)-1; i++ {
if size <= int64(dataChunkSizeClasses[i]) {
break
}
}
return dataChunkPools[i].Get().([]byte)
}
func putDataBufferChunk(p []byte) {
for i, n := range dataChunkSizeClasses {
if len(p) == n {
dataChunkPools[i].Put(p)
return
}
}
panic(fmt.Sprintf("unexpected buffer len=%v", len(p)))
}
// dataBuffer is an io.ReadWriter backed by a list of data chunks.
// Each dataBuffer is used to read DATA frames on a single stream.
// The buffer is divided into chunks so the server can limit the
// total memory used by a single connection without limiting the
// request body size on any single stream.
type dataBuffer struct {
chunks [][]byte
r int // next byte to read is chunks[0][r]
w int // next byte to write is chunks[len(chunks)-1][w]
size int // total buffered bytes
expected int64 // we expect at least this many bytes in future Write calls (ignored if <= 0)
}
var errReadEmpty = errors.New("read from empty dataBuffer")
// Read copies bytes from the buffer into p.
// It is an error to read when no data is available.
func (b *dataBuffer) Read(p []byte) (int, error) {
if b.size == 0 {
return 0, errReadEmpty
}
var ntotal int
for len(p) > 0 && b.size > 0 {
readFrom := b.bytesFromFirstChunk()
n := copy(p, readFrom)
p = p[n:]
ntotal += n
b.r += n
b.size -= n
// If the first chunk has been consumed, advance to the next chunk.
if b.r == len(b.chunks[0]) {
putDataBufferChunk(b.chunks[0])
end := len(b.chunks) - 1
copy(b.chunks[:end], b.chunks[1:])
b.chunks[end] = nil
b.chunks = b.chunks[:end]
b.r = 0
}
}
return ntotal, nil
}
func (b *dataBuffer) bytesFromFirstChunk() []byte {
if len(b.chunks) == 1 {
return b.chunks[0][b.r:b.w]
}
return b.chunks[0][b.r:]
}
// Len returns the number of bytes of the unread portion of the buffer.
func (b *dataBuffer) Len() int {
return b.size
}
// Write appends p to the buffer.
func (b *dataBuffer) Write(p []byte) (int, error) {
ntotal := len(p)
for len(p) > 0 {
// If the last chunk is empty, allocate a new chunk. Try to allocate
// enough to fully copy p plus any additional bytes we expect to
// receive. However, this may allocate less than len(p).
want := int64(len(p))
if b.expected > want {
want = b.expected
}
chunk := b.lastChunkOrAlloc(want)
n := copy(chunk[b.w:], p)
p = p[n:]
b.w += n
b.size += n
b.expected -= int64(n)
}
return ntotal, nil
}
func (b *dataBuffer) lastChunkOrAlloc(want int64) []byte {
if len(b.chunks) != 0 {
last := b.chunks[len(b.chunks)-1]
if b.w < len(last) {
return last
}
}
chunk := getDataBufferChunk(want)
b.chunks = append(b.chunks, chunk)
b.w = 0
return chunk
}

View File

@ -1,133 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"errors"
"fmt"
)
// An ErrCode is an unsigned 32-bit error code as defined in the HTTP/2 spec.
type ErrCode uint32
const (
ErrCodeNo ErrCode = 0x0
ErrCodeProtocol ErrCode = 0x1
ErrCodeInternal ErrCode = 0x2
ErrCodeFlowControl ErrCode = 0x3
ErrCodeSettingsTimeout ErrCode = 0x4
ErrCodeStreamClosed ErrCode = 0x5
ErrCodeFrameSize ErrCode = 0x6
ErrCodeRefusedStream ErrCode = 0x7
ErrCodeCancel ErrCode = 0x8
ErrCodeCompression ErrCode = 0x9
ErrCodeConnect ErrCode = 0xa
ErrCodeEnhanceYourCalm ErrCode = 0xb
ErrCodeInadequateSecurity ErrCode = 0xc
ErrCodeHTTP11Required ErrCode = 0xd
)
var errCodeName = map[ErrCode]string{
ErrCodeNo: "NO_ERROR",
ErrCodeProtocol: "PROTOCOL_ERROR",
ErrCodeInternal: "INTERNAL_ERROR",
ErrCodeFlowControl: "FLOW_CONTROL_ERROR",
ErrCodeSettingsTimeout: "SETTINGS_TIMEOUT",
ErrCodeStreamClosed: "STREAM_CLOSED",
ErrCodeFrameSize: "FRAME_SIZE_ERROR",
ErrCodeRefusedStream: "REFUSED_STREAM",
ErrCodeCancel: "CANCEL",
ErrCodeCompression: "COMPRESSION_ERROR",
ErrCodeConnect: "CONNECT_ERROR",
ErrCodeEnhanceYourCalm: "ENHANCE_YOUR_CALM",
ErrCodeInadequateSecurity: "INADEQUATE_SECURITY",
ErrCodeHTTP11Required: "HTTP_1_1_REQUIRED",
}
func (e ErrCode) String() string {
if s, ok := errCodeName[e]; ok {
return s
}
return fmt.Sprintf("unknown error code 0x%x", uint32(e))
}
// ConnectionError is an error that results in the termination of the
// entire connection.
type ConnectionError ErrCode
func (e ConnectionError) Error() string { return fmt.Sprintf("connection error: %s", ErrCode(e)) }
// StreamError is an error that only affects one stream within an
// HTTP/2 connection.
type StreamError struct {
StreamID uint32
Code ErrCode
Cause error // optional additional detail
}
func streamError(id uint32, code ErrCode) StreamError {
return StreamError{StreamID: id, Code: code}
}
func (e StreamError) Error() string {
if e.Cause != nil {
return fmt.Sprintf("stream error: stream ID %d; %v; %v", e.StreamID, e.Code, e.Cause)
}
return fmt.Sprintf("stream error: stream ID %d; %v", e.StreamID, e.Code)
}
// 6.9.1 The Flow Control Window
// "If a sender receives a WINDOW_UPDATE that causes a flow control
// window to exceed this maximum it MUST terminate either the stream
// or the connection, as appropriate. For streams, [...]; for the
// connection, a GOAWAY frame with a FLOW_CONTROL_ERROR code."
type goAwayFlowError struct{}
func (goAwayFlowError) Error() string { return "connection exceeded flow control window size" }
// connError represents an HTTP/2 ConnectionError error code, along
// with a string (for debugging) explaining why.
//
// Errors of this type are only returned by the frame parser functions
// and converted into ConnectionError(Code), after stashing away
// the Reason into the Framer's errDetail field, accessible via
// the (*Framer).ErrorDetail method.
type connError struct {
Code ErrCode // the ConnectionError error code
Reason string // additional reason
}
func (e connError) Error() string {
return fmt.Sprintf("http2: connection error: %v: %v", e.Code, e.Reason)
}
type pseudoHeaderError string
func (e pseudoHeaderError) Error() string {
return fmt.Sprintf("invalid pseudo-header %q", string(e))
}
type duplicatePseudoHeaderError string
func (e duplicatePseudoHeaderError) Error() string {
return fmt.Sprintf("duplicate pseudo-header %q", string(e))
}
type headerFieldNameError string
func (e headerFieldNameError) Error() string {
return fmt.Sprintf("invalid header field name %q", string(e))
}
type headerFieldValueError string
func (e headerFieldValueError) Error() string {
return fmt.Sprintf("invalid header field value %q", string(e))
}
var (
errMixPseudoHeaderTypes = errors.New("mix of request and response pseudo headers")
errPseudoAfterRegular = errors.New("pseudo header field after regular")
)

View File

@ -1,50 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Flow control
package http2
// flow is the flow control window's size.
type flow struct {
// n is the number of DATA bytes we're allowed to send.
// A flow is kept both on a conn and a per-stream.
n int32
// conn points to the shared connection-level flow that is
// shared by all streams on that conn. It is nil for the flow
// that's on the conn directly.
conn *flow
}
func (f *flow) setConnFlow(cf *flow) { f.conn = cf }
func (f *flow) available() int32 {
n := f.n
if f.conn != nil && f.conn.n < n {
n = f.conn.n
}
return n
}
func (f *flow) take(n int32) {
if n > f.available() {
panic("internal error: took too much")
}
f.n -= n
if f.conn != nil {
f.conn.n -= n
}
}
// add adds n bytes (positive or negative) to the flow control window.
// It returns false if the sum would exceed 2^31-1.
func (f *flow) add(n int32) bool {
sum := f.n + n
if (sum > n) == (f.n > 0) {
f.n = sum
return true
}
return false
}

1614
vendor/golang.org/x/net/http2/frame.go generated vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,29 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11
package http2
import (
"net/http/httptrace"
"net/textproto"
)
func traceHasWroteHeaderField(trace *httptrace.ClientTrace) bool {
return trace != nil && trace.WroteHeaderField != nil
}
func traceWroteHeaderField(trace *httptrace.ClientTrace, k, v string) {
if trace != nil && trace.WroteHeaderField != nil {
trace.WroteHeaderField(k, []string{v})
}
}
func traceGot1xxResponseFunc(trace *httptrace.ClientTrace) func(int, textproto.MIMEHeader) error {
if trace != nil {
return trace.Got1xxResponse
}
return nil
}

View File

@ -1,170 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Defensive debug-only utility to track that functions run on the
// goroutine that they're supposed to.
package http2
import (
"bytes"
"errors"
"fmt"
"os"
"runtime"
"strconv"
"sync"
)
var DebugGoroutines = os.Getenv("DEBUG_HTTP2_GOROUTINES") == "1"
type goroutineLock uint64
func newGoroutineLock() goroutineLock {
if !DebugGoroutines {
return 0
}
return goroutineLock(curGoroutineID())
}
func (g goroutineLock) check() {
if !DebugGoroutines {
return
}
if curGoroutineID() != uint64(g) {
panic("running on the wrong goroutine")
}
}
func (g goroutineLock) checkNotOn() {
if !DebugGoroutines {
return
}
if curGoroutineID() == uint64(g) {
panic("running on the wrong goroutine")
}
}
var goroutineSpace = []byte("goroutine ")
func curGoroutineID() uint64 {
bp := littleBuf.Get().(*[]byte)
defer littleBuf.Put(bp)
b := *bp
b = b[:runtime.Stack(b, false)]
// Parse the 4707 out of "goroutine 4707 ["
b = bytes.TrimPrefix(b, goroutineSpace)
i := bytes.IndexByte(b, ' ')
if i < 0 {
panic(fmt.Sprintf("No space found in %q", b))
}
b = b[:i]
n, err := parseUintBytes(b, 10, 64)
if err != nil {
panic(fmt.Sprintf("Failed to parse goroutine ID out of %q: %v", b, err))
}
return n
}
var littleBuf = sync.Pool{
New: func() interface{} {
buf := make([]byte, 64)
return &buf
},
}
// parseUintBytes is like strconv.ParseUint, but using a []byte.
func parseUintBytes(s []byte, base int, bitSize int) (n uint64, err error) {
var cutoff, maxVal uint64
if bitSize == 0 {
bitSize = int(strconv.IntSize)
}
s0 := s
switch {
case len(s) < 1:
err = strconv.ErrSyntax
goto Error
case 2 <= base && base <= 36:
// valid base; nothing to do
case base == 0:
// Look for octal, hex prefix.
switch {
case s[0] == '0' && len(s) > 1 && (s[1] == 'x' || s[1] == 'X'):
base = 16
s = s[2:]
if len(s) < 1 {
err = strconv.ErrSyntax
goto Error
}
case s[0] == '0':
base = 8
default:
base = 10
}
default:
err = errors.New("invalid base " + strconv.Itoa(base))
goto Error
}
n = 0
cutoff = cutoff64(base)
maxVal = 1<<uint(bitSize) - 1
for i := 0; i < len(s); i++ {
var v byte
d := s[i]
switch {
case '0' <= d && d <= '9':
v = d - '0'
case 'a' <= d && d <= 'z':
v = d - 'a' + 10
case 'A' <= d && d <= 'Z':
v = d - 'A' + 10
default:
n = 0
err = strconv.ErrSyntax
goto Error
}
if int(v) >= base {
n = 0
err = strconv.ErrSyntax
goto Error
}
if n >= cutoff {
// n*base overflows
n = 1<<64 - 1
err = strconv.ErrRange
goto Error
}
n *= uint64(base)
n1 := n + uint64(v)
if n1 < n || n1 > maxVal {
// n+v overflows
n = 1<<64 - 1
err = strconv.ErrRange
goto Error
}
n = n1
}
return n, nil
Error:
return n, &strconv.NumError{Func: "ParseUint", Num: string(s0), Err: err}
}
// Return the first number n such that n*base >= 1<<64.
func cutoff64(base int) uint64 {
if base < 2 {
return 0
}
return (1<<64-1)/uint64(base) + 1
}

View File

@ -1,88 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"net/http"
"strings"
"sync"
)
var (
commonBuildOnce sync.Once
commonLowerHeader map[string]string // Go-Canonical-Case -> lower-case
commonCanonHeader map[string]string // lower-case -> Go-Canonical-Case
)
func buildCommonHeaderMapsOnce() {
commonBuildOnce.Do(buildCommonHeaderMaps)
}
func buildCommonHeaderMaps() {
common := []string{
"accept",
"accept-charset",
"accept-encoding",
"accept-language",
"accept-ranges",
"age",
"access-control-allow-origin",
"allow",
"authorization",
"cache-control",
"content-disposition",
"content-encoding",
"content-language",
"content-length",
"content-location",
"content-range",
"content-type",
"cookie",
"date",
"etag",
"expect",
"expires",
"from",
"host",
"if-match",
"if-modified-since",
"if-none-match",
"if-unmodified-since",
"last-modified",
"link",
"location",
"max-forwards",
"proxy-authenticate",
"proxy-authorization",
"range",
"referer",
"refresh",
"retry-after",
"server",
"set-cookie",
"strict-transport-security",
"trailer",
"transfer-encoding",
"user-agent",
"vary",
"via",
"www-authenticate",
}
commonLowerHeader = make(map[string]string, len(common))
commonCanonHeader = make(map[string]string, len(common))
for _, v := range common {
chk := http.CanonicalHeaderKey(v)
commonLowerHeader[chk] = v
commonCanonHeader[v] = chk
}
}
func lowerHeader(v string) string {
buildCommonHeaderMapsOnce()
if s, ok := commonLowerHeader[v]; ok {
return s
}
return strings.ToLower(v)
}

View File

@ -1,240 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hpack
import (
"io"
)
const (
uint32Max = ^uint32(0)
initialHeaderTableSize = 4096
)
type Encoder struct {
dynTab dynamicTable
// minSize is the minimum table size set by
// SetMaxDynamicTableSize after the previous Header Table Size
// Update.
minSize uint32
// maxSizeLimit is the maximum table size this encoder
// supports. This will protect the encoder from too large
// size.
maxSizeLimit uint32
// tableSizeUpdate indicates whether "Header Table Size
// Update" is required.
tableSizeUpdate bool
w io.Writer
buf []byte
}
// NewEncoder returns a new Encoder which performs HPACK encoding. An
// encoded data is written to w.
func NewEncoder(w io.Writer) *Encoder {
e := &Encoder{
minSize: uint32Max,
maxSizeLimit: initialHeaderTableSize,
tableSizeUpdate: false,
w: w,
}
e.dynTab.table.init()
e.dynTab.setMaxSize(initialHeaderTableSize)
return e
}
// WriteField encodes f into a single Write to e's underlying Writer.
// This function may also produce bytes for "Header Table Size Update"
// if necessary. If produced, it is done before encoding f.
func (e *Encoder) WriteField(f HeaderField) error {
e.buf = e.buf[:0]
if e.tableSizeUpdate {
e.tableSizeUpdate = false
if e.minSize < e.dynTab.maxSize {
e.buf = appendTableSize(e.buf, e.minSize)
}
e.minSize = uint32Max
e.buf = appendTableSize(e.buf, e.dynTab.maxSize)
}
idx, nameValueMatch := e.searchTable(f)
if nameValueMatch {
e.buf = appendIndexed(e.buf, idx)
} else {
indexing := e.shouldIndex(f)
if indexing {
e.dynTab.add(f)
}
if idx == 0 {
e.buf = appendNewName(e.buf, f, indexing)
} else {
e.buf = appendIndexedName(e.buf, f, idx, indexing)
}
}
n, err := e.w.Write(e.buf)
if err == nil && n != len(e.buf) {
err = io.ErrShortWrite
}
return err
}
// searchTable searches f in both stable and dynamic header tables.
// The static header table is searched first. Only when there is no
// exact match for both name and value, the dynamic header table is
// then searched. If there is no match, i is 0. If both name and value
// match, i is the matched index and nameValueMatch becomes true. If
// only name matches, i points to that index and nameValueMatch
// becomes false.
func (e *Encoder) searchTable(f HeaderField) (i uint64, nameValueMatch bool) {
i, nameValueMatch = staticTable.search(f)
if nameValueMatch {
return i, true
}
j, nameValueMatch := e.dynTab.table.search(f)
if nameValueMatch || (i == 0 && j != 0) {
return j + uint64(staticTable.len()), nameValueMatch
}
return i, false
}
// SetMaxDynamicTableSize changes the dynamic header table size to v.
// The actual size is bounded by the value passed to
// SetMaxDynamicTableSizeLimit.
func (e *Encoder) SetMaxDynamicTableSize(v uint32) {
if v > e.maxSizeLimit {
v = e.maxSizeLimit
}
if v < e.minSize {
e.minSize = v
}
e.tableSizeUpdate = true
e.dynTab.setMaxSize(v)
}
// SetMaxDynamicTableSizeLimit changes the maximum value that can be
// specified in SetMaxDynamicTableSize to v. By default, it is set to
// 4096, which is the same size of the default dynamic header table
// size described in HPACK specification. If the current maximum
// dynamic header table size is strictly greater than v, "Header Table
// Size Update" will be done in the next WriteField call and the
// maximum dynamic header table size is truncated to v.
func (e *Encoder) SetMaxDynamicTableSizeLimit(v uint32) {
e.maxSizeLimit = v
if e.dynTab.maxSize > v {
e.tableSizeUpdate = true
e.dynTab.setMaxSize(v)
}
}
// shouldIndex reports whether f should be indexed.
func (e *Encoder) shouldIndex(f HeaderField) bool {
return !f.Sensitive && f.Size() <= e.dynTab.maxSize
}
// appendIndexed appends index i, as encoded in "Indexed Header Field"
// representation, to dst and returns the extended buffer.
func appendIndexed(dst []byte, i uint64) []byte {
first := len(dst)
dst = appendVarInt(dst, 7, i)
dst[first] |= 0x80
return dst
}
// appendNewName appends f, as encoded in one of "Literal Header field
// - New Name" representation variants, to dst and returns the
// extended buffer.
//
// If f.Sensitive is true, "Never Indexed" representation is used. If
// f.Sensitive is false and indexing is true, "Inremental Indexing"
// representation is used.
func appendNewName(dst []byte, f HeaderField, indexing bool) []byte {
dst = append(dst, encodeTypeByte(indexing, f.Sensitive))
dst = appendHpackString(dst, f.Name)
return appendHpackString(dst, f.Value)
}
// appendIndexedName appends f and index i referring indexed name
// entry, as encoded in one of "Literal Header field - Indexed Name"
// representation variants, to dst and returns the extended buffer.
//
// If f.Sensitive is true, "Never Indexed" representation is used. If
// f.Sensitive is false and indexing is true, "Incremental Indexing"
// representation is used.
func appendIndexedName(dst []byte, f HeaderField, i uint64, indexing bool) []byte {
first := len(dst)
var n byte
if indexing {
n = 6
} else {
n = 4
}
dst = appendVarInt(dst, n, i)
dst[first] |= encodeTypeByte(indexing, f.Sensitive)
return appendHpackString(dst, f.Value)
}
// appendTableSize appends v, as encoded in "Header Table Size Update"
// representation, to dst and returns the extended buffer.
func appendTableSize(dst []byte, v uint32) []byte {
first := len(dst)
dst = appendVarInt(dst, 5, uint64(v))
dst[first] |= 0x20
return dst
}
// appendVarInt appends i, as encoded in variable integer form using n
// bit prefix, to dst and returns the extended buffer.
//
// See
// http://http2.github.io/http2-spec/compression.html#integer.representation
func appendVarInt(dst []byte, n byte, i uint64) []byte {
k := uint64((1 << n) - 1)
if i < k {
return append(dst, byte(i))
}
dst = append(dst, byte(k))
i -= k
for ; i >= 128; i >>= 7 {
dst = append(dst, byte(0x80|(i&0x7f)))
}
return append(dst, byte(i))
}
// appendHpackString appends s, as encoded in "String Literal"
// representation, to dst and returns the extended buffer.
//
// s will be encoded in Huffman codes only when it produces strictly
// shorter byte string.
func appendHpackString(dst []byte, s string) []byte {
huffmanLength := HuffmanEncodeLength(s)
if huffmanLength < uint64(len(s)) {
first := len(dst)
dst = appendVarInt(dst, 7, huffmanLength)
dst = AppendHuffmanString(dst, s)
dst[first] |= 0x80
} else {
dst = appendVarInt(dst, 7, uint64(len(s)))
dst = append(dst, s...)
}
return dst
}
// encodeTypeByte returns type byte. If sensitive is true, type byte
// for "Never Indexed" representation is returned. If sensitive is
// false and indexing is true, type byte for "Incremental Indexing"
// representation is returned. Otherwise, type byte for "Without
// Indexing" is returned.
func encodeTypeByte(indexing, sensitive bool) byte {
if sensitive {
return 0x10
}
if indexing {
return 0x40
}
return 0
}

View File

@ -1,504 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package hpack implements HPACK, a compression format for
// efficiently representing HTTP header fields in the context of HTTP/2.
//
// See http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-09
package hpack
import (
"bytes"
"errors"
"fmt"
)
// A DecodingError is something the spec defines as a decoding error.
type DecodingError struct {
Err error
}
func (de DecodingError) Error() string {
return fmt.Sprintf("decoding error: %v", de.Err)
}
// An InvalidIndexError is returned when an encoder references a table
// entry before the static table or after the end of the dynamic table.
type InvalidIndexError int
func (e InvalidIndexError) Error() string {
return fmt.Sprintf("invalid indexed representation index %d", int(e))
}
// A HeaderField is a name-value pair. Both the name and value are
// treated as opaque sequences of octets.
type HeaderField struct {
Name, Value string
// Sensitive means that this header field should never be
// indexed.
Sensitive bool
}
// IsPseudo reports whether the header field is an http2 pseudo header.
// That is, it reports whether it starts with a colon.
// It is not otherwise guaranteed to be a valid pseudo header field,
// though.
func (hf HeaderField) IsPseudo() bool {
return len(hf.Name) != 0 && hf.Name[0] == ':'
}
func (hf HeaderField) String() string {
var suffix string
if hf.Sensitive {
suffix = " (sensitive)"
}
return fmt.Sprintf("header field %q = %q%s", hf.Name, hf.Value, suffix)
}
// Size returns the size of an entry per RFC 7541 section 4.1.
func (hf HeaderField) Size() uint32 {
// http://http2.github.io/http2-spec/compression.html#rfc.section.4.1
// "The size of the dynamic table is the sum of the size of
// its entries. The size of an entry is the sum of its name's
// length in octets (as defined in Section 5.2), its value's
// length in octets (see Section 5.2), plus 32. The size of
// an entry is calculated using the length of the name and
// value without any Huffman encoding applied."
// This can overflow if somebody makes a large HeaderField
// Name and/or Value by hand, but we don't care, because that
// won't happen on the wire because the encoding doesn't allow
// it.
return uint32(len(hf.Name) + len(hf.Value) + 32)
}
// A Decoder is the decoding context for incremental processing of
// header blocks.
type Decoder struct {
dynTab dynamicTable
emit func(f HeaderField)
emitEnabled bool // whether calls to emit are enabled
maxStrLen int // 0 means unlimited
// buf is the unparsed buffer. It's only written to
// saveBuf if it was truncated in the middle of a header
// block. Because it's usually not owned, we can only
// process it under Write.
buf []byte // not owned; only valid during Write
// saveBuf is previous data passed to Write which we weren't able
// to fully parse before. Unlike buf, we own this data.
saveBuf bytes.Buffer
firstField bool // processing the first field of the header block
}
// NewDecoder returns a new decoder with the provided maximum dynamic
// table size. The emitFunc will be called for each valid field
// parsed, in the same goroutine as calls to Write, before Write returns.
func NewDecoder(maxDynamicTableSize uint32, emitFunc func(f HeaderField)) *Decoder {
d := &Decoder{
emit: emitFunc,
emitEnabled: true,
firstField: true,
}
d.dynTab.table.init()
d.dynTab.allowedMaxSize = maxDynamicTableSize
d.dynTab.setMaxSize(maxDynamicTableSize)
return d
}
// ErrStringLength is returned by Decoder.Write when the max string length
// (as configured by Decoder.SetMaxStringLength) would be violated.
var ErrStringLength = errors.New("hpack: string too long")
// SetMaxStringLength sets the maximum size of a HeaderField name or
// value string. If a string exceeds this length (even after any
// decompression), Write will return ErrStringLength.
// A value of 0 means unlimited and is the default from NewDecoder.
func (d *Decoder) SetMaxStringLength(n int) {
d.maxStrLen = n
}
// SetEmitFunc changes the callback used when new header fields
// are decoded.
// It must be non-nil. It does not affect EmitEnabled.
func (d *Decoder) SetEmitFunc(emitFunc func(f HeaderField)) {
d.emit = emitFunc
}
// SetEmitEnabled controls whether the emitFunc provided to NewDecoder
// should be called. The default is true.
//
// This facility exists to let servers enforce MAX_HEADER_LIST_SIZE
// while still decoding and keeping in-sync with decoder state, but
// without doing unnecessary decompression or generating unnecessary
// garbage for header fields past the limit.
func (d *Decoder) SetEmitEnabled(v bool) { d.emitEnabled = v }
// EmitEnabled reports whether calls to the emitFunc provided to NewDecoder
// are currently enabled. The default is true.
func (d *Decoder) EmitEnabled() bool { return d.emitEnabled }
// TODO: add method *Decoder.Reset(maxSize, emitFunc) to let callers re-use Decoders and their
// underlying buffers for garbage reasons.
func (d *Decoder) SetMaxDynamicTableSize(v uint32) {
d.dynTab.setMaxSize(v)
}
// SetAllowedMaxDynamicTableSize sets the upper bound that the encoded
// stream (via dynamic table size updates) may set the maximum size
// to.
func (d *Decoder) SetAllowedMaxDynamicTableSize(v uint32) {
d.dynTab.allowedMaxSize = v
}
type dynamicTable struct {
// http://http2.github.io/http2-spec/compression.html#rfc.section.2.3.2
table headerFieldTable
size uint32 // in bytes
maxSize uint32 // current maxSize
allowedMaxSize uint32 // maxSize may go up to this, inclusive
}
func (dt *dynamicTable) setMaxSize(v uint32) {
dt.maxSize = v
dt.evict()
}
func (dt *dynamicTable) add(f HeaderField) {
dt.table.addEntry(f)
dt.size += f.Size()
dt.evict()
}
// If we're too big, evict old stuff.
func (dt *dynamicTable) evict() {
var n int
for dt.size > dt.maxSize && n < dt.table.len() {
dt.size -= dt.table.ents[n].Size()
n++
}
dt.table.evictOldest(n)
}
func (d *Decoder) maxTableIndex() int {
// This should never overflow. RFC 7540 Section 6.5.2 limits the size of
// the dynamic table to 2^32 bytes, where each entry will occupy more than
// one byte. Further, the staticTable has a fixed, small length.
return d.dynTab.table.len() + staticTable.len()
}
func (d *Decoder) at(i uint64) (hf HeaderField, ok bool) {
// See Section 2.3.3.
if i == 0 {
return
}
if i <= uint64(staticTable.len()) {
return staticTable.ents[i-1], true
}
if i > uint64(d.maxTableIndex()) {
return
}
// In the dynamic table, newer entries have lower indices.
// However, dt.ents[0] is the oldest entry. Hence, dt.ents is
// the reversed dynamic table.
dt := d.dynTab.table
return dt.ents[dt.len()-(int(i)-staticTable.len())], true
}
// Decode decodes an entire block.
//
// TODO: remove this method and make it incremental later? This is
// easier for debugging now.
func (d *Decoder) DecodeFull(p []byte) ([]HeaderField, error) {
var hf []HeaderField
saveFunc := d.emit
defer func() { d.emit = saveFunc }()
d.emit = func(f HeaderField) { hf = append(hf, f) }
if _, err := d.Write(p); err != nil {
return nil, err
}
if err := d.Close(); err != nil {
return nil, err
}
return hf, nil
}
// Close declares that the decoding is complete and resets the Decoder
// to be reused again for a new header block. If there is any remaining
// data in the decoder's buffer, Close returns an error.
func (d *Decoder) Close() error {
if d.saveBuf.Len() > 0 {
d.saveBuf.Reset()
return DecodingError{errors.New("truncated headers")}
}
d.firstField = true
return nil
}
func (d *Decoder) Write(p []byte) (n int, err error) {
if len(p) == 0 {
// Prevent state machine CPU attacks (making us redo
// work up to the point of finding out we don't have
// enough data)
return
}
// Only copy the data if we have to. Optimistically assume
// that p will contain a complete header block.
if d.saveBuf.Len() == 0 {
d.buf = p
} else {
d.saveBuf.Write(p)
d.buf = d.saveBuf.Bytes()
d.saveBuf.Reset()
}
for len(d.buf) > 0 {
err = d.parseHeaderFieldRepr()
if err == errNeedMore {
// Extra paranoia, making sure saveBuf won't
// get too large. All the varint and string
// reading code earlier should already catch
// overlong things and return ErrStringLength,
// but keep this as a last resort.
const varIntOverhead = 8 // conservative
if d.maxStrLen != 0 && int64(len(d.buf)) > 2*(int64(d.maxStrLen)+varIntOverhead) {
return 0, ErrStringLength
}
d.saveBuf.Write(d.buf)
return len(p), nil
}
d.firstField = false
if err != nil {
break
}
}
return len(p), err
}
// errNeedMore is an internal sentinel error value that means the
// buffer is truncated and we need to read more data before we can
// continue parsing.
var errNeedMore = errors.New("need more data")
type indexType int
const (
indexedTrue indexType = iota
indexedFalse
indexedNever
)
func (v indexType) indexed() bool { return v == indexedTrue }
func (v indexType) sensitive() bool { return v == indexedNever }
// returns errNeedMore if there isn't enough data available.
// any other error is fatal.
// consumes d.buf iff it returns nil.
// precondition: must be called with len(d.buf) > 0
func (d *Decoder) parseHeaderFieldRepr() error {
b := d.buf[0]
switch {
case b&128 != 0:
// Indexed representation.
// High bit set?
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.1
return d.parseFieldIndexed()
case b&192 == 64:
// 6.2.1 Literal Header Field with Incremental Indexing
// 0b10xxxxxx: top two bits are 10
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.1
return d.parseFieldLiteral(6, indexedTrue)
case b&240 == 0:
// 6.2.2 Literal Header Field without Indexing
// 0b0000xxxx: top four bits are 0000
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.2
return d.parseFieldLiteral(4, indexedFalse)
case b&240 == 16:
// 6.2.3 Literal Header Field never Indexed
// 0b0001xxxx: top four bits are 0001
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.3
return d.parseFieldLiteral(4, indexedNever)
case b&224 == 32:
// 6.3 Dynamic Table Size Update
// Top three bits are '001'.
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.3
return d.parseDynamicTableSizeUpdate()
}
return DecodingError{errors.New("invalid encoding")}
}
// (same invariants and behavior as parseHeaderFieldRepr)
func (d *Decoder) parseFieldIndexed() error {
buf := d.buf
idx, buf, err := readVarInt(7, buf)
if err != nil {
return err
}
hf, ok := d.at(idx)
if !ok {
return DecodingError{InvalidIndexError(idx)}
}
d.buf = buf
return d.callEmit(HeaderField{Name: hf.Name, Value: hf.Value})
}
// (same invariants and behavior as parseHeaderFieldRepr)
func (d *Decoder) parseFieldLiteral(n uint8, it indexType) error {
buf := d.buf
nameIdx, buf, err := readVarInt(n, buf)
if err != nil {
return err
}
var hf HeaderField
wantStr := d.emitEnabled || it.indexed()
if nameIdx > 0 {
ihf, ok := d.at(nameIdx)
if !ok {
return DecodingError{InvalidIndexError(nameIdx)}
}
hf.Name = ihf.Name
} else {
hf.Name, buf, err = d.readString(buf, wantStr)
if err != nil {
return err
}
}
hf.Value, buf, err = d.readString(buf, wantStr)
if err != nil {
return err
}
d.buf = buf
if it.indexed() {
d.dynTab.add(hf)
}
hf.Sensitive = it.sensitive()
return d.callEmit(hf)
}
func (d *Decoder) callEmit(hf HeaderField) error {
if d.maxStrLen != 0 {
if len(hf.Name) > d.maxStrLen || len(hf.Value) > d.maxStrLen {
return ErrStringLength
}
}
if d.emitEnabled {
d.emit(hf)
}
return nil
}
// (same invariants and behavior as parseHeaderFieldRepr)
func (d *Decoder) parseDynamicTableSizeUpdate() error {
// RFC 7541, sec 4.2: This dynamic table size update MUST occur at the
// beginning of the first header block following the change to the dynamic table size.
if !d.firstField && d.dynTab.size > 0 {
return DecodingError{errors.New("dynamic table size update MUST occur at the beginning of a header block")}
}
buf := d.buf
size, buf, err := readVarInt(5, buf)
if err != nil {
return err
}
if size > uint64(d.dynTab.allowedMaxSize) {
return DecodingError{errors.New("dynamic table size update too large")}
}
d.dynTab.setMaxSize(uint32(size))
d.buf = buf
return nil
}
var errVarintOverflow = DecodingError{errors.New("varint integer overflow")}
// readVarInt reads an unsigned variable length integer off the
// beginning of p. n is the parameter as described in
// http://http2.github.io/http2-spec/compression.html#rfc.section.5.1.
//
// n must always be between 1 and 8.
//
// The returned remain buffer is either a smaller suffix of p, or err != nil.
// The error is errNeedMore if p doesn't contain a complete integer.
func readVarInt(n byte, p []byte) (i uint64, remain []byte, err error) {
if n < 1 || n > 8 {
panic("bad n")
}
if len(p) == 0 {
return 0, p, errNeedMore
}
i = uint64(p[0])
if n < 8 {
i &= (1 << uint64(n)) - 1
}
if i < (1<<uint64(n))-1 {
return i, p[1:], nil
}
origP := p
p = p[1:]
var m uint64
for len(p) > 0 {
b := p[0]
p = p[1:]
i += uint64(b&127) << m
if b&128 == 0 {
return i, p, nil
}
m += 7
if m >= 63 { // TODO: proper overflow check. making this up.
return 0, origP, errVarintOverflow
}
}
return 0, origP, errNeedMore
}
// readString decodes an hpack string from p.
//
// wantStr is whether s will be used. If false, decompression and
// []byte->string garbage are skipped if s will be ignored
// anyway. This does mean that huffman decoding errors for non-indexed
// strings past the MAX_HEADER_LIST_SIZE are ignored, but the server
// is returning an error anyway, and because they're not indexed, the error
// won't affect the decoding state.
func (d *Decoder) readString(p []byte, wantStr bool) (s string, remain []byte, err error) {
if len(p) == 0 {
return "", p, errNeedMore
}
isHuff := p[0]&128 != 0
strLen, p, err := readVarInt(7, p)
if err != nil {
return "", p, err
}
if d.maxStrLen != 0 && strLen > uint64(d.maxStrLen) {
return "", nil, ErrStringLength
}
if uint64(len(p)) < strLen {
return "", p, errNeedMore
}
if !isHuff {
if wantStr {
s = string(p[:strLen])
}
return s, p[strLen:], nil
}
if wantStr {
buf := bufPool.Get().(*bytes.Buffer)
buf.Reset() // don't trust others
defer bufPool.Put(buf)
if err := huffmanDecode(buf, d.maxStrLen, p[:strLen]); err != nil {
buf.Reset()
return "", nil, err
}
s = buf.String()
buf.Reset() // be nice to GC
}
return s, p[strLen:], nil
}

View File

@ -1,222 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hpack
import (
"bytes"
"errors"
"io"
"sync"
)
var bufPool = sync.Pool{
New: func() interface{} { return new(bytes.Buffer) },
}
// HuffmanDecode decodes the string in v and writes the expanded
// result to w, returning the number of bytes written to w and the
// Write call's return value. At most one Write call is made.
func HuffmanDecode(w io.Writer, v []byte) (int, error) {
buf := bufPool.Get().(*bytes.Buffer)
buf.Reset()
defer bufPool.Put(buf)
if err := huffmanDecode(buf, 0, v); err != nil {
return 0, err
}
return w.Write(buf.Bytes())
}
// HuffmanDecodeToString decodes the string in v.
func HuffmanDecodeToString(v []byte) (string, error) {
buf := bufPool.Get().(*bytes.Buffer)
buf.Reset()
defer bufPool.Put(buf)
if err := huffmanDecode(buf, 0, v); err != nil {
return "", err
}
return buf.String(), nil
}
// ErrInvalidHuffman is returned for errors found decoding
// Huffman-encoded strings.
var ErrInvalidHuffman = errors.New("hpack: invalid Huffman-encoded data")
// huffmanDecode decodes v to buf.
// If maxLen is greater than 0, attempts to write more to buf than
// maxLen bytes will return ErrStringLength.
func huffmanDecode(buf *bytes.Buffer, maxLen int, v []byte) error {
rootHuffmanNode := getRootHuffmanNode()
n := rootHuffmanNode
// cur is the bit buffer that has not been fed into n.
// cbits is the number of low order bits in cur that are valid.
// sbits is the number of bits of the symbol prefix being decoded.
cur, cbits, sbits := uint(0), uint8(0), uint8(0)
for _, b := range v {
cur = cur<<8 | uint(b)
cbits += 8
sbits += 8
for cbits >= 8 {
idx := byte(cur >> (cbits - 8))
n = n.children[idx]
if n == nil {
return ErrInvalidHuffman
}
if n.children == nil {
if maxLen != 0 && buf.Len() == maxLen {
return ErrStringLength
}
buf.WriteByte(n.sym)
cbits -= n.codeLen
n = rootHuffmanNode
sbits = cbits
} else {
cbits -= 8
}
}
}
for cbits > 0 {
n = n.children[byte(cur<<(8-cbits))]
if n == nil {
return ErrInvalidHuffman
}
if n.children != nil || n.codeLen > cbits {
break
}
if maxLen != 0 && buf.Len() == maxLen {
return ErrStringLength
}
buf.WriteByte(n.sym)
cbits -= n.codeLen
n = rootHuffmanNode
sbits = cbits
}
if sbits > 7 {
// Either there was an incomplete symbol, or overlong padding.
// Both are decoding errors per RFC 7541 section 5.2.
return ErrInvalidHuffman
}
if mask := uint(1<<cbits - 1); cur&mask != mask {
// Trailing bits must be a prefix of EOS per RFC 7541 section 5.2.
return ErrInvalidHuffman
}
return nil
}
type node struct {
// children is non-nil for internal nodes
children *[256]*node
// The following are only valid if children is nil:
codeLen uint8 // number of bits that led to the output of sym
sym byte // output symbol
}
func newInternalNode() *node {
return &node{children: new([256]*node)}
}
var (
buildRootOnce sync.Once
lazyRootHuffmanNode *node
)
func getRootHuffmanNode() *node {
buildRootOnce.Do(buildRootHuffmanNode)
return lazyRootHuffmanNode
}
func buildRootHuffmanNode() {
if len(huffmanCodes) != 256 {
panic("unexpected size")
}
lazyRootHuffmanNode = newInternalNode()
for i, code := range huffmanCodes {
addDecoderNode(byte(i), code, huffmanCodeLen[i])
}
}
func addDecoderNode(sym byte, code uint32, codeLen uint8) {
cur := lazyRootHuffmanNode
for codeLen > 8 {
codeLen -= 8
i := uint8(code >> codeLen)
if cur.children[i] == nil {
cur.children[i] = newInternalNode()
}
cur = cur.children[i]
}
shift := 8 - codeLen
start, end := int(uint8(code<<shift)), int(1<<shift)
for i := start; i < start+end; i++ {
cur.children[i] = &node{sym: sym, codeLen: codeLen}
}
}
// AppendHuffmanString appends s, as encoded in Huffman codes, to dst
// and returns the extended buffer.
func AppendHuffmanString(dst []byte, s string) []byte {
rembits := uint8(8)
for i := 0; i < len(s); i++ {
if rembits == 8 {
dst = append(dst, 0)
}
dst, rembits = appendByteToHuffmanCode(dst, rembits, s[i])
}
if rembits < 8 {
// special EOS symbol
code := uint32(0x3fffffff)
nbits := uint8(30)
t := uint8(code >> (nbits - rembits))
dst[len(dst)-1] |= t
}
return dst
}
// HuffmanEncodeLength returns the number of bytes required to encode
// s in Huffman codes. The result is round up to byte boundary.
func HuffmanEncodeLength(s string) uint64 {
n := uint64(0)
for i := 0; i < len(s); i++ {
n += uint64(huffmanCodeLen[s[i]])
}
return (n + 7) / 8
}
// appendByteToHuffmanCode appends Huffman code for c to dst and
// returns the extended buffer and the remaining bits in the last
// element. The appending is not byte aligned and the remaining bits
// in the last element of dst is given in rembits.
func appendByteToHuffmanCode(dst []byte, rembits uint8, c byte) ([]byte, uint8) {
code := huffmanCodes[c]
nbits := huffmanCodeLen[c]
for {
if rembits > nbits {
t := uint8(code << (rembits - nbits))
dst[len(dst)-1] |= t
rembits -= nbits
break
}
t := uint8(code >> (nbits - rembits))
dst[len(dst)-1] |= t
nbits -= rembits
rembits = 8
if nbits == 0 {
break
}
dst = append(dst, 0)
}
return dst, rembits
}

View File

@ -1,479 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hpack
import (
"fmt"
)
// headerFieldTable implements a list of HeaderFields.
// This is used to implement the static and dynamic tables.
type headerFieldTable struct {
// For static tables, entries are never evicted.
//
// For dynamic tables, entries are evicted from ents[0] and added to the end.
// Each entry has a unique id that starts at one and increments for each
// entry that is added. This unique id is stable across evictions, meaning
// it can be used as a pointer to a specific entry. As in hpack, unique ids
// are 1-based. The unique id for ents[k] is k + evictCount + 1.
//
// Zero is not a valid unique id.
//
// evictCount should not overflow in any remotely practical situation. In
// practice, we will have one dynamic table per HTTP/2 connection. If we
// assume a very powerful server that handles 1M QPS per connection and each
// request adds (then evicts) 100 entries from the table, it would still take
// 2M years for evictCount to overflow.
ents []HeaderField
evictCount uint64
// byName maps a HeaderField name to the unique id of the newest entry with
// the same name. See above for a definition of "unique id".
byName map[string]uint64
// byNameValue maps a HeaderField name/value pair to the unique id of the newest
// entry with the same name and value. See above for a definition of "unique id".
byNameValue map[pairNameValue]uint64
}
type pairNameValue struct {
name, value string
}
func (t *headerFieldTable) init() {
t.byName = make(map[string]uint64)
t.byNameValue = make(map[pairNameValue]uint64)
}
// len reports the number of entries in the table.
func (t *headerFieldTable) len() int {
return len(t.ents)
}
// addEntry adds a new entry.
func (t *headerFieldTable) addEntry(f HeaderField) {
id := uint64(t.len()) + t.evictCount + 1
t.byName[f.Name] = id
t.byNameValue[pairNameValue{f.Name, f.Value}] = id
t.ents = append(t.ents, f)
}
// evictOldest evicts the n oldest entries in the table.
func (t *headerFieldTable) evictOldest(n int) {
if n > t.len() {
panic(fmt.Sprintf("evictOldest(%v) on table with %v entries", n, t.len()))
}
for k := 0; k < n; k++ {
f := t.ents[k]
id := t.evictCount + uint64(k) + 1
if t.byName[f.Name] == id {
delete(t.byName, f.Name)
}
if p := (pairNameValue{f.Name, f.Value}); t.byNameValue[p] == id {
delete(t.byNameValue, p)
}
}
copy(t.ents, t.ents[n:])
for k := t.len() - n; k < t.len(); k++ {
t.ents[k] = HeaderField{} // so strings can be garbage collected
}
t.ents = t.ents[:t.len()-n]
if t.evictCount+uint64(n) < t.evictCount {
panic("evictCount overflow")
}
t.evictCount += uint64(n)
}
// search finds f in the table. If there is no match, i is 0.
// If both name and value match, i is the matched index and nameValueMatch
// becomes true. If only name matches, i points to that index and
// nameValueMatch becomes false.
//
// The returned index is a 1-based HPACK index. For dynamic tables, HPACK says
// that index 1 should be the newest entry, but t.ents[0] is the oldest entry,
// meaning t.ents is reversed for dynamic tables. Hence, when t is a dynamic
// table, the return value i actually refers to the entry t.ents[t.len()-i].
//
// All tables are assumed to be a dynamic tables except for the global
// staticTable pointer.
//
// See Section 2.3.3.
func (t *headerFieldTable) search(f HeaderField) (i uint64, nameValueMatch bool) {
if !f.Sensitive {
if id := t.byNameValue[pairNameValue{f.Name, f.Value}]; id != 0 {
return t.idToIndex(id), true
}
}
if id := t.byName[f.Name]; id != 0 {
return t.idToIndex(id), false
}
return 0, false
}
// idToIndex converts a unique id to an HPACK index.
// See Section 2.3.3.
func (t *headerFieldTable) idToIndex(id uint64) uint64 {
if id <= t.evictCount {
panic(fmt.Sprintf("id (%v) <= evictCount (%v)", id, t.evictCount))
}
k := id - t.evictCount - 1 // convert id to an index t.ents[k]
if t != staticTable {
return uint64(t.len()) - k // dynamic table
}
return k + 1
}
// http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-07#appendix-B
var staticTable = newStaticTable()
var staticTableEntries = [...]HeaderField{
{Name: ":authority"},
{Name: ":method", Value: "GET"},
{Name: ":method", Value: "POST"},
{Name: ":path", Value: "/"},
{Name: ":path", Value: "/index.html"},
{Name: ":scheme", Value: "http"},
{Name: ":scheme", Value: "https"},
{Name: ":status", Value: "200"},
{Name: ":status", Value: "204"},
{Name: ":status", Value: "206"},
{Name: ":status", Value: "304"},
{Name: ":status", Value: "400"},
{Name: ":status", Value: "404"},
{Name: ":status", Value: "500"},
{Name: "accept-charset"},
{Name: "accept-encoding", Value: "gzip, deflate"},
{Name: "accept-language"},
{Name: "accept-ranges"},
{Name: "accept"},
{Name: "access-control-allow-origin"},
{Name: "age"},
{Name: "allow"},
{Name: "authorization"},
{Name: "cache-control"},
{Name: "content-disposition"},
{Name: "content-encoding"},
{Name: "content-language"},
{Name: "content-length"},
{Name: "content-location"},
{Name: "content-range"},
{Name: "content-type"},
{Name: "cookie"},
{Name: "date"},
{Name: "etag"},
{Name: "expect"},
{Name: "expires"},
{Name: "from"},
{Name: "host"},
{Name: "if-match"},
{Name: "if-modified-since"},
{Name: "if-none-match"},
{Name: "if-range"},
{Name: "if-unmodified-since"},
{Name: "last-modified"},
{Name: "link"},
{Name: "location"},
{Name: "max-forwards"},
{Name: "proxy-authenticate"},
{Name: "proxy-authorization"},
{Name: "range"},
{Name: "referer"},
{Name: "refresh"},
{Name: "retry-after"},
{Name: "server"},
{Name: "set-cookie"},
{Name: "strict-transport-security"},
{Name: "transfer-encoding"},
{Name: "user-agent"},
{Name: "vary"},
{Name: "via"},
{Name: "www-authenticate"},
}
func newStaticTable() *headerFieldTable {
t := &headerFieldTable{}
t.init()
for _, e := range staticTableEntries[:] {
t.addEntry(e)
}
return t
}
var huffmanCodes = [256]uint32{
0x1ff8,
0x7fffd8,
0xfffffe2,
0xfffffe3,
0xfffffe4,
0xfffffe5,
0xfffffe6,
0xfffffe7,
0xfffffe8,
0xffffea,
0x3ffffffc,
0xfffffe9,
0xfffffea,
0x3ffffffd,
0xfffffeb,
0xfffffec,
0xfffffed,
0xfffffee,
0xfffffef,
0xffffff0,
0xffffff1,
0xffffff2,
0x3ffffffe,
0xffffff3,
0xffffff4,
0xffffff5,
0xffffff6,
0xffffff7,
0xffffff8,
0xffffff9,
0xffffffa,
0xffffffb,
0x14,
0x3f8,
0x3f9,
0xffa,
0x1ff9,
0x15,
0xf8,
0x7fa,
0x3fa,
0x3fb,
0xf9,
0x7fb,
0xfa,
0x16,
0x17,
0x18,
0x0,
0x1,
0x2,
0x19,
0x1a,
0x1b,
0x1c,
0x1d,
0x1e,
0x1f,
0x5c,
0xfb,
0x7ffc,
0x20,
0xffb,
0x3fc,
0x1ffa,
0x21,
0x5d,
0x5e,
0x5f,
0x60,
0x61,
0x62,
0x63,
0x64,
0x65,
0x66,
0x67,
0x68,
0x69,
0x6a,
0x6b,
0x6c,
0x6d,
0x6e,
0x6f,
0x70,
0x71,
0x72,
0xfc,
0x73,
0xfd,
0x1ffb,
0x7fff0,
0x1ffc,
0x3ffc,
0x22,
0x7ffd,
0x3,
0x23,
0x4,
0x24,
0x5,
0x25,
0x26,
0x27,
0x6,
0x74,
0x75,
0x28,
0x29,
0x2a,
0x7,
0x2b,
0x76,
0x2c,
0x8,
0x9,
0x2d,
0x77,
0x78,
0x79,
0x7a,
0x7b,
0x7ffe,
0x7fc,
0x3ffd,
0x1ffd,
0xffffffc,
0xfffe6,
0x3fffd2,
0xfffe7,
0xfffe8,
0x3fffd3,
0x3fffd4,
0x3fffd5,
0x7fffd9,
0x3fffd6,
0x7fffda,
0x7fffdb,
0x7fffdc,
0x7fffdd,
0x7fffde,
0xffffeb,
0x7fffdf,
0xffffec,
0xffffed,
0x3fffd7,
0x7fffe0,
0xffffee,
0x7fffe1,
0x7fffe2,
0x7fffe3,
0x7fffe4,
0x1fffdc,
0x3fffd8,
0x7fffe5,
0x3fffd9,
0x7fffe6,
0x7fffe7,
0xffffef,
0x3fffda,
0x1fffdd,
0xfffe9,
0x3fffdb,
0x3fffdc,
0x7fffe8,
0x7fffe9,
0x1fffde,
0x7fffea,
0x3fffdd,
0x3fffde,
0xfffff0,
0x1fffdf,
0x3fffdf,
0x7fffeb,
0x7fffec,
0x1fffe0,
0x1fffe1,
0x3fffe0,
0x1fffe2,
0x7fffed,
0x3fffe1,
0x7fffee,
0x7fffef,
0xfffea,
0x3fffe2,
0x3fffe3,
0x3fffe4,
0x7ffff0,
0x3fffe5,
0x3fffe6,
0x7ffff1,
0x3ffffe0,
0x3ffffe1,
0xfffeb,
0x7fff1,
0x3fffe7,
0x7ffff2,
0x3fffe8,
0x1ffffec,
0x3ffffe2,
0x3ffffe3,
0x3ffffe4,
0x7ffffde,
0x7ffffdf,
0x3ffffe5,
0xfffff1,
0x1ffffed,
0x7fff2,
0x1fffe3,
0x3ffffe6,
0x7ffffe0,
0x7ffffe1,
0x3ffffe7,
0x7ffffe2,
0xfffff2,
0x1fffe4,
0x1fffe5,
0x3ffffe8,
0x3ffffe9,
0xffffffd,
0x7ffffe3,
0x7ffffe4,
0x7ffffe5,
0xfffec,
0xfffff3,
0xfffed,
0x1fffe6,
0x3fffe9,
0x1fffe7,
0x1fffe8,
0x7ffff3,
0x3fffea,
0x3fffeb,
0x1ffffee,
0x1ffffef,
0xfffff4,
0xfffff5,
0x3ffffea,
0x7ffff4,
0x3ffffeb,
0x7ffffe6,
0x3ffffec,
0x3ffffed,
0x7ffffe7,
0x7ffffe8,
0x7ffffe9,
0x7ffffea,
0x7ffffeb,
0xffffffe,
0x7ffffec,
0x7ffffed,
0x7ffffee,
0x7ffffef,
0x7fffff0,
0x3ffffee,
}
var huffmanCodeLen = [256]uint8{
13, 23, 28, 28, 28, 28, 28, 28, 28, 24, 30, 28, 28, 30, 28, 28,
28, 28, 28, 28, 28, 28, 30, 28, 28, 28, 28, 28, 28, 28, 28, 28,
6, 10, 10, 12, 13, 6, 8, 11, 10, 10, 8, 11, 8, 6, 6, 6,
5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 15, 6, 12, 10,
13, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 8, 13, 19, 13, 14, 6,
15, 5, 6, 5, 6, 5, 6, 6, 6, 5, 7, 7, 6, 6, 6, 5,
6, 7, 6, 5, 5, 6, 7, 7, 7, 7, 7, 15, 11, 14, 13, 28,
20, 22, 20, 20, 22, 22, 22, 23, 22, 23, 23, 23, 23, 23, 24, 23,
24, 24, 22, 23, 24, 23, 23, 23, 23, 21, 22, 23, 22, 23, 23, 24,
22, 21, 20, 22, 22, 23, 23, 21, 23, 22, 22, 24, 21, 22, 23, 23,
21, 21, 22, 21, 23, 22, 23, 23, 20, 22, 22, 22, 23, 22, 22, 23,
26, 26, 20, 19, 22, 23, 22, 25, 26, 26, 26, 27, 27, 26, 24, 25,
19, 21, 26, 27, 27, 26, 27, 24, 21, 21, 26, 26, 28, 27, 27, 27,
20, 24, 20, 21, 22, 21, 21, 23, 22, 22, 25, 25, 24, 24, 26, 23,
26, 27, 26, 26, 27, 27, 27, 27, 27, 28, 27, 27, 27, 27, 27, 26,
}

View File

@ -1,384 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package http2 implements the HTTP/2 protocol.
//
// This package is low-level and intended to be used directly by very
// few people. Most users will use it indirectly through the automatic
// use by the net/http package (from Go 1.6 and later).
// For use in earlier Go versions see ConfigureServer. (Transport support
// requires Go 1.6 or later)
//
// See https://http2.github.io/ for more information on HTTP/2.
//
// See https://http2.golang.org/ for a test server running this code.
//
package http2 // import "golang.org/x/net/http2"
import (
"bufio"
"crypto/tls"
"errors"
"fmt"
"io"
"net/http"
"os"
"sort"
"strconv"
"strings"
"sync"
"golang.org/x/net/http/httpguts"
)
var (
VerboseLogs bool
logFrameWrites bool
logFrameReads bool
inTests bool
)
func init() {
e := os.Getenv("GODEBUG")
if strings.Contains(e, "http2debug=1") {
VerboseLogs = true
}
if strings.Contains(e, "http2debug=2") {
VerboseLogs = true
logFrameWrites = true
logFrameReads = true
}
}
const (
// ClientPreface is the string that must be sent by new
// connections from clients.
ClientPreface = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
// SETTINGS_MAX_FRAME_SIZE default
// http://http2.github.io/http2-spec/#rfc.section.6.5.2
initialMaxFrameSize = 16384
// NextProtoTLS is the NPN/ALPN protocol negotiated during
// HTTP/2's TLS setup.
NextProtoTLS = "h2"
// http://http2.github.io/http2-spec/#SettingValues
initialHeaderTableSize = 4096
initialWindowSize = 65535 // 6.9.2 Initial Flow Control Window Size
defaultMaxReadFrameSize = 1 << 20
)
var (
clientPreface = []byte(ClientPreface)
)
type streamState int
// HTTP/2 stream states.
//
// See http://tools.ietf.org/html/rfc7540#section-5.1.
//
// For simplicity, the server code merges "reserved (local)" into
// "half-closed (remote)". This is one less state transition to track.
// The only downside is that we send PUSH_PROMISEs slightly less
// liberally than allowable. More discussion here:
// https://lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/0599.html
//
// "reserved (remote)" is omitted since the client code does not
// support server push.
const (
stateIdle streamState = iota
stateOpen
stateHalfClosedLocal
stateHalfClosedRemote
stateClosed
)
var stateName = [...]string{
stateIdle: "Idle",
stateOpen: "Open",
stateHalfClosedLocal: "HalfClosedLocal",
stateHalfClosedRemote: "HalfClosedRemote",
stateClosed: "Closed",
}
func (st streamState) String() string {
return stateName[st]
}
// Setting is a setting parameter: which setting it is, and its value.
type Setting struct {
// ID is which setting is being set.
// See http://http2.github.io/http2-spec/#SettingValues
ID SettingID
// Val is the value.
Val uint32
}
func (s Setting) String() string {
return fmt.Sprintf("[%v = %d]", s.ID, s.Val)
}
// Valid reports whether the setting is valid.
func (s Setting) Valid() error {
// Limits and error codes from 6.5.2 Defined SETTINGS Parameters
switch s.ID {
case SettingEnablePush:
if s.Val != 1 && s.Val != 0 {
return ConnectionError(ErrCodeProtocol)
}
case SettingInitialWindowSize:
if s.Val > 1<<31-1 {
return ConnectionError(ErrCodeFlowControl)
}
case SettingMaxFrameSize:
if s.Val < 16384 || s.Val > 1<<24-1 {
return ConnectionError(ErrCodeProtocol)
}
}
return nil
}
// A SettingID is an HTTP/2 setting as defined in
// http://http2.github.io/http2-spec/#iana-settings
type SettingID uint16
const (
SettingHeaderTableSize SettingID = 0x1
SettingEnablePush SettingID = 0x2
SettingMaxConcurrentStreams SettingID = 0x3
SettingInitialWindowSize SettingID = 0x4
SettingMaxFrameSize SettingID = 0x5
SettingMaxHeaderListSize SettingID = 0x6
)
var settingName = map[SettingID]string{
SettingHeaderTableSize: "HEADER_TABLE_SIZE",
SettingEnablePush: "ENABLE_PUSH",
SettingMaxConcurrentStreams: "MAX_CONCURRENT_STREAMS",
SettingInitialWindowSize: "INITIAL_WINDOW_SIZE",
SettingMaxFrameSize: "MAX_FRAME_SIZE",
SettingMaxHeaderListSize: "MAX_HEADER_LIST_SIZE",
}
func (s SettingID) String() string {
if v, ok := settingName[s]; ok {
return v
}
return fmt.Sprintf("UNKNOWN_SETTING_%d", uint16(s))
}
var (
errInvalidHeaderFieldName = errors.New("http2: invalid header field name")
errInvalidHeaderFieldValue = errors.New("http2: invalid header field value")
)
// validWireHeaderFieldName reports whether v is a valid header field
// name (key). See httpguts.ValidHeaderName for the base rules.
//
// Further, http2 says:
// "Just as in HTTP/1.x, header field names are strings of ASCII
// characters that are compared in a case-insensitive
// fashion. However, header field names MUST be converted to
// lowercase prior to their encoding in HTTP/2. "
func validWireHeaderFieldName(v string) bool {
if len(v) == 0 {
return false
}
for _, r := range v {
if !httpguts.IsTokenRune(r) {
return false
}
if 'A' <= r && r <= 'Z' {
return false
}
}
return true
}
func httpCodeString(code int) string {
switch code {
case 200:
return "200"
case 404:
return "404"
}
return strconv.Itoa(code)
}
// from pkg io
type stringWriter interface {
WriteString(s string) (n int, err error)
}
// A gate lets two goroutines coordinate their activities.
type gate chan struct{}
func (g gate) Done() { g <- struct{}{} }
func (g gate) Wait() { <-g }
// A closeWaiter is like a sync.WaitGroup but only goes 1 to 0 (open to closed).
type closeWaiter chan struct{}
// Init makes a closeWaiter usable.
// It exists because so a closeWaiter value can be placed inside a
// larger struct and have the Mutex and Cond's memory in the same
// allocation.
func (cw *closeWaiter) Init() {
*cw = make(chan struct{})
}
// Close marks the closeWaiter as closed and unblocks any waiters.
func (cw closeWaiter) Close() {
close(cw)
}
// Wait waits for the closeWaiter to become closed.
func (cw closeWaiter) Wait() {
<-cw
}
// bufferedWriter is a buffered writer that writes to w.
// Its buffered writer is lazily allocated as needed, to minimize
// idle memory usage with many connections.
type bufferedWriter struct {
w io.Writer // immutable
bw *bufio.Writer // non-nil when data is buffered
}
func newBufferedWriter(w io.Writer) *bufferedWriter {
return &bufferedWriter{w: w}
}
// bufWriterPoolBufferSize is the size of bufio.Writer's
// buffers created using bufWriterPool.
//
// TODO: pick a less arbitrary value? this is a bit under
// (3 x typical 1500 byte MTU) at least. Other than that,
// not much thought went into it.
const bufWriterPoolBufferSize = 4 << 10
var bufWriterPool = sync.Pool{
New: func() interface{} {
return bufio.NewWriterSize(nil, bufWriterPoolBufferSize)
},
}
func (w *bufferedWriter) Available() int {
if w.bw == nil {
return bufWriterPoolBufferSize
}
return w.bw.Available()
}
func (w *bufferedWriter) Write(p []byte) (n int, err error) {
if w.bw == nil {
bw := bufWriterPool.Get().(*bufio.Writer)
bw.Reset(w.w)
w.bw = bw
}
return w.bw.Write(p)
}
func (w *bufferedWriter) Flush() error {
bw := w.bw
if bw == nil {
return nil
}
err := bw.Flush()
bw.Reset(nil)
bufWriterPool.Put(bw)
w.bw = nil
return err
}
func mustUint31(v int32) uint32 {
if v < 0 || v > 2147483647 {
panic("out of range")
}
return uint32(v)
}
// bodyAllowedForStatus reports whether a given response status code
// permits a body. See RFC 7230, section 3.3.
func bodyAllowedForStatus(status int) bool {
switch {
case status >= 100 && status <= 199:
return false
case status == 204:
return false
case status == 304:
return false
}
return true
}
type httpError struct {
msg string
timeout bool
}
func (e *httpError) Error() string { return e.msg }
func (e *httpError) Timeout() bool { return e.timeout }
func (e *httpError) Temporary() bool { return true }
var errTimeout error = &httpError{msg: "http2: timeout awaiting response headers", timeout: true}
type connectionStater interface {
ConnectionState() tls.ConnectionState
}
var sorterPool = sync.Pool{New: func() interface{} { return new(sorter) }}
type sorter struct {
v []string // owned by sorter
}
func (s *sorter) Len() int { return len(s.v) }
func (s *sorter) Swap(i, j int) { s.v[i], s.v[j] = s.v[j], s.v[i] }
func (s *sorter) Less(i, j int) bool { return s.v[i] < s.v[j] }
// Keys returns the sorted keys of h.
//
// The returned slice is only valid until s used again or returned to
// its pool.
func (s *sorter) Keys(h http.Header) []string {
keys := s.v[:0]
for k := range h {
keys = append(keys, k)
}
s.v = keys
sort.Sort(s)
return keys
}
func (s *sorter) SortStrings(ss []string) {
// Our sorter works on s.v, which sorter owns, so
// stash it away while we sort the user's buffer.
save := s.v
s.v = ss
sort.Sort(s)
s.v = save
}
// validPseudoPath reports whether v is a valid :path pseudo-header
// value. It must be either:
//
// *) a non-empty string starting with '/'
// *) the string '*', for OPTIONS requests.
//
// For now this is only used a quick check for deciding when to clean
// up Opaque URLs before sending requests from the Transport.
// See golang.org/issue/16847
//
// We used to enforce that the path also didn't start with "//", but
// Google's GFE accepts such paths and Chrome sends them, so ignore
// that part of the spec. See golang.org/issue/19103.
func validPseudoPath(v string) bool {
return (len(v) > 0 && v[0] == '/') || v == "*"
}

View File

@ -1,20 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.11
package http2
import (
"net/http/httptrace"
"net/textproto"
)
func traceHasWroteHeaderField(trace *httptrace.ClientTrace) bool { return false }
func traceWroteHeaderField(trace *httptrace.ClientTrace, k, v string) {}
func traceGot1xxResponseFunc(trace *httptrace.ClientTrace) func(int, textproto.MIMEHeader) error {
return nil
}

163
vendor/golang.org/x/net/http2/pipe.go generated vendored
View File

@ -1,163 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"errors"
"io"
"sync"
)
// pipe is a goroutine-safe io.Reader/io.Writer pair. It's like
// io.Pipe except there are no PipeReader/PipeWriter halves, and the
// underlying buffer is an interface. (io.Pipe is always unbuffered)
type pipe struct {
mu sync.Mutex
c sync.Cond // c.L lazily initialized to &p.mu
b pipeBuffer // nil when done reading
err error // read error once empty. non-nil means closed.
breakErr error // immediate read error (caller doesn't see rest of b)
donec chan struct{} // closed on error
readFn func() // optional code to run in Read before error
}
type pipeBuffer interface {
Len() int
io.Writer
io.Reader
}
func (p *pipe) Len() int {
p.mu.Lock()
defer p.mu.Unlock()
if p.b == nil {
return 0
}
return p.b.Len()
}
// Read waits until data is available and copies bytes
// from the buffer into p.
func (p *pipe) Read(d []byte) (n int, err error) {
p.mu.Lock()
defer p.mu.Unlock()
if p.c.L == nil {
p.c.L = &p.mu
}
for {
if p.breakErr != nil {
return 0, p.breakErr
}
if p.b != nil && p.b.Len() > 0 {
return p.b.Read(d)
}
if p.err != nil {
if p.readFn != nil {
p.readFn() // e.g. copy trailers
p.readFn = nil // not sticky like p.err
}
p.b = nil
return 0, p.err
}
p.c.Wait()
}
}
var errClosedPipeWrite = errors.New("write on closed buffer")
// Write copies bytes from p into the buffer and wakes a reader.
// It is an error to write more data than the buffer can hold.
func (p *pipe) Write(d []byte) (n int, err error) {
p.mu.Lock()
defer p.mu.Unlock()
if p.c.L == nil {
p.c.L = &p.mu
}
defer p.c.Signal()
if p.err != nil {
return 0, errClosedPipeWrite
}
if p.breakErr != nil {
return len(d), nil // discard when there is no reader
}
return p.b.Write(d)
}
// CloseWithError causes the next Read (waking up a current blocked
// Read if needed) to return the provided err after all data has been
// read.
//
// The error must be non-nil.
func (p *pipe) CloseWithError(err error) { p.closeWithError(&p.err, err, nil) }
// BreakWithError causes the next Read (waking up a current blocked
// Read if needed) to return the provided err immediately, without
// waiting for unread data.
func (p *pipe) BreakWithError(err error) { p.closeWithError(&p.breakErr, err, nil) }
// closeWithErrorAndCode is like CloseWithError but also sets some code to run
// in the caller's goroutine before returning the error.
func (p *pipe) closeWithErrorAndCode(err error, fn func()) { p.closeWithError(&p.err, err, fn) }
func (p *pipe) closeWithError(dst *error, err error, fn func()) {
if err == nil {
panic("err must be non-nil")
}
p.mu.Lock()
defer p.mu.Unlock()
if p.c.L == nil {
p.c.L = &p.mu
}
defer p.c.Signal()
if *dst != nil {
// Already been done.
return
}
p.readFn = fn
if dst == &p.breakErr {
p.b = nil
}
*dst = err
p.closeDoneLocked()
}
// requires p.mu be held.
func (p *pipe) closeDoneLocked() {
if p.donec == nil {
return
}
// Close if unclosed. This isn't racy since we always
// hold p.mu while closing.
select {
case <-p.donec:
default:
close(p.donec)
}
}
// Err returns the error (if any) first set by BreakWithError or CloseWithError.
func (p *pipe) Err() error {
p.mu.Lock()
defer p.mu.Unlock()
if p.breakErr != nil {
return p.breakErr
}
return p.err
}
// Done returns a channel which is closed if and when this pipe is closed
// with CloseWithError.
func (p *pipe) Done() <-chan struct{} {
p.mu.Lock()
defer p.mu.Unlock()
if p.donec == nil {
p.donec = make(chan struct{})
if p.err != nil || p.breakErr != nil {
// Already hit an error.
p.closeDoneLocked()
}
}
return p.donec
}

2931
vendor/golang.org/x/net/http2/server.go generated vendored

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,365 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"bytes"
"fmt"
"log"
"net/http"
"net/url"
"golang.org/x/net/http/httpguts"
"golang.org/x/net/http2/hpack"
)
// writeFramer is implemented by any type that is used to write frames.
type writeFramer interface {
writeFrame(writeContext) error
// staysWithinBuffer reports whether this writer promises that
// it will only write less than or equal to size bytes, and it
// won't Flush the write context.
staysWithinBuffer(size int) bool
}
// writeContext is the interface needed by the various frame writer
// types below. All the writeFrame methods below are scheduled via the
// frame writing scheduler (see writeScheduler in writesched.go).
//
// This interface is implemented by *serverConn.
//
// TODO: decide whether to a) use this in the client code (which didn't
// end up using this yet, because it has a simpler design, not
// currently implementing priorities), or b) delete this and
// make the server code a bit more concrete.
type writeContext interface {
Framer() *Framer
Flush() error
CloseConn() error
// HeaderEncoder returns an HPACK encoder that writes to the
// returned buffer.
HeaderEncoder() (*hpack.Encoder, *bytes.Buffer)
}
// writeEndsStream reports whether w writes a frame that will transition
// the stream to a half-closed local state. This returns false for RST_STREAM,
// which closes the entire stream (not just the local half).
func writeEndsStream(w writeFramer) bool {
switch v := w.(type) {
case *writeData:
return v.endStream
case *writeResHeaders:
return v.endStream
case nil:
// This can only happen if the caller reuses w after it's
// been intentionally nil'ed out to prevent use. Keep this
// here to catch future refactoring breaking it.
panic("writeEndsStream called on nil writeFramer")
}
return false
}
type flushFrameWriter struct{}
func (flushFrameWriter) writeFrame(ctx writeContext) error {
return ctx.Flush()
}
func (flushFrameWriter) staysWithinBuffer(max int) bool { return false }
type writeSettings []Setting
func (s writeSettings) staysWithinBuffer(max int) bool {
const settingSize = 6 // uint16 + uint32
return frameHeaderLen+settingSize*len(s) <= max
}
func (s writeSettings) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteSettings([]Setting(s)...)
}
type writeGoAway struct {
maxStreamID uint32
code ErrCode
}
func (p *writeGoAway) writeFrame(ctx writeContext) error {
err := ctx.Framer().WriteGoAway(p.maxStreamID, p.code, nil)
ctx.Flush() // ignore error: we're hanging up on them anyway
return err
}
func (*writeGoAway) staysWithinBuffer(max int) bool { return false } // flushes
type writeData struct {
streamID uint32
p []byte
endStream bool
}
func (w *writeData) String() string {
return fmt.Sprintf("writeData(stream=%d, p=%d, endStream=%v)", w.streamID, len(w.p), w.endStream)
}
func (w *writeData) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteData(w.streamID, w.endStream, w.p)
}
func (w *writeData) staysWithinBuffer(max int) bool {
return frameHeaderLen+len(w.p) <= max
}
// handlerPanicRST is the message sent from handler goroutines when
// the handler panics.
type handlerPanicRST struct {
StreamID uint32
}
func (hp handlerPanicRST) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteRSTStream(hp.StreamID, ErrCodeInternal)
}
func (hp handlerPanicRST) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
func (se StreamError) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteRSTStream(se.StreamID, se.Code)
}
func (se StreamError) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
type writePingAck struct{ pf *PingFrame }
func (w writePingAck) writeFrame(ctx writeContext) error {
return ctx.Framer().WritePing(true, w.pf.Data)
}
func (w writePingAck) staysWithinBuffer(max int) bool { return frameHeaderLen+len(w.pf.Data) <= max }
type writeSettingsAck struct{}
func (writeSettingsAck) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteSettingsAck()
}
func (writeSettingsAck) staysWithinBuffer(max int) bool { return frameHeaderLen <= max }
// splitHeaderBlock splits headerBlock into fragments so that each fragment fits
// in a single frame, then calls fn for each fragment. firstFrag/lastFrag are true
// for the first/last fragment, respectively.
func splitHeaderBlock(ctx writeContext, headerBlock []byte, fn func(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error) error {
// For now we're lazy and just pick the minimum MAX_FRAME_SIZE
// that all peers must support (16KB). Later we could care
// more and send larger frames if the peer advertised it, but
// there's little point. Most headers are small anyway (so we
// generally won't have CONTINUATION frames), and extra frames
// only waste 9 bytes anyway.
const maxFrameSize = 16384
first := true
for len(headerBlock) > 0 {
frag := headerBlock
if len(frag) > maxFrameSize {
frag = frag[:maxFrameSize]
}
headerBlock = headerBlock[len(frag):]
if err := fn(ctx, frag, first, len(headerBlock) == 0); err != nil {
return err
}
first = false
}
return nil
}
// writeResHeaders is a request to write a HEADERS and 0+ CONTINUATION frames
// for HTTP response headers or trailers from a server handler.
type writeResHeaders struct {
streamID uint32
httpResCode int // 0 means no ":status" line
h http.Header // may be nil
trailers []string // if non-nil, which keys of h to write. nil means all.
endStream bool
date string
contentType string
contentLength string
}
func encKV(enc *hpack.Encoder, k, v string) {
if VerboseLogs {
log.Printf("http2: server encoding header %q = %q", k, v)
}
enc.WriteField(hpack.HeaderField{Name: k, Value: v})
}
func (w *writeResHeaders) staysWithinBuffer(max int) bool {
// TODO: this is a common one. It'd be nice to return true
// here and get into the fast path if we could be clever and
// calculate the size fast enough, or at least a conservative
// upper bound that usually fires. (Maybe if w.h and
// w.trailers are nil, so we don't need to enumerate it.)
// Otherwise I'm afraid that just calculating the length to
// answer this question would be slower than the ~2µs benefit.
return false
}
func (w *writeResHeaders) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
if w.httpResCode != 0 {
encKV(enc, ":status", httpCodeString(w.httpResCode))
}
encodeHeaders(enc, w.h, w.trailers)
if w.contentType != "" {
encKV(enc, "content-type", w.contentType)
}
if w.contentLength != "" {
encKV(enc, "content-length", w.contentLength)
}
if w.date != "" {
encKV(enc, "date", w.date)
}
headerBlock := buf.Bytes()
if len(headerBlock) == 0 && w.trailers == nil {
panic("unexpected empty hpack")
}
return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
}
func (w *writeResHeaders) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
if firstFrag {
return ctx.Framer().WriteHeaders(HeadersFrameParam{
StreamID: w.streamID,
BlockFragment: frag,
EndStream: w.endStream,
EndHeaders: lastFrag,
})
} else {
return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
}
}
// writePushPromise is a request to write a PUSH_PROMISE and 0+ CONTINUATION frames.
type writePushPromise struct {
streamID uint32 // pusher stream
method string // for :method
url *url.URL // for :scheme, :authority, :path
h http.Header
// Creates an ID for a pushed stream. This runs on serveG just before
// the frame is written. The returned ID is copied to promisedID.
allocatePromisedID func() (uint32, error)
promisedID uint32
}
func (w *writePushPromise) staysWithinBuffer(max int) bool {
// TODO: see writeResHeaders.staysWithinBuffer
return false
}
func (w *writePushPromise) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
encKV(enc, ":method", w.method)
encKV(enc, ":scheme", w.url.Scheme)
encKV(enc, ":authority", w.url.Host)
encKV(enc, ":path", w.url.RequestURI())
encodeHeaders(enc, w.h, nil)
headerBlock := buf.Bytes()
if len(headerBlock) == 0 {
panic("unexpected empty hpack")
}
return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
}
func (w *writePushPromise) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
if firstFrag {
return ctx.Framer().WritePushPromise(PushPromiseParam{
StreamID: w.streamID,
PromiseID: w.promisedID,
BlockFragment: frag,
EndHeaders: lastFrag,
})
} else {
return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
}
}
type write100ContinueHeadersFrame struct {
streamID uint32
}
func (w write100ContinueHeadersFrame) writeFrame(ctx writeContext) error {
enc, buf := ctx.HeaderEncoder()
buf.Reset()
encKV(enc, ":status", "100")
return ctx.Framer().WriteHeaders(HeadersFrameParam{
StreamID: w.streamID,
BlockFragment: buf.Bytes(),
EndStream: false,
EndHeaders: true,
})
}
func (w write100ContinueHeadersFrame) staysWithinBuffer(max int) bool {
// Sloppy but conservative:
return 9+2*(len(":status")+len("100")) <= max
}
type writeWindowUpdate struct {
streamID uint32 // or 0 for conn-level
n uint32
}
func (wu writeWindowUpdate) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
func (wu writeWindowUpdate) writeFrame(ctx writeContext) error {
return ctx.Framer().WriteWindowUpdate(wu.streamID, wu.n)
}
// encodeHeaders encodes an http.Header. If keys is not nil, then (k, h[k])
// is encoded only if k is in keys.
func encodeHeaders(enc *hpack.Encoder, h http.Header, keys []string) {
if keys == nil {
sorter := sorterPool.Get().(*sorter)
// Using defer here, since the returned keys from the
// sorter.Keys method is only valid until the sorter
// is returned:
defer sorterPool.Put(sorter)
keys = sorter.Keys(h)
}
for _, k := range keys {
vv := h[k]
k = lowerHeader(k)
if !validWireHeaderFieldName(k) {
// Skip it as backup paranoia. Per
// golang.org/issue/14048, these should
// already be rejected at a higher level.
continue
}
isTE := k == "transfer-encoding"
for _, v := range vv {
if !httpguts.ValidHeaderFieldValue(v) {
// TODO: return an error? golang.org/issue/14048
// For now just omit it.
continue
}
// TODO: more of "8.1.2.2 Connection-Specific Header Fields"
if isTE && v != "trailers" {
continue
}
encKV(enc, k, v)
}
}
}

View File

@ -1,242 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import "fmt"
// WriteScheduler is the interface implemented by HTTP/2 write schedulers.
// Methods are never called concurrently.
type WriteScheduler interface {
// OpenStream opens a new stream in the write scheduler.
// It is illegal to call this with streamID=0 or with a streamID that is
// already open -- the call may panic.
OpenStream(streamID uint32, options OpenStreamOptions)
// CloseStream closes a stream in the write scheduler. Any frames queued on
// this stream should be discarded. It is illegal to call this on a stream
// that is not open -- the call may panic.
CloseStream(streamID uint32)
// AdjustStream adjusts the priority of the given stream. This may be called
// on a stream that has not yet been opened or has been closed. Note that
// RFC 7540 allows PRIORITY frames to be sent on streams in any state. See:
// https://tools.ietf.org/html/rfc7540#section-5.1
AdjustStream(streamID uint32, priority PriorityParam)
// Push queues a frame in the scheduler. In most cases, this will not be
// called with wr.StreamID()!=0 unless that stream is currently open. The one
// exception is RST_STREAM frames, which may be sent on idle or closed streams.
Push(wr FrameWriteRequest)
// Pop dequeues the next frame to write. Returns false if no frames can
// be written. Frames with a given wr.StreamID() are Pop'd in the same
// order they are Push'd.
Pop() (wr FrameWriteRequest, ok bool)
}
// OpenStreamOptions specifies extra options for WriteScheduler.OpenStream.
type OpenStreamOptions struct {
// PusherID is zero if the stream was initiated by the client. Otherwise,
// PusherID names the stream that pushed the newly opened stream.
PusherID uint32
}
// FrameWriteRequest is a request to write a frame.
type FrameWriteRequest struct {
// write is the interface value that does the writing, once the
// WriteScheduler has selected this frame to write. The write
// functions are all defined in write.go.
write writeFramer
// stream is the stream on which this frame will be written.
// nil for non-stream frames like PING and SETTINGS.
stream *stream
// done, if non-nil, must be a buffered channel with space for
// 1 message and is sent the return value from write (or an
// earlier error) when the frame has been written.
done chan error
}
// StreamID returns the id of the stream this frame will be written to.
// 0 is used for non-stream frames such as PING and SETTINGS.
func (wr FrameWriteRequest) StreamID() uint32 {
if wr.stream == nil {
if se, ok := wr.write.(StreamError); ok {
// (*serverConn).resetStream doesn't set
// stream because it doesn't necessarily have
// one. So special case this type of write
// message.
return se.StreamID
}
return 0
}
return wr.stream.id
}
// DataSize returns the number of flow control bytes that must be consumed
// to write this entire frame. This is 0 for non-DATA frames.
func (wr FrameWriteRequest) DataSize() int {
if wd, ok := wr.write.(*writeData); ok {
return len(wd.p)
}
return 0
}
// Consume consumes min(n, available) bytes from this frame, where available
// is the number of flow control bytes available on the stream. Consume returns
// 0, 1, or 2 frames, where the integer return value gives the number of frames
// returned.
//
// If flow control prevents consuming any bytes, this returns (_, _, 0). If
// the entire frame was consumed, this returns (wr, _, 1). Otherwise, this
// returns (consumed, rest, 2), where 'consumed' contains the consumed bytes and
// 'rest' contains the remaining bytes. The consumed bytes are deducted from the
// underlying stream's flow control budget.
func (wr FrameWriteRequest) Consume(n int32) (FrameWriteRequest, FrameWriteRequest, int) {
var empty FrameWriteRequest
// Non-DATA frames are always consumed whole.
wd, ok := wr.write.(*writeData)
if !ok || len(wd.p) == 0 {
return wr, empty, 1
}
// Might need to split after applying limits.
allowed := wr.stream.flow.available()
if n < allowed {
allowed = n
}
if wr.stream.sc.maxFrameSize < allowed {
allowed = wr.stream.sc.maxFrameSize
}
if allowed <= 0 {
return empty, empty, 0
}
if len(wd.p) > int(allowed) {
wr.stream.flow.take(allowed)
consumed := FrameWriteRequest{
stream: wr.stream,
write: &writeData{
streamID: wd.streamID,
p: wd.p[:allowed],
// Even if the original had endStream set, there
// are bytes remaining because len(wd.p) > allowed,
// so we know endStream is false.
endStream: false,
},
// Our caller is blocking on the final DATA frame, not
// this intermediate frame, so no need to wait.
done: nil,
}
rest := FrameWriteRequest{
stream: wr.stream,
write: &writeData{
streamID: wd.streamID,
p: wd.p[allowed:],
endStream: wd.endStream,
},
done: wr.done,
}
return consumed, rest, 2
}
// The frame is consumed whole.
// NB: This cast cannot overflow because allowed is <= math.MaxInt32.
wr.stream.flow.take(int32(len(wd.p)))
return wr, empty, 1
}
// String is for debugging only.
func (wr FrameWriteRequest) String() string {
var des string
if s, ok := wr.write.(fmt.Stringer); ok {
des = s.String()
} else {
des = fmt.Sprintf("%T", wr.write)
}
return fmt.Sprintf("[FrameWriteRequest stream=%d, ch=%v, writer=%v]", wr.StreamID(), wr.done != nil, des)
}
// replyToWriter sends err to wr.done and panics if the send must block
// This does nothing if wr.done is nil.
func (wr *FrameWriteRequest) replyToWriter(err error) {
if wr.done == nil {
return
}
select {
case wr.done <- err:
default:
panic(fmt.Sprintf("unbuffered done channel passed in for type %T", wr.write))
}
wr.write = nil // prevent use (assume it's tainted after wr.done send)
}
// writeQueue is used by implementations of WriteScheduler.
type writeQueue struct {
s []FrameWriteRequest
}
func (q *writeQueue) empty() bool { return len(q.s) == 0 }
func (q *writeQueue) push(wr FrameWriteRequest) {
q.s = append(q.s, wr)
}
func (q *writeQueue) shift() FrameWriteRequest {
if len(q.s) == 0 {
panic("invalid use of queue")
}
wr := q.s[0]
// TODO: less copy-happy queue.
copy(q.s, q.s[1:])
q.s[len(q.s)-1] = FrameWriteRequest{}
q.s = q.s[:len(q.s)-1]
return wr
}
// consume consumes up to n bytes from q.s[0]. If the frame is
// entirely consumed, it is removed from the queue. If the frame
// is partially consumed, the frame is kept with the consumed
// bytes removed. Returns true iff any bytes were consumed.
func (q *writeQueue) consume(n int32) (FrameWriteRequest, bool) {
if len(q.s) == 0 {
return FrameWriteRequest{}, false
}
consumed, rest, numresult := q.s[0].Consume(n)
switch numresult {
case 0:
return FrameWriteRequest{}, false
case 1:
q.shift()
case 2:
q.s[0] = rest
}
return consumed, true
}
type writeQueuePool []*writeQueue
// put inserts an unused writeQueue into the pool.
func (p *writeQueuePool) put(q *writeQueue) {
for i := range q.s {
q.s[i] = FrameWriteRequest{}
}
q.s = q.s[:0]
*p = append(*p, q)
}
// get returns an empty writeQueue.
func (p *writeQueuePool) get() *writeQueue {
ln := len(*p)
if ln == 0 {
return new(writeQueue)
}
x := ln - 1
q := (*p)[x]
(*p)[x] = nil
*p = (*p)[:x]
return q
}

View File

@ -1,452 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import (
"fmt"
"math"
"sort"
)
// RFC 7540, Section 5.3.5: the default weight is 16.
const priorityDefaultWeight = 15 // 16 = 15 + 1
// PriorityWriteSchedulerConfig configures a priorityWriteScheduler.
type PriorityWriteSchedulerConfig struct {
// MaxClosedNodesInTree controls the maximum number of closed streams to
// retain in the priority tree. Setting this to zero saves a small amount
// of memory at the cost of performance.
//
// See RFC 7540, Section 5.3.4:
// "It is possible for a stream to become closed while prioritization
// information ... is in transit. ... This potentially creates suboptimal
// prioritization, since the stream could be given a priority that is
// different from what is intended. To avoid these problems, an endpoint
// SHOULD retain stream prioritization state for a period after streams
// become closed. The longer state is retained, the lower the chance that
// streams are assigned incorrect or default priority values."
MaxClosedNodesInTree int
// MaxIdleNodesInTree controls the maximum number of idle streams to
// retain in the priority tree. Setting this to zero saves a small amount
// of memory at the cost of performance.
//
// See RFC 7540, Section 5.3.4:
// Similarly, streams that are in the "idle" state can be assigned
// priority or become a parent of other streams. This allows for the
// creation of a grouping node in the dependency tree, which enables
// more flexible expressions of priority. Idle streams begin with a
// default priority (Section 5.3.5).
MaxIdleNodesInTree int
// ThrottleOutOfOrderWrites enables write throttling to help ensure that
// data is delivered in priority order. This works around a race where
// stream B depends on stream A and both streams are about to call Write
// to queue DATA frames. If B wins the race, a naive scheduler would eagerly
// write as much data from B as possible, but this is suboptimal because A
// is a higher-priority stream. With throttling enabled, we write a small
// amount of data from B to minimize the amount of bandwidth that B can
// steal from A.
ThrottleOutOfOrderWrites bool
}
// NewPriorityWriteScheduler constructs a WriteScheduler that schedules
// frames by following HTTP/2 priorities as described in RFC 7540 Section 5.3.
// If cfg is nil, default options are used.
func NewPriorityWriteScheduler(cfg *PriorityWriteSchedulerConfig) WriteScheduler {
if cfg == nil {
// For justification of these defaults, see:
// https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY
cfg = &PriorityWriteSchedulerConfig{
MaxClosedNodesInTree: 10,
MaxIdleNodesInTree: 10,
ThrottleOutOfOrderWrites: false,
}
}
ws := &priorityWriteScheduler{
nodes: make(map[uint32]*priorityNode),
maxClosedNodesInTree: cfg.MaxClosedNodesInTree,
maxIdleNodesInTree: cfg.MaxIdleNodesInTree,
enableWriteThrottle: cfg.ThrottleOutOfOrderWrites,
}
ws.nodes[0] = &ws.root
if cfg.ThrottleOutOfOrderWrites {
ws.writeThrottleLimit = 1024
} else {
ws.writeThrottleLimit = math.MaxInt32
}
return ws
}
type priorityNodeState int
const (
priorityNodeOpen priorityNodeState = iota
priorityNodeClosed
priorityNodeIdle
)
// priorityNode is a node in an HTTP/2 priority tree.
// Each node is associated with a single stream ID.
// See RFC 7540, Section 5.3.
type priorityNode struct {
q writeQueue // queue of pending frames to write
id uint32 // id of the stream, or 0 for the root of the tree
weight uint8 // the actual weight is weight+1, so the value is in [1,256]
state priorityNodeState // open | closed | idle
bytes int64 // number of bytes written by this node, or 0 if closed
subtreeBytes int64 // sum(node.bytes) of all nodes in this subtree
// These links form the priority tree.
parent *priorityNode
kids *priorityNode // start of the kids list
prev, next *priorityNode // doubly-linked list of siblings
}
func (n *priorityNode) setParent(parent *priorityNode) {
if n == parent {
panic("setParent to self")
}
if n.parent == parent {
return
}
// Unlink from current parent.
if parent := n.parent; parent != nil {
if n.prev == nil {
parent.kids = n.next
} else {
n.prev.next = n.next
}
if n.next != nil {
n.next.prev = n.prev
}
}
// Link to new parent.
// If parent=nil, remove n from the tree.
// Always insert at the head of parent.kids (this is assumed by walkReadyInOrder).
n.parent = parent
if parent == nil {
n.next = nil
n.prev = nil
} else {
n.next = parent.kids
n.prev = nil
if n.next != nil {
n.next.prev = n
}
parent.kids = n
}
}
func (n *priorityNode) addBytes(b int64) {
n.bytes += b
for ; n != nil; n = n.parent {
n.subtreeBytes += b
}
}
// walkReadyInOrder iterates over the tree in priority order, calling f for each node
// with a non-empty write queue. When f returns true, this funcion returns true and the
// walk halts. tmp is used as scratch space for sorting.
//
// f(n, openParent) takes two arguments: the node to visit, n, and a bool that is true
// if any ancestor p of n is still open (ignoring the root node).
func (n *priorityNode) walkReadyInOrder(openParent bool, tmp *[]*priorityNode, f func(*priorityNode, bool) bool) bool {
if !n.q.empty() && f(n, openParent) {
return true
}
if n.kids == nil {
return false
}
// Don't consider the root "open" when updating openParent since
// we can't send data frames on the root stream (only control frames).
if n.id != 0 {
openParent = openParent || (n.state == priorityNodeOpen)
}
// Common case: only one kid or all kids have the same weight.
// Some clients don't use weights; other clients (like web browsers)
// use mostly-linear priority trees.
w := n.kids.weight
needSort := false
for k := n.kids.next; k != nil; k = k.next {
if k.weight != w {
needSort = true
break
}
}
if !needSort {
for k := n.kids; k != nil; k = k.next {
if k.walkReadyInOrder(openParent, tmp, f) {
return true
}
}
return false
}
// Uncommon case: sort the child nodes. We remove the kids from the parent,
// then re-insert after sorting so we can reuse tmp for future sort calls.
*tmp = (*tmp)[:0]
for n.kids != nil {
*tmp = append(*tmp, n.kids)
n.kids.setParent(nil)
}
sort.Sort(sortPriorityNodeSiblings(*tmp))
for i := len(*tmp) - 1; i >= 0; i-- {
(*tmp)[i].setParent(n) // setParent inserts at the head of n.kids
}
for k := n.kids; k != nil; k = k.next {
if k.walkReadyInOrder(openParent, tmp, f) {
return true
}
}
return false
}
type sortPriorityNodeSiblings []*priorityNode
func (z sortPriorityNodeSiblings) Len() int { return len(z) }
func (z sortPriorityNodeSiblings) Swap(i, k int) { z[i], z[k] = z[k], z[i] }
func (z sortPriorityNodeSiblings) Less(i, k int) bool {
// Prefer the subtree that has sent fewer bytes relative to its weight.
// See sections 5.3.2 and 5.3.4.
wi, bi := float64(z[i].weight+1), float64(z[i].subtreeBytes)
wk, bk := float64(z[k].weight+1), float64(z[k].subtreeBytes)
if bi == 0 && bk == 0 {
return wi >= wk
}
if bk == 0 {
return false
}
return bi/bk <= wi/wk
}
type priorityWriteScheduler struct {
// root is the root of the priority tree, where root.id = 0.
// The root queues control frames that are not associated with any stream.
root priorityNode
// nodes maps stream ids to priority tree nodes.
nodes map[uint32]*priorityNode
// maxID is the maximum stream id in nodes.
maxID uint32
// lists of nodes that have been closed or are idle, but are kept in
// the tree for improved prioritization. When the lengths exceed either
// maxClosedNodesInTree or maxIdleNodesInTree, old nodes are discarded.
closedNodes, idleNodes []*priorityNode
// From the config.
maxClosedNodesInTree int
maxIdleNodesInTree int
writeThrottleLimit int32
enableWriteThrottle bool
// tmp is scratch space for priorityNode.walkReadyInOrder to reduce allocations.
tmp []*priorityNode
// pool of empty queues for reuse.
queuePool writeQueuePool
}
func (ws *priorityWriteScheduler) OpenStream(streamID uint32, options OpenStreamOptions) {
// The stream may be currently idle but cannot be opened or closed.
if curr := ws.nodes[streamID]; curr != nil {
if curr.state != priorityNodeIdle {
panic(fmt.Sprintf("stream %d already opened", streamID))
}
curr.state = priorityNodeOpen
return
}
// RFC 7540, Section 5.3.5:
// "All streams are initially assigned a non-exclusive dependency on stream 0x0.
// Pushed streams initially depend on their associated stream. In both cases,
// streams are assigned a default weight of 16."
parent := ws.nodes[options.PusherID]
if parent == nil {
parent = &ws.root
}
n := &priorityNode{
q: *ws.queuePool.get(),
id: streamID,
weight: priorityDefaultWeight,
state: priorityNodeOpen,
}
n.setParent(parent)
ws.nodes[streamID] = n
if streamID > ws.maxID {
ws.maxID = streamID
}
}
func (ws *priorityWriteScheduler) CloseStream(streamID uint32) {
if streamID == 0 {
panic("violation of WriteScheduler interface: cannot close stream 0")
}
if ws.nodes[streamID] == nil {
panic(fmt.Sprintf("violation of WriteScheduler interface: unknown stream %d", streamID))
}
if ws.nodes[streamID].state != priorityNodeOpen {
panic(fmt.Sprintf("violation of WriteScheduler interface: stream %d already closed", streamID))
}
n := ws.nodes[streamID]
n.state = priorityNodeClosed
n.addBytes(-n.bytes)
q := n.q
ws.queuePool.put(&q)
n.q.s = nil
if ws.maxClosedNodesInTree > 0 {
ws.addClosedOrIdleNode(&ws.closedNodes, ws.maxClosedNodesInTree, n)
} else {
ws.removeNode(n)
}
}
func (ws *priorityWriteScheduler) AdjustStream(streamID uint32, priority PriorityParam) {
if streamID == 0 {
panic("adjustPriority on root")
}
// If streamID does not exist, there are two cases:
// - A closed stream that has been removed (this will have ID <= maxID)
// - An idle stream that is being used for "grouping" (this will have ID > maxID)
n := ws.nodes[streamID]
if n == nil {
if streamID <= ws.maxID || ws.maxIdleNodesInTree == 0 {
return
}
ws.maxID = streamID
n = &priorityNode{
q: *ws.queuePool.get(),
id: streamID,
weight: priorityDefaultWeight,
state: priorityNodeIdle,
}
n.setParent(&ws.root)
ws.nodes[streamID] = n
ws.addClosedOrIdleNode(&ws.idleNodes, ws.maxIdleNodesInTree, n)
}
// Section 5.3.1: A dependency on a stream that is not currently in the tree
// results in that stream being given a default priority (Section 5.3.5).
parent := ws.nodes[priority.StreamDep]
if parent == nil {
n.setParent(&ws.root)
n.weight = priorityDefaultWeight
return
}
// Ignore if the client tries to make a node its own parent.
if n == parent {
return
}
// Section 5.3.3:
// "If a stream is made dependent on one of its own dependencies, the
// formerly dependent stream is first moved to be dependent on the
// reprioritized stream's previous parent. The moved dependency retains
// its weight."
//
// That is: if parent depends on n, move parent to depend on n.parent.
for x := parent.parent; x != nil; x = x.parent {
if x == n {
parent.setParent(n.parent)
break
}
}
// Section 5.3.3: The exclusive flag causes the stream to become the sole
// dependency of its parent stream, causing other dependencies to become
// dependent on the exclusive stream.
if priority.Exclusive {
k := parent.kids
for k != nil {
next := k.next
if k != n {
k.setParent(n)
}
k = next
}
}
n.setParent(parent)
n.weight = priority.Weight
}
func (ws *priorityWriteScheduler) Push(wr FrameWriteRequest) {
var n *priorityNode
if id := wr.StreamID(); id == 0 {
n = &ws.root
} else {
n = ws.nodes[id]
if n == nil {
// id is an idle or closed stream. wr should not be a HEADERS or
// DATA frame. However, wr can be a RST_STREAM. In this case, we
// push wr onto the root, rather than creating a new priorityNode,
// since RST_STREAM is tiny and the stream's priority is unknown
// anyway. See issue #17919.
if wr.DataSize() > 0 {
panic("add DATA on non-open stream")
}
n = &ws.root
}
}
n.q.push(wr)
}
func (ws *priorityWriteScheduler) Pop() (wr FrameWriteRequest, ok bool) {
ws.root.walkReadyInOrder(false, &ws.tmp, func(n *priorityNode, openParent bool) bool {
limit := int32(math.MaxInt32)
if openParent {
limit = ws.writeThrottleLimit
}
wr, ok = n.q.consume(limit)
if !ok {
return false
}
n.addBytes(int64(wr.DataSize()))
// If B depends on A and B continuously has data available but A
// does not, gradually increase the throttling limit to allow B to
// steal more and more bandwidth from A.
if openParent {
ws.writeThrottleLimit += 1024
if ws.writeThrottleLimit < 0 {
ws.writeThrottleLimit = math.MaxInt32
}
} else if ws.enableWriteThrottle {
ws.writeThrottleLimit = 1024
}
return true
})
return wr, ok
}
func (ws *priorityWriteScheduler) addClosedOrIdleNode(list *[]*priorityNode, maxSize int, n *priorityNode) {
if maxSize == 0 {
return
}
if len(*list) == maxSize {
// Remove the oldest node, then shift left.
ws.removeNode((*list)[0])
x := (*list)[1:]
copy(*list, x)
*list = (*list)[:len(x)]
}
*list = append(*list, n)
}
func (ws *priorityWriteScheduler) removeNode(n *priorityNode) {
for k := n.kids; k != nil; k = k.next {
k.setParent(n.parent)
}
n.setParent(nil)
delete(ws.nodes, n.id)
}

View File

@ -1,72 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package http2
import "math"
// NewRandomWriteScheduler constructs a WriteScheduler that ignores HTTP/2
// priorities. Control frames like SETTINGS and PING are written before DATA
// frames, but if no control frames are queued and multiple streams have queued
// HEADERS or DATA frames, Pop selects a ready stream arbitrarily.
func NewRandomWriteScheduler() WriteScheduler {
return &randomWriteScheduler{sq: make(map[uint32]*writeQueue)}
}
type randomWriteScheduler struct {
// zero are frames not associated with a specific stream.
zero writeQueue
// sq contains the stream-specific queues, keyed by stream ID.
// When a stream is idle or closed, it's deleted from the map.
sq map[uint32]*writeQueue
// pool of empty queues for reuse.
queuePool writeQueuePool
}
func (ws *randomWriteScheduler) OpenStream(streamID uint32, options OpenStreamOptions) {
// no-op: idle streams are not tracked
}
func (ws *randomWriteScheduler) CloseStream(streamID uint32) {
q, ok := ws.sq[streamID]
if !ok {
return
}
delete(ws.sq, streamID)
ws.queuePool.put(q)
}
func (ws *randomWriteScheduler) AdjustStream(streamID uint32, priority PriorityParam) {
// no-op: priorities are ignored
}
func (ws *randomWriteScheduler) Push(wr FrameWriteRequest) {
id := wr.StreamID()
if id == 0 {
ws.zero.push(wr)
return
}
q, ok := ws.sq[id]
if !ok {
q = ws.queuePool.get()
ws.sq[id] = q
}
q.push(wr)
}
func (ws *randomWriteScheduler) Pop() (FrameWriteRequest, bool) {
// Control frames first.
if !ws.zero.empty() {
return ws.zero.shift(), true
}
// Iterate over all non-idle streams until finding one that can be consumed.
for _, q := range ws.sq {
if wr, ok := q.consume(math.MaxInt32); ok {
return wr, true
}
}
return FrameWriteRequest{}, false
}

View File

@ -1,734 +0,0 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.10
// Package idna implements IDNA2008 using the compatibility processing
// defined by UTS (Unicode Technical Standard) #46, which defines a standard to
// deal with the transition from IDNA2003.
//
// IDNA2008 (Internationalized Domain Names for Applications), is defined in RFC
// 5890, RFC 5891, RFC 5892, RFC 5893 and RFC 5894.
// UTS #46 is defined in https://www.unicode.org/reports/tr46.
// See https://unicode.org/cldr/utility/idna.jsp for a visualization of the
// differences between these two standards.
package idna // import "golang.org/x/net/idna"
import (
"fmt"
"strings"
"unicode/utf8"
"golang.org/x/text/secure/bidirule"
"golang.org/x/text/unicode/bidi"
"golang.org/x/text/unicode/norm"
)
// NOTE: Unlike common practice in Go APIs, the functions will return a
// sanitized domain name in case of errors. Browsers sometimes use a partially
// evaluated string as lookup.
// TODO: the current error handling is, in my opinion, the least opinionated.
// Other strategies are also viable, though:
// Option 1) Return an empty string in case of error, but allow the user to
// specify explicitly which errors to ignore.
// Option 2) Return the partially evaluated string if it is itself a valid
// string, otherwise return the empty string in case of error.
// Option 3) Option 1 and 2.
// Option 4) Always return an empty string for now and implement Option 1 as
// needed, and document that the return string may not be empty in case of
// error in the future.
// I think Option 1 is best, but it is quite opinionated.
// ToASCII is a wrapper for Punycode.ToASCII.
func ToASCII(s string) (string, error) {
return Punycode.process(s, true)
}
// ToUnicode is a wrapper for Punycode.ToUnicode.
func ToUnicode(s string) (string, error) {
return Punycode.process(s, false)
}
// An Option configures a Profile at creation time.
type Option func(*options)
// Transitional sets a Profile to use the Transitional mapping as defined in UTS
// #46. This will cause, for example, "ß" to be mapped to "ss". Using the
// transitional mapping provides a compromise between IDNA2003 and IDNA2008
// compatibility. It is used by most browsers when resolving domain names. This
// option is only meaningful if combined with MapForLookup.
func Transitional(transitional bool) Option {
return func(o *options) { o.transitional = true }
}
// VerifyDNSLength sets whether a Profile should fail if any of the IDN parts
// are longer than allowed by the RFC.
func VerifyDNSLength(verify bool) Option {
return func(o *options) { o.verifyDNSLength = verify }
}
// RemoveLeadingDots removes leading label separators. Leading runes that map to
// dots, such as U+3002 IDEOGRAPHIC FULL STOP, are removed as well.
//
// This is the behavior suggested by the UTS #46 and is adopted by some
// browsers.
func RemoveLeadingDots(remove bool) Option {
return func(o *options) { o.removeLeadingDots = remove }
}
// ValidateLabels sets whether to check the mandatory label validation criteria
// as defined in Section 5.4 of RFC 5891. This includes testing for correct use
// of hyphens ('-'), normalization, validity of runes, and the context rules.
func ValidateLabels(enable bool) Option {
return func(o *options) {
// Don't override existing mappings, but set one that at least checks
// normalization if it is not set.
if o.mapping == nil && enable {
o.mapping = normalize
}
o.trie = trie
o.validateLabels = enable
o.fromPuny = validateFromPunycode
}
}
// StrictDomainName limits the set of permissible ASCII characters to those
// allowed in domain names as defined in RFC 1034 (A-Z, a-z, 0-9 and the
// hyphen). This is set by default for MapForLookup and ValidateForRegistration.
//
// This option is useful, for instance, for browsers that allow characters
// outside this range, for example a '_' (U+005F LOW LINE). See
// http://www.rfc-editor.org/std/std3.txt for more details This option
// corresponds to the UseSTD3ASCIIRules option in UTS #46.
func StrictDomainName(use bool) Option {
return func(o *options) {
o.trie = trie
o.useSTD3Rules = use
o.fromPuny = validateFromPunycode
}
}
// NOTE: the following options pull in tables. The tables should not be linked
// in as long as the options are not used.
// BidiRule enables the Bidi rule as defined in RFC 5893. Any application
// that relies on proper validation of labels should include this rule.
func BidiRule() Option {
return func(o *options) { o.bidirule = bidirule.ValidString }
}
// ValidateForRegistration sets validation options to verify that a given IDN is
// properly formatted for registration as defined by Section 4 of RFC 5891.
func ValidateForRegistration() Option {
return func(o *options) {
o.mapping = validateRegistration
StrictDomainName(true)(o)
ValidateLabels(true)(o)
VerifyDNSLength(true)(o)
BidiRule()(o)
}
}
// MapForLookup sets validation and mapping options such that a given IDN is
// transformed for domain name lookup according to the requirements set out in
// Section 5 of RFC 5891. The mappings follow the recommendations of RFC 5894,
// RFC 5895 and UTS 46. It does not add the Bidi Rule. Use the BidiRule option
// to add this check.
//
// The mappings include normalization and mapping case, width and other
// compatibility mappings.
func MapForLookup() Option {
return func(o *options) {
o.mapping = validateAndMap
StrictDomainName(true)(o)
ValidateLabels(true)(o)
}
}
type options struct {
transitional bool
useSTD3Rules bool
validateLabels bool
verifyDNSLength bool
removeLeadingDots bool
trie *idnaTrie
// fromPuny calls validation rules when converting A-labels to U-labels.
fromPuny func(p *Profile, s string) error
// mapping implements a validation and mapping step as defined in RFC 5895
// or UTS 46, tailored to, for example, domain registration or lookup.
mapping func(p *Profile, s string) (mapped string, isBidi bool, err error)
// bidirule, if specified, checks whether s conforms to the Bidi Rule
// defined in RFC 5893.
bidirule func(s string) bool
}
// A Profile defines the configuration of an IDNA mapper.
type Profile struct {
options
}
func apply(o *options, opts []Option) {
for _, f := range opts {
f(o)
}
}
// New creates a new Profile.
//
// With no options, the returned Profile is the most permissive and equals the
// Punycode Profile. Options can be passed to further restrict the Profile. The
// MapForLookup and ValidateForRegistration options set a collection of options,
// for lookup and registration purposes respectively, which can be tailored by
// adding more fine-grained options, where later options override earlier
// options.
func New(o ...Option) *Profile {
p := &Profile{}
apply(&p.options, o)
return p
}
// ToASCII converts a domain or domain label to its ASCII form. For example,
// ToASCII("bücher.example.com") is "xn--bcher-kva.example.com", and
// ToASCII("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func (p *Profile) ToASCII(s string) (string, error) {
return p.process(s, true)
}
// ToUnicode converts a domain or domain label to its Unicode form. For example,
// ToUnicode("xn--bcher-kva.example.com") is "bücher.example.com", and
// ToUnicode("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func (p *Profile) ToUnicode(s string) (string, error) {
pp := *p
pp.transitional = false
return pp.process(s, false)
}
// String reports a string with a description of the profile for debugging
// purposes. The string format may change with different versions.
func (p *Profile) String() string {
s := ""
if p.transitional {
s = "Transitional"
} else {
s = "NonTransitional"
}
if p.useSTD3Rules {
s += ":UseSTD3Rules"
}
if p.validateLabels {
s += ":ValidateLabels"
}
if p.verifyDNSLength {
s += ":VerifyDNSLength"
}
return s
}
var (
// Punycode is a Profile that does raw punycode processing with a minimum
// of validation.
Punycode *Profile = punycode
// Lookup is the recommended profile for looking up domain names, according
// to Section 5 of RFC 5891. The exact configuration of this profile may
// change over time.
Lookup *Profile = lookup
// Display is the recommended profile for displaying domain names.
// The configuration of this profile may change over time.
Display *Profile = display
// Registration is the recommended profile for checking whether a given
// IDN is valid for registration, according to Section 4 of RFC 5891.
Registration *Profile = registration
punycode = &Profile{}
lookup = &Profile{options{
transitional: true,
useSTD3Rules: true,
validateLabels: true,
trie: trie,
fromPuny: validateFromPunycode,
mapping: validateAndMap,
bidirule: bidirule.ValidString,
}}
display = &Profile{options{
useSTD3Rules: true,
validateLabels: true,
trie: trie,
fromPuny: validateFromPunycode,
mapping: validateAndMap,
bidirule: bidirule.ValidString,
}}
registration = &Profile{options{
useSTD3Rules: true,
validateLabels: true,
verifyDNSLength: true,
trie: trie,
fromPuny: validateFromPunycode,
mapping: validateRegistration,
bidirule: bidirule.ValidString,
}}
// TODO: profiles
// Register: recommended for approving domain names: don't do any mappings
// but rather reject on invalid input. Bundle or block deviation characters.
)
type labelError struct{ label, code_ string }
func (e labelError) code() string { return e.code_ }
func (e labelError) Error() string {
return fmt.Sprintf("idna: invalid label %q", e.label)
}
type runeError rune
func (e runeError) code() string { return "P1" }
func (e runeError) Error() string {
return fmt.Sprintf("idna: disallowed rune %U", e)
}
// process implements the algorithm described in section 4 of UTS #46,
// see https://www.unicode.org/reports/tr46.
func (p *Profile) process(s string, toASCII bool) (string, error) {
var err error
var isBidi bool
if p.mapping != nil {
s, isBidi, err = p.mapping(p, s)
}
// Remove leading empty labels.
if p.removeLeadingDots {
for ; len(s) > 0 && s[0] == '.'; s = s[1:] {
}
}
// TODO: allow for a quick check of the tables data.
// It seems like we should only create this error on ToASCII, but the
// UTS 46 conformance tests suggests we should always check this.
if err == nil && p.verifyDNSLength && s == "" {
err = &labelError{s, "A4"}
}
labels := labelIter{orig: s}
for ; !labels.done(); labels.next() {
label := labels.label()
if label == "" {
// Empty labels are not okay. The label iterator skips the last
// label if it is empty.
if err == nil && p.verifyDNSLength {
err = &labelError{s, "A4"}
}
continue
}
if strings.HasPrefix(label, acePrefix) {
u, err2 := decode(label[len(acePrefix):])
if err2 != nil {
if err == nil {
err = err2
}
// Spec says keep the old label.
continue
}
isBidi = isBidi || bidirule.DirectionString(u) != bidi.LeftToRight
labels.set(u)
if err == nil && p.validateLabels {
err = p.fromPuny(p, u)
}
if err == nil {
// This should be called on NonTransitional, according to the
// spec, but that currently does not have any effect. Use the
// original profile to preserve options.
err = p.validateLabel(u)
}
} else if err == nil {
err = p.validateLabel(label)
}
}
if isBidi && p.bidirule != nil && err == nil {
for labels.reset(); !labels.done(); labels.next() {
if !p.bidirule(labels.label()) {
err = &labelError{s, "B"}
break
}
}
}
if toASCII {
for labels.reset(); !labels.done(); labels.next() {
label := labels.label()
if !ascii(label) {
a, err2 := encode(acePrefix, label)
if err == nil {
err = err2
}
label = a
labels.set(a)
}
n := len(label)
if p.verifyDNSLength && err == nil && (n == 0 || n > 63) {
err = &labelError{label, "A4"}
}
}
}
s = labels.result()
if toASCII && p.verifyDNSLength && err == nil {
// Compute the length of the domain name minus the root label and its dot.
n := len(s)
if n > 0 && s[n-1] == '.' {
n--
}
if len(s) < 1 || n > 253 {
err = &labelError{s, "A4"}
}
}
return s, err
}
func normalize(p *Profile, s string) (mapped string, isBidi bool, err error) {
// TODO: consider first doing a quick check to see if any of these checks
// need to be done. This will make it slower in the general case, but
// faster in the common case.
mapped = norm.NFC.String(s)
isBidi = bidirule.DirectionString(mapped) == bidi.RightToLeft
return mapped, isBidi, nil
}
func validateRegistration(p *Profile, s string) (idem string, bidi bool, err error) {
// TODO: filter need for normalization in loop below.
if !norm.NFC.IsNormalString(s) {
return s, false, &labelError{s, "V1"}
}
for i := 0; i < len(s); {
v, sz := trie.lookupString(s[i:])
if sz == 0 {
return s, bidi, runeError(utf8.RuneError)
}
bidi = bidi || info(v).isBidi(s[i:])
// Copy bytes not copied so far.
switch p.simplify(info(v).category()) {
// TODO: handle the NV8 defined in the Unicode idna data set to allow
// for strict conformance to IDNA2008.
case valid, deviation:
case disallowed, mapped, unknown, ignored:
r, _ := utf8.DecodeRuneInString(s[i:])
return s, bidi, runeError(r)
}
i += sz
}
return s, bidi, nil
}
func (c info) isBidi(s string) bool {
if !c.isMapped() {
return c&attributesMask == rtl
}
// TODO: also store bidi info for mapped data. This is possible, but a bit
// cumbersome and not for the common case.
p, _ := bidi.LookupString(s)
switch p.Class() {
case bidi.R, bidi.AL, bidi.AN:
return true
}
return false
}
func validateAndMap(p *Profile, s string) (vm string, bidi bool, err error) {
var (
b []byte
k int
)
// combinedInfoBits contains the or-ed bits of all runes. We use this
// to derive the mayNeedNorm bit later. This may trigger normalization
// overeagerly, but it will not do so in the common case. The end result
// is another 10% saving on BenchmarkProfile for the common case.
var combinedInfoBits info
for i := 0; i < len(s); {
v, sz := trie.lookupString(s[i:])
if sz == 0 {
b = append(b, s[k:i]...)
b = append(b, "\ufffd"...)
k = len(s)
if err == nil {
err = runeError(utf8.RuneError)
}
break
}
combinedInfoBits |= info(v)
bidi = bidi || info(v).isBidi(s[i:])
start := i
i += sz
// Copy bytes not copied so far.
switch p.simplify(info(v).category()) {
case valid:
continue
case disallowed:
if err == nil {
r, _ := utf8.DecodeRuneInString(s[start:])
err = runeError(r)
}
continue
case mapped, deviation:
b = append(b, s[k:start]...)
b = info(v).appendMapping(b, s[start:i])
case ignored:
b = append(b, s[k:start]...)
// drop the rune
case unknown:
b = append(b, s[k:start]...)
b = append(b, "\ufffd"...)
}
k = i
}
if k == 0 {
// No changes so far.
if combinedInfoBits&mayNeedNorm != 0 {
s = norm.NFC.String(s)
}
} else {
b = append(b, s[k:]...)
if norm.NFC.QuickSpan(b) != len(b) {
b = norm.NFC.Bytes(b)
}
// TODO: the punycode converters require strings as input.
s = string(b)
}
return s, bidi, err
}
// A labelIter allows iterating over domain name labels.
type labelIter struct {
orig string
slice []string
curStart int
curEnd int
i int
}
func (l *labelIter) reset() {
l.curStart = 0
l.curEnd = 0
l.i = 0
}
func (l *labelIter) done() bool {
return l.curStart >= len(l.orig)
}
func (l *labelIter) result() string {
if l.slice != nil {
return strings.Join(l.slice, ".")
}
return l.orig
}
func (l *labelIter) label() string {
if l.slice != nil {
return l.slice[l.i]
}
p := strings.IndexByte(l.orig[l.curStart:], '.')
l.curEnd = l.curStart + p
if p == -1 {
l.curEnd = len(l.orig)
}
return l.orig[l.curStart:l.curEnd]
}
// next sets the value to the next label. It skips the last label if it is empty.
func (l *labelIter) next() {
l.i++
if l.slice != nil {
if l.i >= len(l.slice) || l.i == len(l.slice)-1 && l.slice[l.i] == "" {
l.curStart = len(l.orig)
}
} else {
l.curStart = l.curEnd + 1
if l.curStart == len(l.orig)-1 && l.orig[l.curStart] == '.' {
l.curStart = len(l.orig)
}
}
}
func (l *labelIter) set(s string) {
if l.slice == nil {
l.slice = strings.Split(l.orig, ".")
}
l.slice[l.i] = s
}
// acePrefix is the ASCII Compatible Encoding prefix.
const acePrefix = "xn--"
func (p *Profile) simplify(cat category) category {
switch cat {
case disallowedSTD3Mapped:
if p.useSTD3Rules {
cat = disallowed
} else {
cat = mapped
}
case disallowedSTD3Valid:
if p.useSTD3Rules {
cat = disallowed
} else {
cat = valid
}
case deviation:
if !p.transitional {
cat = valid
}
case validNV8, validXV8:
// TODO: handle V2008
cat = valid
}
return cat
}
func validateFromPunycode(p *Profile, s string) error {
if !norm.NFC.IsNormalString(s) {
return &labelError{s, "V1"}
}
// TODO: detect whether string may have to be normalized in the following
// loop.
for i := 0; i < len(s); {
v, sz := trie.lookupString(s[i:])
if sz == 0 {
return runeError(utf8.RuneError)
}
if c := p.simplify(info(v).category()); c != valid && c != deviation {
return &labelError{s, "V6"}
}
i += sz
}
return nil
}
const (
zwnj = "\u200c"
zwj = "\u200d"
)
type joinState int8
const (
stateStart joinState = iota
stateVirama
stateBefore
stateBeforeVirama
stateAfter
stateFAIL
)
var joinStates = [][numJoinTypes]joinState{
stateStart: {
joiningL: stateBefore,
joiningD: stateBefore,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateVirama,
},
stateVirama: {
joiningL: stateBefore,
joiningD: stateBefore,
},
stateBefore: {
joiningL: stateBefore,
joiningD: stateBefore,
joiningT: stateBefore,
joinZWNJ: stateAfter,
joinZWJ: stateFAIL,
joinVirama: stateBeforeVirama,
},
stateBeforeVirama: {
joiningL: stateBefore,
joiningD: stateBefore,
joiningT: stateBefore,
},
stateAfter: {
joiningL: stateFAIL,
joiningD: stateBefore,
joiningT: stateAfter,
joiningR: stateStart,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateAfter, // no-op as we can't accept joiners here
},
stateFAIL: {
0: stateFAIL,
joiningL: stateFAIL,
joiningD: stateFAIL,
joiningT: stateFAIL,
joiningR: stateFAIL,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateFAIL,
},
}
// validateLabel validates the criteria from Section 4.1. Item 1, 4, and 6 are
// already implicitly satisfied by the overall implementation.
func (p *Profile) validateLabel(s string) (err error) {
if s == "" {
if p.verifyDNSLength {
return &labelError{s, "A4"}
}
return nil
}
if !p.validateLabels {
return nil
}
trie := p.trie // p.validateLabels is only set if trie is set.
if len(s) > 4 && s[2] == '-' && s[3] == '-' {
return &labelError{s, "V2"}
}
if s[0] == '-' || s[len(s)-1] == '-' {
return &labelError{s, "V3"}
}
// TODO: merge the use of this in the trie.
v, sz := trie.lookupString(s)
x := info(v)
if x.isModifier() {
return &labelError{s, "V5"}
}
// Quickly return in the absence of zero-width (non) joiners.
if strings.Index(s, zwj) == -1 && strings.Index(s, zwnj) == -1 {
return nil
}
st := stateStart
for i := 0; ; {
jt := x.joinType()
if s[i:i+sz] == zwj {
jt = joinZWJ
} else if s[i:i+sz] == zwnj {
jt = joinZWNJ
}
st = joinStates[st][jt]
if x.isViramaModifier() {
st = joinStates[st][joinVirama]
}
if i += sz; i == len(s) {
break
}
v, sz = trie.lookupString(s[i:])
x = info(v)
}
if st == stateFAIL || st == stateAfter {
return &labelError{s, "C"}
}
return nil
}
func ascii(s string) bool {
for i := 0; i < len(s); i++ {
if s[i] >= utf8.RuneSelf {
return false
}
}
return true
}

View File

@ -1,682 +0,0 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.10
// Package idna implements IDNA2008 using the compatibility processing
// defined by UTS (Unicode Technical Standard) #46, which defines a standard to
// deal with the transition from IDNA2003.
//
// IDNA2008 (Internationalized Domain Names for Applications), is defined in RFC
// 5890, RFC 5891, RFC 5892, RFC 5893 and RFC 5894.
// UTS #46 is defined in https://www.unicode.org/reports/tr46.
// See https://unicode.org/cldr/utility/idna.jsp for a visualization of the
// differences between these two standards.
package idna // import "golang.org/x/net/idna"
import (
"fmt"
"strings"
"unicode/utf8"
"golang.org/x/text/secure/bidirule"
"golang.org/x/text/unicode/norm"
)
// NOTE: Unlike common practice in Go APIs, the functions will return a
// sanitized domain name in case of errors. Browsers sometimes use a partially
// evaluated string as lookup.
// TODO: the current error handling is, in my opinion, the least opinionated.
// Other strategies are also viable, though:
// Option 1) Return an empty string in case of error, but allow the user to
// specify explicitly which errors to ignore.
// Option 2) Return the partially evaluated string if it is itself a valid
// string, otherwise return the empty string in case of error.
// Option 3) Option 1 and 2.
// Option 4) Always return an empty string for now and implement Option 1 as
// needed, and document that the return string may not be empty in case of
// error in the future.
// I think Option 1 is best, but it is quite opinionated.
// ToASCII is a wrapper for Punycode.ToASCII.
func ToASCII(s string) (string, error) {
return Punycode.process(s, true)
}
// ToUnicode is a wrapper for Punycode.ToUnicode.
func ToUnicode(s string) (string, error) {
return Punycode.process(s, false)
}
// An Option configures a Profile at creation time.
type Option func(*options)
// Transitional sets a Profile to use the Transitional mapping as defined in UTS
// #46. This will cause, for example, "ß" to be mapped to "ss". Using the
// transitional mapping provides a compromise between IDNA2003 and IDNA2008
// compatibility. It is used by most browsers when resolving domain names. This
// option is only meaningful if combined with MapForLookup.
func Transitional(transitional bool) Option {
return func(o *options) { o.transitional = true }
}
// VerifyDNSLength sets whether a Profile should fail if any of the IDN parts
// are longer than allowed by the RFC.
func VerifyDNSLength(verify bool) Option {
return func(o *options) { o.verifyDNSLength = verify }
}
// RemoveLeadingDots removes leading label separators. Leading runes that map to
// dots, such as U+3002 IDEOGRAPHIC FULL STOP, are removed as well.
//
// This is the behavior suggested by the UTS #46 and is adopted by some
// browsers.
func RemoveLeadingDots(remove bool) Option {
return func(o *options) { o.removeLeadingDots = remove }
}
// ValidateLabels sets whether to check the mandatory label validation criteria
// as defined in Section 5.4 of RFC 5891. This includes testing for correct use
// of hyphens ('-'), normalization, validity of runes, and the context rules.
func ValidateLabels(enable bool) Option {
return func(o *options) {
// Don't override existing mappings, but set one that at least checks
// normalization if it is not set.
if o.mapping == nil && enable {
o.mapping = normalize
}
o.trie = trie
o.validateLabels = enable
o.fromPuny = validateFromPunycode
}
}
// StrictDomainName limits the set of permissable ASCII characters to those
// allowed in domain names as defined in RFC 1034 (A-Z, a-z, 0-9 and the
// hyphen). This is set by default for MapForLookup and ValidateForRegistration.
//
// This option is useful, for instance, for browsers that allow characters
// outside this range, for example a '_' (U+005F LOW LINE). See
// http://www.rfc-editor.org/std/std3.txt for more details This option
// corresponds to the UseSTD3ASCIIRules option in UTS #46.
func StrictDomainName(use bool) Option {
return func(o *options) {
o.trie = trie
o.useSTD3Rules = use
o.fromPuny = validateFromPunycode
}
}
// NOTE: the following options pull in tables. The tables should not be linked
// in as long as the options are not used.
// BidiRule enables the Bidi rule as defined in RFC 5893. Any application
// that relies on proper validation of labels should include this rule.
func BidiRule() Option {
return func(o *options) { o.bidirule = bidirule.ValidString }
}
// ValidateForRegistration sets validation options to verify that a given IDN is
// properly formatted for registration as defined by Section 4 of RFC 5891.
func ValidateForRegistration() Option {
return func(o *options) {
o.mapping = validateRegistration
StrictDomainName(true)(o)
ValidateLabels(true)(o)
VerifyDNSLength(true)(o)
BidiRule()(o)
}
}
// MapForLookup sets validation and mapping options such that a given IDN is
// transformed for domain name lookup according to the requirements set out in
// Section 5 of RFC 5891. The mappings follow the recommendations of RFC 5894,
// RFC 5895 and UTS 46. It does not add the Bidi Rule. Use the BidiRule option
// to add this check.
//
// The mappings include normalization and mapping case, width and other
// compatibility mappings.
func MapForLookup() Option {
return func(o *options) {
o.mapping = validateAndMap
StrictDomainName(true)(o)
ValidateLabels(true)(o)
RemoveLeadingDots(true)(o)
}
}
type options struct {
transitional bool
useSTD3Rules bool
validateLabels bool
verifyDNSLength bool
removeLeadingDots bool
trie *idnaTrie
// fromPuny calls validation rules when converting A-labels to U-labels.
fromPuny func(p *Profile, s string) error
// mapping implements a validation and mapping step as defined in RFC 5895
// or UTS 46, tailored to, for example, domain registration or lookup.
mapping func(p *Profile, s string) (string, error)
// bidirule, if specified, checks whether s conforms to the Bidi Rule
// defined in RFC 5893.
bidirule func(s string) bool
}
// A Profile defines the configuration of a IDNA mapper.
type Profile struct {
options
}
func apply(o *options, opts []Option) {
for _, f := range opts {
f(o)
}
}
// New creates a new Profile.
//
// With no options, the returned Profile is the most permissive and equals the
// Punycode Profile. Options can be passed to further restrict the Profile. The
// MapForLookup and ValidateForRegistration options set a collection of options,
// for lookup and registration purposes respectively, which can be tailored by
// adding more fine-grained options, where later options override earlier
// options.
func New(o ...Option) *Profile {
p := &Profile{}
apply(&p.options, o)
return p
}
// ToASCII converts a domain or domain label to its ASCII form. For example,
// ToASCII("bücher.example.com") is "xn--bcher-kva.example.com", and
// ToASCII("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func (p *Profile) ToASCII(s string) (string, error) {
return p.process(s, true)
}
// ToUnicode converts a domain or domain label to its Unicode form. For example,
// ToUnicode("xn--bcher-kva.example.com") is "bücher.example.com", and
// ToUnicode("golang") is "golang". If an error is encountered it will return
// an error and a (partially) processed result.
func (p *Profile) ToUnicode(s string) (string, error) {
pp := *p
pp.transitional = false
return pp.process(s, false)
}
// String reports a string with a description of the profile for debugging
// purposes. The string format may change with different versions.
func (p *Profile) String() string {
s := ""
if p.transitional {
s = "Transitional"
} else {
s = "NonTransitional"
}
if p.useSTD3Rules {
s += ":UseSTD3Rules"
}
if p.validateLabels {
s += ":ValidateLabels"
}
if p.verifyDNSLength {
s += ":VerifyDNSLength"
}
return s
}
var (
// Punycode is a Profile that does raw punycode processing with a minimum
// of validation.
Punycode *Profile = punycode
// Lookup is the recommended profile for looking up domain names, according
// to Section 5 of RFC 5891. The exact configuration of this profile may
// change over time.
Lookup *Profile = lookup
// Display is the recommended profile for displaying domain names.
// The configuration of this profile may change over time.
Display *Profile = display
// Registration is the recommended profile for checking whether a given
// IDN is valid for registration, according to Section 4 of RFC 5891.
Registration *Profile = registration
punycode = &Profile{}
lookup = &Profile{options{
transitional: true,
useSTD3Rules: true,
validateLabels: true,
removeLeadingDots: true,
trie: trie,
fromPuny: validateFromPunycode,
mapping: validateAndMap,
bidirule: bidirule.ValidString,
}}
display = &Profile{options{
useSTD3Rules: true,
validateLabels: true,
removeLeadingDots: true,
trie: trie,
fromPuny: validateFromPunycode,
mapping: validateAndMap,
bidirule: bidirule.ValidString,
}}
registration = &Profile{options{
useSTD3Rules: true,
validateLabels: true,
verifyDNSLength: true,
trie: trie,
fromPuny: validateFromPunycode,
mapping: validateRegistration,
bidirule: bidirule.ValidString,
}}
// TODO: profiles
// Register: recommended for approving domain names: don't do any mappings
// but rather reject on invalid input. Bundle or block deviation characters.
)
type labelError struct{ label, code_ string }
func (e labelError) code() string { return e.code_ }
func (e labelError) Error() string {
return fmt.Sprintf("idna: invalid label %q", e.label)
}
type runeError rune
func (e runeError) code() string { return "P1" }
func (e runeError) Error() string {
return fmt.Sprintf("idna: disallowed rune %U", e)
}
// process implements the algorithm described in section 4 of UTS #46,
// see https://www.unicode.org/reports/tr46.
func (p *Profile) process(s string, toASCII bool) (string, error) {
var err error
if p.mapping != nil {
s, err = p.mapping(p, s)
}
// Remove leading empty labels.
if p.removeLeadingDots {
for ; len(s) > 0 && s[0] == '.'; s = s[1:] {
}
}
// It seems like we should only create this error on ToASCII, but the
// UTS 46 conformance tests suggests we should always check this.
if err == nil && p.verifyDNSLength && s == "" {
err = &labelError{s, "A4"}
}
labels := labelIter{orig: s}
for ; !labels.done(); labels.next() {
label := labels.label()
if label == "" {
// Empty labels are not okay. The label iterator skips the last
// label if it is empty.
if err == nil && p.verifyDNSLength {
err = &labelError{s, "A4"}
}
continue
}
if strings.HasPrefix(label, acePrefix) {
u, err2 := decode(label[len(acePrefix):])
if err2 != nil {
if err == nil {
err = err2
}
// Spec says keep the old label.
continue
}
labels.set(u)
if err == nil && p.validateLabels {
err = p.fromPuny(p, u)
}
if err == nil {
// This should be called on NonTransitional, according to the
// spec, but that currently does not have any effect. Use the
// original profile to preserve options.
err = p.validateLabel(u)
}
} else if err == nil {
err = p.validateLabel(label)
}
}
if toASCII {
for labels.reset(); !labels.done(); labels.next() {
label := labels.label()
if !ascii(label) {
a, err2 := encode(acePrefix, label)
if err == nil {
err = err2
}
label = a
labels.set(a)
}
n := len(label)
if p.verifyDNSLength && err == nil && (n == 0 || n > 63) {
err = &labelError{label, "A4"}
}
}
}
s = labels.result()
if toASCII && p.verifyDNSLength && err == nil {
// Compute the length of the domain name minus the root label and its dot.
n := len(s)
if n > 0 && s[n-1] == '.' {
n--
}
if len(s) < 1 || n > 253 {
err = &labelError{s, "A4"}
}
}
return s, err
}
func normalize(p *Profile, s string) (string, error) {
return norm.NFC.String(s), nil
}
func validateRegistration(p *Profile, s string) (string, error) {
if !norm.NFC.IsNormalString(s) {
return s, &labelError{s, "V1"}
}
for i := 0; i < len(s); {
v, sz := trie.lookupString(s[i:])
// Copy bytes not copied so far.
switch p.simplify(info(v).category()) {
// TODO: handle the NV8 defined in the Unicode idna data set to allow
// for strict conformance to IDNA2008.
case valid, deviation:
case disallowed, mapped, unknown, ignored:
r, _ := utf8.DecodeRuneInString(s[i:])
return s, runeError(r)
}
i += sz
}
return s, nil
}
func validateAndMap(p *Profile, s string) (string, error) {
var (
err error
b []byte
k int
)
for i := 0; i < len(s); {
v, sz := trie.lookupString(s[i:])
start := i
i += sz
// Copy bytes not copied so far.
switch p.simplify(info(v).category()) {
case valid:
continue
case disallowed:
if err == nil {
r, _ := utf8.DecodeRuneInString(s[start:])
err = runeError(r)
}
continue
case mapped, deviation:
b = append(b, s[k:start]...)
b = info(v).appendMapping(b, s[start:i])
case ignored:
b = append(b, s[k:start]...)
// drop the rune
case unknown:
b = append(b, s[k:start]...)
b = append(b, "\ufffd"...)
}
k = i
}
if k == 0 {
// No changes so far.
s = norm.NFC.String(s)
} else {
b = append(b, s[k:]...)
if norm.NFC.QuickSpan(b) != len(b) {
b = norm.NFC.Bytes(b)
}
// TODO: the punycode converters require strings as input.
s = string(b)
}
return s, err
}
// A labelIter allows iterating over domain name labels.
type labelIter struct {
orig string
slice []string
curStart int
curEnd int
i int
}
func (l *labelIter) reset() {
l.curStart = 0
l.curEnd = 0
l.i = 0
}
func (l *labelIter) done() bool {
return l.curStart >= len(l.orig)
}
func (l *labelIter) result() string {
if l.slice != nil {
return strings.Join(l.slice, ".")
}
return l.orig
}
func (l *labelIter) label() string {
if l.slice != nil {
return l.slice[l.i]
}
p := strings.IndexByte(l.orig[l.curStart:], '.')
l.curEnd = l.curStart + p
if p == -1 {
l.curEnd = len(l.orig)
}
return l.orig[l.curStart:l.curEnd]
}
// next sets the value to the next label. It skips the last label if it is empty.
func (l *labelIter) next() {
l.i++
if l.slice != nil {
if l.i >= len(l.slice) || l.i == len(l.slice)-1 && l.slice[l.i] == "" {
l.curStart = len(l.orig)
}
} else {
l.curStart = l.curEnd + 1
if l.curStart == len(l.orig)-1 && l.orig[l.curStart] == '.' {
l.curStart = len(l.orig)
}
}
}
func (l *labelIter) set(s string) {
if l.slice == nil {
l.slice = strings.Split(l.orig, ".")
}
l.slice[l.i] = s
}
// acePrefix is the ASCII Compatible Encoding prefix.
const acePrefix = "xn--"
func (p *Profile) simplify(cat category) category {
switch cat {
case disallowedSTD3Mapped:
if p.useSTD3Rules {
cat = disallowed
} else {
cat = mapped
}
case disallowedSTD3Valid:
if p.useSTD3Rules {
cat = disallowed
} else {
cat = valid
}
case deviation:
if !p.transitional {
cat = valid
}
case validNV8, validXV8:
// TODO: handle V2008
cat = valid
}
return cat
}
func validateFromPunycode(p *Profile, s string) error {
if !norm.NFC.IsNormalString(s) {
return &labelError{s, "V1"}
}
for i := 0; i < len(s); {
v, sz := trie.lookupString(s[i:])
if c := p.simplify(info(v).category()); c != valid && c != deviation {
return &labelError{s, "V6"}
}
i += sz
}
return nil
}
const (
zwnj = "\u200c"
zwj = "\u200d"
)
type joinState int8
const (
stateStart joinState = iota
stateVirama
stateBefore
stateBeforeVirama
stateAfter
stateFAIL
)
var joinStates = [][numJoinTypes]joinState{
stateStart: {
joiningL: stateBefore,
joiningD: stateBefore,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateVirama,
},
stateVirama: {
joiningL: stateBefore,
joiningD: stateBefore,
},
stateBefore: {
joiningL: stateBefore,
joiningD: stateBefore,
joiningT: stateBefore,
joinZWNJ: stateAfter,
joinZWJ: stateFAIL,
joinVirama: stateBeforeVirama,
},
stateBeforeVirama: {
joiningL: stateBefore,
joiningD: stateBefore,
joiningT: stateBefore,
},
stateAfter: {
joiningL: stateFAIL,
joiningD: stateBefore,
joiningT: stateAfter,
joiningR: stateStart,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateAfter, // no-op as we can't accept joiners here
},
stateFAIL: {
0: stateFAIL,
joiningL: stateFAIL,
joiningD: stateFAIL,
joiningT: stateFAIL,
joiningR: stateFAIL,
joinZWNJ: stateFAIL,
joinZWJ: stateFAIL,
joinVirama: stateFAIL,
},
}
// validateLabel validates the criteria from Section 4.1. Item 1, 4, and 6 are
// already implicitly satisfied by the overall implementation.
func (p *Profile) validateLabel(s string) error {
if s == "" {
if p.verifyDNSLength {
return &labelError{s, "A4"}
}
return nil
}
if p.bidirule != nil && !p.bidirule(s) {
return &labelError{s, "B"}
}
if !p.validateLabels {
return nil
}
trie := p.trie // p.validateLabels is only set if trie is set.
if len(s) > 4 && s[2] == '-' && s[3] == '-' {
return &labelError{s, "V2"}
}
if s[0] == '-' || s[len(s)-1] == '-' {
return &labelError{s, "V3"}
}
// TODO: merge the use of this in the trie.
v, sz := trie.lookupString(s)
x := info(v)
if x.isModifier() {
return &labelError{s, "V5"}
}
// Quickly return in the absence of zero-width (non) joiners.
if strings.Index(s, zwj) == -1 && strings.Index(s, zwnj) == -1 {
return nil
}
st := stateStart
for i := 0; ; {
jt := x.joinType()
if s[i:i+sz] == zwj {
jt = joinZWJ
} else if s[i:i+sz] == zwnj {
jt = joinZWNJ
}
st = joinStates[st][jt]
if x.isViramaModifier() {
st = joinStates[st][joinVirama]
}
if i += sz; i == len(s) {
break
}
v, sz = trie.lookupString(s[i:])
x = info(v)
}
if st == stateFAIL || st == stateAfter {
return &labelError{s, "C"}
}
return nil
}
func ascii(s string) bool {
for i := 0; i < len(s); i++ {
if s[i] >= utf8.RuneSelf {
return false
}
}
return true
}

View File

@ -1,203 +0,0 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package idna
// This file implements the Punycode algorithm from RFC 3492.
import (
"math"
"strings"
"unicode/utf8"
)
// These parameter values are specified in section 5.
//
// All computation is done with int32s, so that overflow behavior is identical
// regardless of whether int is 32-bit or 64-bit.
const (
base int32 = 36
damp int32 = 700
initialBias int32 = 72
initialN int32 = 128
skew int32 = 38
tmax int32 = 26
tmin int32 = 1
)
func punyError(s string) error { return &labelError{s, "A3"} }
// decode decodes a string as specified in section 6.2.
func decode(encoded string) (string, error) {
if encoded == "" {
return "", nil
}
pos := 1 + strings.LastIndex(encoded, "-")
if pos == 1 {
return "", punyError(encoded)
}
if pos == len(encoded) {
return encoded[:len(encoded)-1], nil
}
output := make([]rune, 0, len(encoded))
if pos != 0 {
for _, r := range encoded[:pos-1] {
output = append(output, r)
}
}
i, n, bias := int32(0), initialN, initialBias
for pos < len(encoded) {
oldI, w := i, int32(1)
for k := base; ; k += base {
if pos == len(encoded) {
return "", punyError(encoded)
}
digit, ok := decodeDigit(encoded[pos])
if !ok {
return "", punyError(encoded)
}
pos++
i += digit * w
if i < 0 {
return "", punyError(encoded)
}
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if digit < t {
break
}
w *= base - t
if w >= math.MaxInt32/base {
return "", punyError(encoded)
}
}
x := int32(len(output) + 1)
bias = adapt(i-oldI, x, oldI == 0)
n += i / x
i %= x
if n > utf8.MaxRune || len(output) >= 1024 {
return "", punyError(encoded)
}
output = append(output, 0)
copy(output[i+1:], output[i:])
output[i] = n
i++
}
return string(output), nil
}
// encode encodes a string as specified in section 6.3 and prepends prefix to
// the result.
//
// The "while h < length(input)" line in the specification becomes "for
// remaining != 0" in the Go code, because len(s) in Go is in bytes, not runes.
func encode(prefix, s string) (string, error) {
output := make([]byte, len(prefix), len(prefix)+1+2*len(s))
copy(output, prefix)
delta, n, bias := int32(0), initialN, initialBias
b, remaining := int32(0), int32(0)
for _, r := range s {
if r < 0x80 {
b++
output = append(output, byte(r))
} else {
remaining++
}
}
h := b
if b > 0 {
output = append(output, '-')
}
for remaining != 0 {
m := int32(0x7fffffff)
for _, r := range s {
if m > r && r >= n {
m = r
}
}
delta += (m - n) * (h + 1)
if delta < 0 {
return "", punyError(s)
}
n = m
for _, r := range s {
if r < n {
delta++
if delta < 0 {
return "", punyError(s)
}
continue
}
if r > n {
continue
}
q := delta
for k := base; ; k += base {
t := k - bias
if t < tmin {
t = tmin
} else if t > tmax {
t = tmax
}
if q < t {
break
}
output = append(output, encodeDigit(t+(q-t)%(base-t)))
q = (q - t) / (base - t)
}
output = append(output, encodeDigit(q))
bias = adapt(delta, h+1, h == b)
delta = 0
h++
remaining--
}
delta++
n++
}
return string(output), nil
}
func decodeDigit(x byte) (digit int32, ok bool) {
switch {
case '0' <= x && x <= '9':
return int32(x - ('0' - 26)), true
case 'A' <= x && x <= 'Z':
return int32(x - 'A'), true
case 'a' <= x && x <= 'z':
return int32(x - 'a'), true
}
return 0, false
}
func encodeDigit(digit int32) byte {
switch {
case 0 <= digit && digit < 26:
return byte(digit + 'a')
case 26 <= digit && digit < 36:
return byte(digit + ('0' - 26))
}
panic("idna: internal error in punycode encoding")
}
// adapt is the bias adaptation function specified in section 6.1.
func adapt(delta, numPoints int32, firstTime bool) int32 {
if firstTime {
delta /= damp
} else {
delta /= 2
}
delta += delta / numPoints
k := int32(0)
for delta > ((base-tmin)*tmax)/2 {
delta /= base - tmin
k += base
}
return k + (base-tmin+1)*delta/(delta+skew)
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

72
vendor/golang.org/x/net/idna/trie.go generated vendored
View File

@ -1,72 +0,0 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package idna
// appendMapping appends the mapping for the respective rune. isMapped must be
// true. A mapping is a categorization of a rune as defined in UTS #46.
func (c info) appendMapping(b []byte, s string) []byte {
index := int(c >> indexShift)
if c&xorBit == 0 {
s := mappings[index:]
return append(b, s[1:s[0]+1]...)
}
b = append(b, s...)
if c&inlineXOR == inlineXOR {
// TODO: support and handle two-byte inline masks
b[len(b)-1] ^= byte(index)
} else {
for p := len(b) - int(xorData[index]); p < len(b); p++ {
index++
b[p] ^= xorData[index]
}
}
return b
}
// Sparse block handling code.
type valueRange struct {
value uint16 // header: value:stride
lo, hi byte // header: lo:n
}
type sparseBlocks struct {
values []valueRange
offset []uint16
}
var idnaSparse = sparseBlocks{
values: idnaSparseValues[:],
offset: idnaSparseOffset[:],
}
// Don't use newIdnaTrie to avoid unconditional linking in of the table.
var trie = &idnaTrie{}
// lookup determines the type of block n and looks up the value for b.
// For n < t.cutoff, the block is a simple lookup table. Otherwise, the block
// is a list of ranges with an accompanying value. Given a matching range r,
// the value for b is by r.value + (b - r.lo) * stride.
func (t *sparseBlocks) lookup(n uint32, b byte) uint16 {
offset := t.offset[n]
header := t.values[offset]
lo := offset + 1
hi := lo + uint16(header.lo)
for lo < hi {
m := lo + (hi-lo)/2
r := t.values[m]
if r.lo <= b && b <= r.hi {
return r.value + uint16(b-r.lo)*header.value
}
if b < r.lo {
hi = m
} else {
lo = m + 1
}
}
return 0
}

View File

@ -1,119 +0,0 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package idna
// This file contains definitions for interpreting the trie value of the idna
// trie generated by "go run gen*.go". It is shared by both the generator
// program and the resultant package. Sharing is achieved by the generator
// copying gen_trieval.go to trieval.go and changing what's above this comment.
// info holds information from the IDNA mapping table for a single rune. It is
// the value returned by a trie lookup. In most cases, all information fits in
// a 16-bit value. For mappings, this value may contain an index into a slice
// with the mapped string. Such mappings can consist of the actual mapped value
// or an XOR pattern to be applied to the bytes of the UTF8 encoding of the
// input rune. This technique is used by the cases packages and reduces the
// table size significantly.
//
// The per-rune values have the following format:
//
// if mapped {
// if inlinedXOR {
// 15..13 inline XOR marker
// 12..11 unused
// 10..3 inline XOR mask
// } else {
// 15..3 index into xor or mapping table
// }
// } else {
// 15..14 unused
// 13 mayNeedNorm
// 12..11 attributes
// 10..8 joining type
// 7..3 category type
// }
// 2 use xor pattern
// 1..0 mapped category
//
// See the definitions below for a more detailed description of the various
// bits.
type info uint16
const (
catSmallMask = 0x3
catBigMask = 0xF8
indexShift = 3
xorBit = 0x4 // interpret the index as an xor pattern
inlineXOR = 0xE000 // These bits are set if the XOR pattern is inlined.
joinShift = 8
joinMask = 0x07
// Attributes
attributesMask = 0x1800
viramaModifier = 0x1800
modifier = 0x1000
rtl = 0x0800
mayNeedNorm = 0x2000
)
// A category corresponds to a category defined in the IDNA mapping table.
type category uint16
const (
unknown category = 0 // not currently defined in unicode.
mapped category = 1
disallowedSTD3Mapped category = 2
deviation category = 3
)
const (
valid category = 0x08
validNV8 category = 0x18
validXV8 category = 0x28
disallowed category = 0x40
disallowedSTD3Valid category = 0x80
ignored category = 0xC0
)
// join types and additional rune information
const (
joiningL = (iota + 1)
joiningD
joiningT
joiningR
//the following types are derived during processing
joinZWJ
joinZWNJ
joinVirama
numJoinTypes
)
func (c info) isMapped() bool {
return c&0x3 != 0
}
func (c info) category() category {
small := c & catSmallMask
if small != 0 {
return category(small)
}
return category(c & catBigMask)
}
func (c info) joinType() info {
if c.isMapped() {
return 0
}
return (c >> joinShift) & joinMask
}
func (c info) isModifier() bool {
return c&(modifier|catSmallMask) == modifier
}
func (c info) isViramaModifier() bool {
return c&(attributesMask|catSmallMask) == viramaModifier
}

View File

@ -1,525 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package timeseries implements a time series structure for stats collection.
package timeseries // import "golang.org/x/net/internal/timeseries"
import (
"fmt"
"log"
"time"
)
const (
timeSeriesNumBuckets = 64
minuteHourSeriesNumBuckets = 60
)
var timeSeriesResolutions = []time.Duration{
1 * time.Second,
10 * time.Second,
1 * time.Minute,
10 * time.Minute,
1 * time.Hour,
6 * time.Hour,
24 * time.Hour, // 1 day
7 * 24 * time.Hour, // 1 week
4 * 7 * 24 * time.Hour, // 4 weeks
16 * 7 * 24 * time.Hour, // 16 weeks
}
var minuteHourSeriesResolutions = []time.Duration{
1 * time.Second,
1 * time.Minute,
}
// An Observable is a kind of data that can be aggregated in a time series.
type Observable interface {
Multiply(ratio float64) // Multiplies the data in self by a given ratio
Add(other Observable) // Adds the data from a different observation to self
Clear() // Clears the observation so it can be reused.
CopyFrom(other Observable) // Copies the contents of a given observation to self
}
// Float attaches the methods of Observable to a float64.
type Float float64
// NewFloat returns a Float.
func NewFloat() Observable {
f := Float(0)
return &f
}
// String returns the float as a string.
func (f *Float) String() string { return fmt.Sprintf("%g", f.Value()) }
// Value returns the float's value.
func (f *Float) Value() float64 { return float64(*f) }
func (f *Float) Multiply(ratio float64) { *f *= Float(ratio) }
func (f *Float) Add(other Observable) {
o := other.(*Float)
*f += *o
}
func (f *Float) Clear() { *f = 0 }
func (f *Float) CopyFrom(other Observable) {
o := other.(*Float)
*f = *o
}
// A Clock tells the current time.
type Clock interface {
Time() time.Time
}
type defaultClock int
var defaultClockInstance defaultClock
func (defaultClock) Time() time.Time { return time.Now() }
// Information kept per level. Each level consists of a circular list of
// observations. The start of the level may be derived from end and the
// len(buckets) * sizeInMillis.
type tsLevel struct {
oldest int // index to oldest bucketed Observable
newest int // index to newest bucketed Observable
end time.Time // end timestamp for this level
size time.Duration // duration of the bucketed Observable
buckets []Observable // collections of observations
provider func() Observable // used for creating new Observable
}
func (l *tsLevel) Clear() {
l.oldest = 0
l.newest = len(l.buckets) - 1
l.end = time.Time{}
for i := range l.buckets {
if l.buckets[i] != nil {
l.buckets[i].Clear()
l.buckets[i] = nil
}
}
}
func (l *tsLevel) InitLevel(size time.Duration, numBuckets int, f func() Observable) {
l.size = size
l.provider = f
l.buckets = make([]Observable, numBuckets)
}
// Keeps a sequence of levels. Each level is responsible for storing data at
// a given resolution. For example, the first level stores data at a one
// minute resolution while the second level stores data at a one hour
// resolution.
// Each level is represented by a sequence of buckets. Each bucket spans an
// interval equal to the resolution of the level. New observations are added
// to the last bucket.
type timeSeries struct {
provider func() Observable // make more Observable
numBuckets int // number of buckets in each level
levels []*tsLevel // levels of bucketed Observable
lastAdd time.Time // time of last Observable tracked
total Observable // convenient aggregation of all Observable
clock Clock // Clock for getting current time
pending Observable // observations not yet bucketed
pendingTime time.Time // what time are we keeping in pending
dirty bool // if there are pending observations
}
// init initializes a level according to the supplied criteria.
func (ts *timeSeries) init(resolutions []time.Duration, f func() Observable, numBuckets int, clock Clock) {
ts.provider = f
ts.numBuckets = numBuckets
ts.clock = clock
ts.levels = make([]*tsLevel, len(resolutions))
for i := range resolutions {
if i > 0 && resolutions[i-1] >= resolutions[i] {
log.Print("timeseries: resolutions must be monotonically increasing")
break
}
newLevel := new(tsLevel)
newLevel.InitLevel(resolutions[i], ts.numBuckets, ts.provider)
ts.levels[i] = newLevel
}
ts.Clear()
}
// Clear removes all observations from the time series.
func (ts *timeSeries) Clear() {
ts.lastAdd = time.Time{}
ts.total = ts.resetObservation(ts.total)
ts.pending = ts.resetObservation(ts.pending)
ts.pendingTime = time.Time{}
ts.dirty = false
for i := range ts.levels {
ts.levels[i].Clear()
}
}
// Add records an observation at the current time.
func (ts *timeSeries) Add(observation Observable) {
ts.AddWithTime(observation, ts.clock.Time())
}
// AddWithTime records an observation at the specified time.
func (ts *timeSeries) AddWithTime(observation Observable, t time.Time) {
smallBucketDuration := ts.levels[0].size
if t.After(ts.lastAdd) {
ts.lastAdd = t
}
if t.After(ts.pendingTime) {
ts.advance(t)
ts.mergePendingUpdates()
ts.pendingTime = ts.levels[0].end
ts.pending.CopyFrom(observation)
ts.dirty = true
} else if t.After(ts.pendingTime.Add(-1 * smallBucketDuration)) {
// The observation is close enough to go into the pending bucket.
// This compensates for clock skewing and small scheduling delays
// by letting the update stay in the fast path.
ts.pending.Add(observation)
ts.dirty = true
} else {
ts.mergeValue(observation, t)
}
}
// mergeValue inserts the observation at the specified time in the past into all levels.
func (ts *timeSeries) mergeValue(observation Observable, t time.Time) {
for _, level := range ts.levels {
index := (ts.numBuckets - 1) - int(level.end.Sub(t)/level.size)
if 0 <= index && index < ts.numBuckets {
bucketNumber := (level.oldest + index) % ts.numBuckets
if level.buckets[bucketNumber] == nil {
level.buckets[bucketNumber] = level.provider()
}
level.buckets[bucketNumber].Add(observation)
}
}
ts.total.Add(observation)
}
// mergePendingUpdates applies the pending updates into all levels.
func (ts *timeSeries) mergePendingUpdates() {
if ts.dirty {
ts.mergeValue(ts.pending, ts.pendingTime)
ts.pending = ts.resetObservation(ts.pending)
ts.dirty = false
}
}
// advance cycles the buckets at each level until the latest bucket in
// each level can hold the time specified.
func (ts *timeSeries) advance(t time.Time) {
if !t.After(ts.levels[0].end) {
return
}
for i := 0; i < len(ts.levels); i++ {
level := ts.levels[i]
if !level.end.Before(t) {
break
}
// If the time is sufficiently far, just clear the level and advance
// directly.
if !t.Before(level.end.Add(level.size * time.Duration(ts.numBuckets))) {
for _, b := range level.buckets {
ts.resetObservation(b)
}
level.end = time.Unix(0, (t.UnixNano()/level.size.Nanoseconds())*level.size.Nanoseconds())
}
for t.After(level.end) {
level.end = level.end.Add(level.size)
level.newest = level.oldest
level.oldest = (level.oldest + 1) % ts.numBuckets
ts.resetObservation(level.buckets[level.newest])
}
t = level.end
}
}
// Latest returns the sum of the num latest buckets from the level.
func (ts *timeSeries) Latest(level, num int) Observable {
now := ts.clock.Time()
if ts.levels[0].end.Before(now) {
ts.advance(now)
}
ts.mergePendingUpdates()
result := ts.provider()
l := ts.levels[level]
index := l.newest
for i := 0; i < num; i++ {
if l.buckets[index] != nil {
result.Add(l.buckets[index])
}
if index == 0 {
index = ts.numBuckets
}
index--
}
return result
}
// LatestBuckets returns a copy of the num latest buckets from level.
func (ts *timeSeries) LatestBuckets(level, num int) []Observable {
if level < 0 || level > len(ts.levels) {
log.Print("timeseries: bad level argument: ", level)
return nil
}
if num < 0 || num >= ts.numBuckets {
log.Print("timeseries: bad num argument: ", num)
return nil
}
results := make([]Observable, num)
now := ts.clock.Time()
if ts.levels[0].end.Before(now) {
ts.advance(now)
}
ts.mergePendingUpdates()
l := ts.levels[level]
index := l.newest
for i := 0; i < num; i++ {
result := ts.provider()
results[i] = result
if l.buckets[index] != nil {
result.CopyFrom(l.buckets[index])
}
if index == 0 {
index = ts.numBuckets
}
index -= 1
}
return results
}
// ScaleBy updates observations by scaling by factor.
func (ts *timeSeries) ScaleBy(factor float64) {
for _, l := range ts.levels {
for i := 0; i < ts.numBuckets; i++ {
l.buckets[i].Multiply(factor)
}
}
ts.total.Multiply(factor)
ts.pending.Multiply(factor)
}
// Range returns the sum of observations added over the specified time range.
// If start or finish times don't fall on bucket boundaries of the same
// level, then return values are approximate answers.
func (ts *timeSeries) Range(start, finish time.Time) Observable {
return ts.ComputeRange(start, finish, 1)[0]
}
// Recent returns the sum of observations from the last delta.
func (ts *timeSeries) Recent(delta time.Duration) Observable {
now := ts.clock.Time()
return ts.Range(now.Add(-delta), now)
}
// Total returns the total of all observations.
func (ts *timeSeries) Total() Observable {
ts.mergePendingUpdates()
return ts.total
}
// ComputeRange computes a specified number of values into a slice using
// the observations recorded over the specified time period. The return
// values are approximate if the start or finish times don't fall on the
// bucket boundaries at the same level or if the number of buckets spanning
// the range is not an integral multiple of num.
func (ts *timeSeries) ComputeRange(start, finish time.Time, num int) []Observable {
if start.After(finish) {
log.Printf("timeseries: start > finish, %v>%v", start, finish)
return nil
}
if num < 0 {
log.Printf("timeseries: num < 0, %v", num)
return nil
}
results := make([]Observable, num)
for _, l := range ts.levels {
if !start.Before(l.end.Add(-l.size * time.Duration(ts.numBuckets))) {
ts.extract(l, start, finish, num, results)
return results
}
}
// Failed to find a level that covers the desired range. So just
// extract from the last level, even if it doesn't cover the entire
// desired range.
ts.extract(ts.levels[len(ts.levels)-1], start, finish, num, results)
return results
}
// RecentList returns the specified number of values in slice over the most
// recent time period of the specified range.
func (ts *timeSeries) RecentList(delta time.Duration, num int) []Observable {
if delta < 0 {
return nil
}
now := ts.clock.Time()
return ts.ComputeRange(now.Add(-delta), now, num)
}
// extract returns a slice of specified number of observations from a given
// level over a given range.
func (ts *timeSeries) extract(l *tsLevel, start, finish time.Time, num int, results []Observable) {
ts.mergePendingUpdates()
srcInterval := l.size
dstInterval := finish.Sub(start) / time.Duration(num)
dstStart := start
srcStart := l.end.Add(-srcInterval * time.Duration(ts.numBuckets))
srcIndex := 0
// Where should scanning start?
if dstStart.After(srcStart) {
advance := dstStart.Sub(srcStart) / srcInterval
srcIndex += int(advance)
srcStart = srcStart.Add(advance * srcInterval)
}
// The i'th value is computed as show below.
// interval = (finish/start)/num
// i'th value = sum of observation in range
// [ start + i * interval,
// start + (i + 1) * interval )
for i := 0; i < num; i++ {
results[i] = ts.resetObservation(results[i])
dstEnd := dstStart.Add(dstInterval)
for srcIndex < ts.numBuckets && srcStart.Before(dstEnd) {
srcEnd := srcStart.Add(srcInterval)
if srcEnd.After(ts.lastAdd) {
srcEnd = ts.lastAdd
}
if !srcEnd.Before(dstStart) {
srcValue := l.buckets[(srcIndex+l.oldest)%ts.numBuckets]
if !srcStart.Before(dstStart) && !srcEnd.After(dstEnd) {
// dst completely contains src.
if srcValue != nil {
results[i].Add(srcValue)
}
} else {
// dst partially overlaps src.
overlapStart := maxTime(srcStart, dstStart)
overlapEnd := minTime(srcEnd, dstEnd)
base := srcEnd.Sub(srcStart)
fraction := overlapEnd.Sub(overlapStart).Seconds() / base.Seconds()
used := ts.provider()
if srcValue != nil {
used.CopyFrom(srcValue)
}
used.Multiply(fraction)
results[i].Add(used)
}
if srcEnd.After(dstEnd) {
break
}
}
srcIndex++
srcStart = srcStart.Add(srcInterval)
}
dstStart = dstStart.Add(dstInterval)
}
}
// resetObservation clears the content so the struct may be reused.
func (ts *timeSeries) resetObservation(observation Observable) Observable {
if observation == nil {
observation = ts.provider()
} else {
observation.Clear()
}
return observation
}
// TimeSeries tracks data at granularities from 1 second to 16 weeks.
type TimeSeries struct {
timeSeries
}
// NewTimeSeries creates a new TimeSeries using the function provided for creating new Observable.
func NewTimeSeries(f func() Observable) *TimeSeries {
return NewTimeSeriesWithClock(f, defaultClockInstance)
}
// NewTimeSeriesWithClock creates a new TimeSeries using the function provided for creating new Observable and the clock for
// assigning timestamps.
func NewTimeSeriesWithClock(f func() Observable, clock Clock) *TimeSeries {
ts := new(TimeSeries)
ts.timeSeries.init(timeSeriesResolutions, f, timeSeriesNumBuckets, clock)
return ts
}
// MinuteHourSeries tracks data at granularities of 1 minute and 1 hour.
type MinuteHourSeries struct {
timeSeries
}
// NewMinuteHourSeries creates a new MinuteHourSeries using the function provided for creating new Observable.
func NewMinuteHourSeries(f func() Observable) *MinuteHourSeries {
return NewMinuteHourSeriesWithClock(f, defaultClockInstance)
}
// NewMinuteHourSeriesWithClock creates a new MinuteHourSeries using the function provided for creating new Observable and the clock for
// assigning timestamps.
func NewMinuteHourSeriesWithClock(f func() Observable, clock Clock) *MinuteHourSeries {
ts := new(MinuteHourSeries)
ts.timeSeries.init(minuteHourSeriesResolutions, f,
minuteHourSeriesNumBuckets, clock)
return ts
}
func (ts *MinuteHourSeries) Minute() Observable {
return ts.timeSeries.Latest(0, 60)
}
func (ts *MinuteHourSeries) Hour() Observable {
return ts.timeSeries.Latest(1, 60)
}
func minTime(a, b time.Time) time.Time {
if a.Before(b) {
return a
}
return b
}
func maxTime(a, b time.Time) time.Time {
if a.After(b) {
return a
}
return b
}

View File

@ -1,532 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package trace
import (
"bytes"
"fmt"
"html/template"
"io"
"log"
"net/http"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"text/tabwriter"
"time"
)
const maxEventsPerLog = 100
type bucket struct {
MaxErrAge time.Duration
String string
}
var buckets = []bucket{
{0, "total"},
{10 * time.Second, "errs<10s"},
{1 * time.Minute, "errs<1m"},
{10 * time.Minute, "errs<10m"},
{1 * time.Hour, "errs<1h"},
{10 * time.Hour, "errs<10h"},
{24000 * time.Hour, "errors"},
}
// RenderEvents renders the HTML page typically served at /debug/events.
// It does not do any auth checking. The request may be nil.
//
// Most users will use the Events handler.
func RenderEvents(w http.ResponseWriter, req *http.Request, sensitive bool) {
now := time.Now()
data := &struct {
Families []string // family names
Buckets []bucket
Counts [][]int // eventLog count per family/bucket
// Set when a bucket has been selected.
Family string
Bucket int
EventLogs eventLogs
Expanded bool
}{
Buckets: buckets,
}
data.Families = make([]string, 0, len(families))
famMu.RLock()
for name := range families {
data.Families = append(data.Families, name)
}
famMu.RUnlock()
sort.Strings(data.Families)
// Count the number of eventLogs in each family for each error age.
data.Counts = make([][]int, len(data.Families))
for i, name := range data.Families {
// TODO(sameer): move this loop under the family lock.
f := getEventFamily(name)
data.Counts[i] = make([]int, len(data.Buckets))
for j, b := range data.Buckets {
data.Counts[i][j] = f.Count(now, b.MaxErrAge)
}
}
if req != nil {
var ok bool
data.Family, data.Bucket, ok = parseEventsArgs(req)
if !ok {
// No-op
} else {
data.EventLogs = getEventFamily(data.Family).Copy(now, buckets[data.Bucket].MaxErrAge)
}
if data.EventLogs != nil {
defer data.EventLogs.Free()
sort.Sort(data.EventLogs)
}
if exp, err := strconv.ParseBool(req.FormValue("exp")); err == nil {
data.Expanded = exp
}
}
famMu.RLock()
defer famMu.RUnlock()
if err := eventsTmpl().Execute(w, data); err != nil {
log.Printf("net/trace: Failed executing template: %v", err)
}
}
func parseEventsArgs(req *http.Request) (fam string, b int, ok bool) {
fam, bStr := req.FormValue("fam"), req.FormValue("b")
if fam == "" || bStr == "" {
return "", 0, false
}
b, err := strconv.Atoi(bStr)
if err != nil || b < 0 || b >= len(buckets) {
return "", 0, false
}
return fam, b, true
}
// An EventLog provides a log of events associated with a specific object.
type EventLog interface {
// Printf formats its arguments with fmt.Sprintf and adds the
// result to the event log.
Printf(format string, a ...interface{})
// Errorf is like Printf, but it marks this event as an error.
Errorf(format string, a ...interface{})
// Finish declares that this event log is complete.
// The event log should not be used after calling this method.
Finish()
}
// NewEventLog returns a new EventLog with the specified family name
// and title.
func NewEventLog(family, title string) EventLog {
el := newEventLog()
el.ref()
el.Family, el.Title = family, title
el.Start = time.Now()
el.events = make([]logEntry, 0, maxEventsPerLog)
el.stack = make([]uintptr, 32)
n := runtime.Callers(2, el.stack)
el.stack = el.stack[:n]
getEventFamily(family).add(el)
return el
}
func (el *eventLog) Finish() {
getEventFamily(el.Family).remove(el)
el.unref() // matches ref in New
}
var (
famMu sync.RWMutex
families = make(map[string]*eventFamily) // family name => family
)
func getEventFamily(fam string) *eventFamily {
famMu.Lock()
defer famMu.Unlock()
f := families[fam]
if f == nil {
f = &eventFamily{}
families[fam] = f
}
return f
}
type eventFamily struct {
mu sync.RWMutex
eventLogs eventLogs
}
func (f *eventFamily) add(el *eventLog) {
f.mu.Lock()
f.eventLogs = append(f.eventLogs, el)
f.mu.Unlock()
}
func (f *eventFamily) remove(el *eventLog) {
f.mu.Lock()
defer f.mu.Unlock()
for i, el0 := range f.eventLogs {
if el == el0 {
copy(f.eventLogs[i:], f.eventLogs[i+1:])
f.eventLogs = f.eventLogs[:len(f.eventLogs)-1]
return
}
}
}
func (f *eventFamily) Count(now time.Time, maxErrAge time.Duration) (n int) {
f.mu.RLock()
defer f.mu.RUnlock()
for _, el := range f.eventLogs {
if el.hasRecentError(now, maxErrAge) {
n++
}
}
return
}
func (f *eventFamily) Copy(now time.Time, maxErrAge time.Duration) (els eventLogs) {
f.mu.RLock()
defer f.mu.RUnlock()
els = make(eventLogs, 0, len(f.eventLogs))
for _, el := range f.eventLogs {
if el.hasRecentError(now, maxErrAge) {
el.ref()
els = append(els, el)
}
}
return
}
type eventLogs []*eventLog
// Free calls unref on each element of the list.
func (els eventLogs) Free() {
for _, el := range els {
el.unref()
}
}
// eventLogs may be sorted in reverse chronological order.
func (els eventLogs) Len() int { return len(els) }
func (els eventLogs) Less(i, j int) bool { return els[i].Start.After(els[j].Start) }
func (els eventLogs) Swap(i, j int) { els[i], els[j] = els[j], els[i] }
// A logEntry is a timestamped log entry in an event log.
type logEntry struct {
When time.Time
Elapsed time.Duration // since previous event in log
NewDay bool // whether this event is on a different day to the previous event
What string
IsErr bool
}
// WhenString returns a string representation of the elapsed time of the event.
// It will include the date if midnight was crossed.
func (e logEntry) WhenString() string {
if e.NewDay {
return e.When.Format("2006/01/02 15:04:05.000000")
}
return e.When.Format("15:04:05.000000")
}
// An eventLog represents an active event log.
type eventLog struct {
// Family is the top-level grouping of event logs to which this belongs.
Family string
// Title is the title of this event log.
Title string
// Timing information.
Start time.Time
// Call stack where this event log was created.
stack []uintptr
// Append-only sequence of events.
//
// TODO(sameer): change this to a ring buffer to avoid the array copy
// when we hit maxEventsPerLog.
mu sync.RWMutex
events []logEntry
LastErrorTime time.Time
discarded int
refs int32 // how many buckets this is in
}
func (el *eventLog) reset() {
// Clear all but the mutex. Mutexes may not be copied, even when unlocked.
el.Family = ""
el.Title = ""
el.Start = time.Time{}
el.stack = nil
el.events = nil
el.LastErrorTime = time.Time{}
el.discarded = 0
el.refs = 0
}
func (el *eventLog) hasRecentError(now time.Time, maxErrAge time.Duration) bool {
if maxErrAge == 0 {
return true
}
el.mu.RLock()
defer el.mu.RUnlock()
return now.Sub(el.LastErrorTime) < maxErrAge
}
// delta returns the elapsed time since the last event or the log start,
// and whether it spans midnight.
// L >= el.mu
func (el *eventLog) delta(t time.Time) (time.Duration, bool) {
if len(el.events) == 0 {
return t.Sub(el.Start), false
}
prev := el.events[len(el.events)-1].When
return t.Sub(prev), prev.Day() != t.Day()
}
func (el *eventLog) Printf(format string, a ...interface{}) {
el.printf(false, format, a...)
}
func (el *eventLog) Errorf(format string, a ...interface{}) {
el.printf(true, format, a...)
}
func (el *eventLog) printf(isErr bool, format string, a ...interface{}) {
e := logEntry{When: time.Now(), IsErr: isErr, What: fmt.Sprintf(format, a...)}
el.mu.Lock()
e.Elapsed, e.NewDay = el.delta(e.When)
if len(el.events) < maxEventsPerLog {
el.events = append(el.events, e)
} else {
// Discard the oldest event.
if el.discarded == 0 {
// el.discarded starts at two to count for the event it
// is replacing, plus the next one that we are about to
// drop.
el.discarded = 2
} else {
el.discarded++
}
// TODO(sameer): if this causes allocations on a critical path,
// change eventLog.What to be a fmt.Stringer, as in trace.go.
el.events[0].What = fmt.Sprintf("(%d events discarded)", el.discarded)
// The timestamp of the discarded meta-event should be
// the time of the last event it is representing.
el.events[0].When = el.events[1].When
copy(el.events[1:], el.events[2:])
el.events[maxEventsPerLog-1] = e
}
if e.IsErr {
el.LastErrorTime = e.When
}
el.mu.Unlock()
}
func (el *eventLog) ref() {
atomic.AddInt32(&el.refs, 1)
}
func (el *eventLog) unref() {
if atomic.AddInt32(&el.refs, -1) == 0 {
freeEventLog(el)
}
}
func (el *eventLog) When() string {
return el.Start.Format("2006/01/02 15:04:05.000000")
}
func (el *eventLog) ElapsedTime() string {
elapsed := time.Since(el.Start)
return fmt.Sprintf("%.6f", elapsed.Seconds())
}
func (el *eventLog) Stack() string {
buf := new(bytes.Buffer)
tw := tabwriter.NewWriter(buf, 1, 8, 1, '\t', 0)
printStackRecord(tw, el.stack)
tw.Flush()
return buf.String()
}
// printStackRecord prints the function + source line information
// for a single stack trace.
// Adapted from runtime/pprof/pprof.go.
func printStackRecord(w io.Writer, stk []uintptr) {
for _, pc := range stk {
f := runtime.FuncForPC(pc)
if f == nil {
continue
}
file, line := f.FileLine(pc)
name := f.Name()
// Hide runtime.goexit and any runtime functions at the beginning.
if strings.HasPrefix(name, "runtime.") {
continue
}
fmt.Fprintf(w, "# %s\t%s:%d\n", name, file, line)
}
}
func (el *eventLog) Events() []logEntry {
el.mu.RLock()
defer el.mu.RUnlock()
return el.events
}
// freeEventLogs is a freelist of *eventLog
var freeEventLogs = make(chan *eventLog, 1000)
// newEventLog returns a event log ready to use.
func newEventLog() *eventLog {
select {
case el := <-freeEventLogs:
return el
default:
return new(eventLog)
}
}
// freeEventLog adds el to freeEventLogs if there's room.
// This is non-blocking.
func freeEventLog(el *eventLog) {
el.reset()
select {
case freeEventLogs <- el:
default:
}
}
var eventsTmplCache *template.Template
var eventsTmplOnce sync.Once
func eventsTmpl() *template.Template {
eventsTmplOnce.Do(func() {
eventsTmplCache = template.Must(template.New("events").Funcs(template.FuncMap{
"elapsed": elapsed,
"trimSpace": strings.TrimSpace,
}).Parse(eventsHTML))
})
return eventsTmplCache
}
const eventsHTML = `
<html>
<head>
<title>events</title>
</head>
<style type="text/css">
body {
font-family: sans-serif;
}
table#req-status td.family {
padding-right: 2em;
}
table#req-status td.active {
padding-right: 1em;
}
table#req-status td.empty {
color: #aaa;
}
table#reqs {
margin-top: 1em;
}
table#reqs tr.first {
{{if $.Expanded}}font-weight: bold;{{end}}
}
table#reqs td {
font-family: monospace;
}
table#reqs td.when {
text-align: right;
white-space: nowrap;
}
table#reqs td.elapsed {
padding: 0 0.5em;
text-align: right;
white-space: pre;
width: 10em;
}
address {
font-size: smaller;
margin-top: 5em;
}
</style>
<body>
<h1>/debug/events</h1>
<table id="req-status">
{{range $i, $fam := .Families}}
<tr>
<td class="family">{{$fam}}</td>
{{range $j, $bucket := $.Buckets}}
{{$n := index $.Counts $i $j}}
<td class="{{if not $bucket.MaxErrAge}}active{{end}}{{if not $n}}empty{{end}}">
{{if $n}}<a href="?fam={{$fam}}&b={{$j}}{{if $.Expanded}}&exp=1{{end}}">{{end}}
[{{$n}} {{$bucket.String}}]
{{if $n}}</a>{{end}}
</td>
{{end}}
</tr>{{end}}
</table>
{{if $.EventLogs}}
<hr />
<h3>Family: {{$.Family}}</h3>
{{if $.Expanded}}<a href="?fam={{$.Family}}&b={{$.Bucket}}">{{end}}
[Summary]{{if $.Expanded}}</a>{{end}}
{{if not $.Expanded}}<a href="?fam={{$.Family}}&b={{$.Bucket}}&exp=1">{{end}}
[Expanded]{{if not $.Expanded}}</a>{{end}}
<table id="reqs">
<tr><th>When</th><th>Elapsed</th></tr>
{{range $el := $.EventLogs}}
<tr class="first">
<td class="when">{{$el.When}}</td>
<td class="elapsed">{{$el.ElapsedTime}}</td>
<td>{{$el.Title}}
</tr>
{{if $.Expanded}}
<tr>
<td class="when"></td>
<td class="elapsed"></td>
<td><pre>{{$el.Stack|trimSpace}}</pre></td>
</tr>
{{range $el.Events}}
<tr>
<td class="when">{{.WhenString}}</td>
<td class="elapsed">{{elapsed .Elapsed}}</td>
<td>.{{if .IsErr}}E{{else}}.{{end}}. {{.What}}</td>
</tr>
{{end}}
{{end}}
{{end}}
</table>
{{end}}
</body>
</html>
`

View File

@ -1,365 +0,0 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package trace
// This file implements histogramming for RPC statistics collection.
import (
"bytes"
"fmt"
"html/template"
"log"
"math"
"sync"
"golang.org/x/net/internal/timeseries"
)
const (
bucketCount = 38
)
// histogram keeps counts of values in buckets that are spaced
// out in powers of 2: 0-1, 2-3, 4-7...
// histogram implements timeseries.Observable
type histogram struct {
sum int64 // running total of measurements
sumOfSquares float64 // square of running total
buckets []int64 // bucketed values for histogram
value int // holds a single value as an optimization
valueCount int64 // number of values recorded for single value
}
// AddMeasurement records a value measurement observation to the histogram.
func (h *histogram) addMeasurement(value int64) {
// TODO: assert invariant
h.sum += value
h.sumOfSquares += float64(value) * float64(value)
bucketIndex := getBucket(value)
if h.valueCount == 0 || (h.valueCount > 0 && h.value == bucketIndex) {
h.value = bucketIndex
h.valueCount++
} else {
h.allocateBuckets()
h.buckets[bucketIndex]++
}
}
func (h *histogram) allocateBuckets() {
if h.buckets == nil {
h.buckets = make([]int64, bucketCount)
h.buckets[h.value] = h.valueCount
h.value = 0
h.valueCount = -1
}
}
func log2(i int64) int {
n := 0
for ; i >= 0x100; i >>= 8 {
n += 8
}
for ; i > 0; i >>= 1 {
n += 1
}
return n
}
func getBucket(i int64) (index int) {
index = log2(i) - 1
if index < 0 {
index = 0
}
if index >= bucketCount {
index = bucketCount - 1
}
return
}
// Total returns the number of recorded observations.
func (h *histogram) total() (total int64) {
if h.valueCount >= 0 {
total = h.valueCount
}
for _, val := range h.buckets {
total += int64(val)
}
return
}
// Average returns the average value of recorded observations.
func (h *histogram) average() float64 {
t := h.total()
if t == 0 {
return 0
}
return float64(h.sum) / float64(t)
}
// Variance returns the variance of recorded observations.
func (h *histogram) variance() float64 {
t := float64(h.total())
if t == 0 {
return 0
}
s := float64(h.sum) / t
return h.sumOfSquares/t - s*s
}
// StandardDeviation returns the standard deviation of recorded observations.
func (h *histogram) standardDeviation() float64 {
return math.Sqrt(h.variance())
}
// PercentileBoundary estimates the value that the given fraction of recorded
// observations are less than.
func (h *histogram) percentileBoundary(percentile float64) int64 {
total := h.total()
// Corner cases (make sure result is strictly less than Total())
if total == 0 {
return 0
} else if total == 1 {
return int64(h.average())
}
percentOfTotal := round(float64(total) * percentile)
var runningTotal int64
for i := range h.buckets {
value := h.buckets[i]
runningTotal += value
if runningTotal == percentOfTotal {
// We hit an exact bucket boundary. If the next bucket has data, it is a
// good estimate of the value. If the bucket is empty, we interpolate the
// midpoint between the next bucket's boundary and the next non-zero
// bucket. If the remaining buckets are all empty, then we use the
// boundary for the next bucket as the estimate.
j := uint8(i + 1)
min := bucketBoundary(j)
if runningTotal < total {
for h.buckets[j] == 0 {
j++
}
}
max := bucketBoundary(j)
return min + round(float64(max-min)/2)
} else if runningTotal > percentOfTotal {
// The value is in this bucket. Interpolate the value.
delta := runningTotal - percentOfTotal
percentBucket := float64(value-delta) / float64(value)
bucketMin := bucketBoundary(uint8(i))
nextBucketMin := bucketBoundary(uint8(i + 1))
bucketSize := nextBucketMin - bucketMin
return bucketMin + round(percentBucket*float64(bucketSize))
}
}
return bucketBoundary(bucketCount - 1)
}
// Median returns the estimated median of the observed values.
func (h *histogram) median() int64 {
return h.percentileBoundary(0.5)
}
// Add adds other to h.
func (h *histogram) Add(other timeseries.Observable) {
o := other.(*histogram)
if o.valueCount == 0 {
// Other histogram is empty
} else if h.valueCount >= 0 && o.valueCount > 0 && h.value == o.value {
// Both have a single bucketed value, aggregate them
h.valueCount += o.valueCount
} else {
// Two different values necessitate buckets in this histogram
h.allocateBuckets()
if o.valueCount >= 0 {
h.buckets[o.value] += o.valueCount
} else {
for i := range h.buckets {
h.buckets[i] += o.buckets[i]
}
}
}
h.sumOfSquares += o.sumOfSquares
h.sum += o.sum
}
// Clear resets the histogram to an empty state, removing all observed values.
func (h *histogram) Clear() {
h.buckets = nil
h.value = 0
h.valueCount = 0
h.sum = 0
h.sumOfSquares = 0
}
// CopyFrom copies from other, which must be a *histogram, into h.
func (h *histogram) CopyFrom(other timeseries.Observable) {
o := other.(*histogram)
if o.valueCount == -1 {
h.allocateBuckets()
copy(h.buckets, o.buckets)
}
h.sum = o.sum
h.sumOfSquares = o.sumOfSquares
h.value = o.value
h.valueCount = o.valueCount
}
// Multiply scales the histogram by the specified ratio.
func (h *histogram) Multiply(ratio float64) {
if h.valueCount == -1 {
for i := range h.buckets {
h.buckets[i] = int64(float64(h.buckets[i]) * ratio)
}
} else {
h.valueCount = int64(float64(h.valueCount) * ratio)
}
h.sum = int64(float64(h.sum) * ratio)
h.sumOfSquares = h.sumOfSquares * ratio
}
// New creates a new histogram.
func (h *histogram) New() timeseries.Observable {
r := new(histogram)
r.Clear()
return r
}
func (h *histogram) String() string {
return fmt.Sprintf("%d, %f, %d, %d, %v",
h.sum, h.sumOfSquares, h.value, h.valueCount, h.buckets)
}
// round returns the closest int64 to the argument
func round(in float64) int64 {
return int64(math.Floor(in + 0.5))
}
// bucketBoundary returns the first value in the bucket.
func bucketBoundary(bucket uint8) int64 {
if bucket == 0 {
return 0
}
return 1 << bucket
}
// bucketData holds data about a specific bucket for use in distTmpl.
type bucketData struct {
Lower, Upper int64
N int64
Pct, CumulativePct float64
GraphWidth int
}
// data holds data about a Distribution for use in distTmpl.
type data struct {
Buckets []*bucketData
Count, Median int64
Mean, StandardDeviation float64
}
// maxHTMLBarWidth is the maximum width of the HTML bar for visualizing buckets.
const maxHTMLBarWidth = 350.0
// newData returns data representing h for use in distTmpl.
func (h *histogram) newData() *data {
// Force the allocation of buckets to simplify the rendering implementation
h.allocateBuckets()
// We scale the bars on the right so that the largest bar is
// maxHTMLBarWidth pixels in width.
maxBucket := int64(0)
for _, n := range h.buckets {
if n > maxBucket {
maxBucket = n
}
}
total := h.total()
barsizeMult := maxHTMLBarWidth / float64(maxBucket)
var pctMult float64
if total == 0 {
pctMult = 1.0
} else {
pctMult = 100.0 / float64(total)
}
buckets := make([]*bucketData, len(h.buckets))
runningTotal := int64(0)
for i, n := range h.buckets {
if n == 0 {
continue
}
runningTotal += n
var upperBound int64
if i < bucketCount-1 {
upperBound = bucketBoundary(uint8(i + 1))
} else {
upperBound = math.MaxInt64
}
buckets[i] = &bucketData{
Lower: bucketBoundary(uint8(i)),
Upper: upperBound,
N: n,
Pct: float64(n) * pctMult,
CumulativePct: float64(runningTotal) * pctMult,
GraphWidth: int(float64(n) * barsizeMult),
}
}
return &data{
Buckets: buckets,
Count: total,
Median: h.median(),
Mean: h.average(),
StandardDeviation: h.standardDeviation(),
}
}
func (h *histogram) html() template.HTML {
buf := new(bytes.Buffer)
if err := distTmpl().Execute(buf, h.newData()); err != nil {
buf.Reset()
log.Printf("net/trace: couldn't execute template: %v", err)
}
return template.HTML(buf.String())
}
var distTmplCache *template.Template
var distTmplOnce sync.Once
func distTmpl() *template.Template {
distTmplOnce.Do(func() {
// Input: data
distTmplCache = template.Must(template.New("distTmpl").Parse(`
<table>
<tr>
<td style="padding:0.25em">Count: {{.Count}}</td>
<td style="padding:0.25em">Mean: {{printf "%.0f" .Mean}}</td>
<td style="padding:0.25em">StdDev: {{printf "%.0f" .StandardDeviation}}</td>
<td style="padding:0.25em">Median: {{.Median}}</td>
</tr>
</table>
<hr>
<table>
{{range $b := .Buckets}}
{{if $b}}
<tr>
<td style="padding:0 0 0 0.25em">[</td>
<td style="text-align:right;padding:0 0.25em">{{.Lower}},</td>
<td style="text-align:right;padding:0 0.25em">{{.Upper}})</td>
<td style="text-align:right;padding:0 0.25em">{{.N}}</td>
<td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .Pct}}%</td>
<td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .CumulativePct}}%</td>
<td><div style="background-color: blue; height: 1em; width: {{.GraphWidth}};"></div></td>
</tr>
{{end}}
{{end}}
</table>
`))
})
return distTmplCache
}

1130
vendor/golang.org/x/net/trace/trace.go generated vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,13 +0,0 @@
language: go
go:
- tip
install:
- export GOPATH="$HOME/gopath"
- mkdir -p "$GOPATH/src/golang.org/x"
- mv "$TRAVIS_BUILD_DIR" "$GOPATH/src/golang.org/x/oauth2"
- go get -v -t -d golang.org/x/oauth2/...
script:
- go test -v golang.org/x/oauth2/...

3
vendor/golang.org/x/oauth2/AUTHORS generated vendored
View File

@ -1,3 +0,0 @@
# This source code refers to The Go Authors for copyright purposes.
# The master list of authors is in the main Go distribution,
# visible at http://tip.golang.org/AUTHORS.

View File

@ -1,26 +0,0 @@
# Contributing to Go
Go is an open source project.
It is the work of hundreds of contributors. We appreciate your help!
## Filing issues
When [filing an issue](https://github.com/golang/oauth2/issues), make sure to answer these five questions:
1. What version of Go are you using (`go version`)?
2. What operating system and processor architecture are you using?
3. What did you do?
4. What did you expect to see?
5. What did you see instead?
General questions should go to the [golang-nuts mailing list](https://groups.google.com/group/golang-nuts) instead of the issue tracker.
The gophers there will answer or ask you to file an issue if you've tripped over a bug.
## Contributing code
Please read the [Contribution Guidelines](https://golang.org/doc/contribute.html)
before sending patches.
Unless otherwise noted, the Go source files are distributed under
the BSD-style license found in the LICENSE file.

View File

@ -1,3 +0,0 @@
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at http://tip.golang.org/CONTRIBUTORS.

Some files were not shown because too many files have changed in this diff Show More