1
0
mirror of https://github.com/taigrr/arduinolibs synced 2025-01-18 04:33:12 -08:00

Remove Arcfour - not secure enough and ChaCha is pretty fast

This commit is contained in:
Rhys Weatherley 2015-01-09 19:30:21 +10:00
parent 91b3aa70e7
commit c86330b40c
6 changed files with 9 additions and 511 deletions

View File

@ -28,7 +28,7 @@
\li Block ciphers: AES128, AES192, AES256
\li Block cipher modes: CTR, CFB, CBC, OFB
\li Stream ciphers: ChaCha, Arcfour
\li Stream ciphers: ChaCha
\li Hash algorithms: SHA1, SHA256, BLAKE2s
All cryptographic algorithms have been optimized for 8-bit Arduino platforms
@ -39,8 +39,8 @@ program memory to further reduce data memory usage.
ChaCha with 20 rounds and 256-bit keys is the recommended
symmetric encryption algorithm because it is twice as fast as AES128,
constant-time, and much more secure. AES128, AES192, AES256, and Arcfour
are provided for use in applications where compatibility with other systems
constant-time, and much more secure. AES128, AES192, and AES256 are
provided for use in applications where compatibility with other systems
is desirable.
BLAKE2s is a variation on the ChaCha stream cipher, designed for hashing,
@ -61,7 +61,6 @@ All figures are for the Arduino Uno running at 16 MHz:
<tr><td>AES128 (ECB mode)</td><td align="right">36.90us</td><td align="right">66.48us</td><td align="right">160.00us</td><td align="right">208</td></tr>
<tr><td>AES192 (ECB mode)</td><td align="right">44.20us</td><td align="right">80.35us</td><td align="right">166.54us</td><td align="right">240</td></tr>
<tr><td>AES256 (ECB mode)</td><td align="right">51.50us</td><td align="right">94.22us</td><td align="right">227.97us</td><td align="right">272</td></tr>
<tr><td>Arcfour</td><td align="right">2.98us</td><td align="right">2.98us</td><td align="right">601.34us</td><td align="right">258</td></tr>
<tr><td>ChaCha (20 rounds)</td><td align="right">14.87us</td><td align="right">14.88us</td><td align="right">43.74us</td><td align="right">130</td></tr>
<tr><td>ChaCha (12 rounds)</td><td align="right">10.38us</td><td align="right">10.38us</td><td align="right">43.74us</td><td align="right">130</td></tr>
<tr><td>ChaCha (8 rounds)</td><td align="right">8.13us</td><td align="right">8.14us</td><td align="right">43.74us</td><td align="right">130</td></tr>
@ -70,8 +69,8 @@ All figures are for the Arduino Uno running at 16 MHz:
<tr><td>BLAKE2s</td><td align="right">18.54us</td><td> </td><td align="right"> </td><td align="right">170</td></tr>
</table>
Where a cipher supports more than one key size (such as ChaCha and Arcfour),
the values are typically almost identical for 128-bit and 256-bit keys so only
the maximum is shown above.
Where a cipher supports more than one key size (such as ChaCha), the values
are typically almost identical for 128-bit and 256-bit keys so only the
maximum is shown above.
*/

View File

@ -92,7 +92,7 @@ realtime clock and the LCD library to implement an alarm clock.
\li Block ciphers: AES128, AES192, AES256
\li Block cipher modes: CTR, CFB, CBC, OFB
\li Stream ciphers: ChaCha, Arcfour
\li Stream ciphers: ChaCha
\li Hash algorithms: SHA1, SHA256, BLAKE2s
More information can be found on the \ref crypto "Cryptographic Library" page.

View File

@ -1,192 +0,0 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "Arcfour.h"
#include "Crypto.h"
/**
* \class Arcfour Arcfour.h <Arcfour.h>
* \brief Implementation of the Arcfour stream cipher.
*
* \note While fast and small on 8-bit platforms, Arcfour is a very weak
* algorithm when used incorrectly. Security can be improved slightly using
* drop() and good key generation. Never reuse the same key with Arcfour.
* ChaCha will almost always be a better option than Arcfour.
*
* The default key size is 128 bits, but any key size between 40 and
* 256 bits (5 to 32 bytes) can be used with setKey().
*
* This implementation supports the "Arcfour-drop[N]" variant of Arcfour via
* the drop() function. This variant is used in many Internet standards
* because the prefix of the Arcfour keystream can reveal information
* about the key.
*
* Reference: http://en.wikipedia.org/wiki/RC4
*
* \sa ChaCha
*/
/**
* \brief Constructs an Arcfour cipher with no initial key.
*
* This constructor must be followed by a call to setKey() before the
* cipher can be used for encryption or decryption.
*/
Arcfour::Arcfour()
{
}
/**
* \brief Destroys this cipher object after clearing sensitive information.
*/
Arcfour::~Arcfour()
{
clean(state);
}
/**
* \brief Default key size for Arcfour in bytes.
*
* \return Always returns 16, indicating the default key length of 128 bits.
*
* Arcfour can use any key size between 40 and 256 bits (5 to 32 bytes)
* with the setKey() function.
*
* \sa setKey()
*/
size_t Arcfour::keySize() const
{
return 16;
}
/**
* \brief Size of the initialization vector for Arcfour.
*
* \return Always returns 0 because Arcfour does not use initialization vectors.
*/
size_t Arcfour::ivSize() const
{
return 0;
}
/**
* \brief Sets the Arcfour key to use for future encryption and decryption
* operations.
*
* \param key The key which must contain between 5 and 32 bytes,
* with at least 16 recommended.
* \param len The length of the key in bytes.
* \return Returns false if the key length is not between 5 and 32;
* or true if the key was set successfully.
*
* It is a good idea to drop() the prefix from the keystream before using
* it to encrypt() or decrypt() because the prefix can reveal information
* about the key.
*
* Reference: http://en.wikipedia.org/wiki/RC4#Key-scheduling_algorithm_.28KSA.29
*
* \sa drop()
*/
bool Arcfour::setKey(const uint8_t *key, size_t len)
{
// Check the key length.
if (len < 5 || len > 32)
return false;
// Set up the key schedule.
size_t i, k;
uint8_t j, t;
uint8_t *s = state.s;
for (i = 0; i < 256; ++i)
s[i] = i;
j = 0;
k = 0;
for (i = 0; i < 256; ++i) {
t = s[i];
j += t + key[k];
s[i] = s[j];
s[j] = t;
if (++k >= len)
k = 0;
}
state.i = 0;
state.j = 0;
return true;
}
bool Arcfour::setIV(const uint8_t *, size_t len)
{
// Initialization vectors are not supported by Arcfour.
return len == 0;
}
void Arcfour::encrypt(uint8_t *output, const uint8_t *input, size_t len)
{
while (len > 0) {
++state.i;
state.j += state.s[state.i];
uint8_t t = state.s[state.i];
uint8_t u = state.s[state.j];
state.s[state.i] = u;
state.s[state.j] = t;
*output++ = *input++ ^ state.s[(u + t) & 0xFF];
--len;
}
}
void Arcfour::decrypt(uint8_t *output, const uint8_t *input, size_t len)
{
encrypt(output, input, len);
}
void Arcfour::clear()
{
clean(state);
}
/**
* \brief Drops the next \a count bytes of keystream data.
*
* \param count The number of bytes to drop.
*
* The initial keystream data that emerges from Arcfour after the key is set
* can reveal information about the key. This function can be used to
* drop bytes from the prefix of the keystream until the predictable part
* has been exhausted. Encryption can then safely use the keystream that
* follows the dropped bytes.
*
* Reference: http://en.wikipedia.org/wiki/RC4#Fluhrer.2C_Mantin_and_Shamir_attack
*
* \sa setKey()
*/
void Arcfour::drop(size_t count)
{
while (count > 0) {
++state.i;
state.j = state.j + state.s[state.i];
uint8_t t = state.s[state.i];
uint8_t u = state.s[state.j];
state.s[state.i] = u;
state.s[state.j] = t;
--count;
}
}

View File

@ -1,54 +0,0 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef CRYPTO_Arcfour_h
#define CRYPTO_Arcfour_h
#include "Cipher.h"
class Arcfour : public Cipher
{
public:
Arcfour();
virtual ~Arcfour();
size_t keySize() const;
size_t ivSize() const;
bool setKey(const uint8_t *key, size_t len);
bool setIV(const uint8_t *iv, size_t len);
void encrypt(uint8_t *output, const uint8_t *input, size_t len);
void decrypt(uint8_t *output, const uint8_t *input, size_t len);
void clear();
void drop(size_t count);
private:
struct {
uint8_t i, j;
uint8_t s[256];
} state;
};
#endif

View File

@ -31,9 +31,8 @@
* bytes that are input to encrypt() or decrypt() is exactly the same as
* the number of bytes that are output.
*
* All of the stream ciphers such as Arcfour and ChaCha inherit
* directly from this class, together with block cipher modes such as
* CTR and CFB.
* All of the stream ciphers such as ChaCha inherit directly from this class,
* together with block cipher modes such as CTR and CFB.
*/
/**

View File

@ -1,254 +0,0 @@
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
This example runs tests on the Arcfour implementation to verify correct behaviour.
*/
#include <Crypto.h>
#include <Arcfour.h>
#include <string.h>
struct ArcfourVector
{
size_t offset;
byte keystream[16];
};
// A small selection of test vectors from RFC 6229.
static ArcfourVector const testArcfour40Key1[] = {
{ 0, {0xb2, 0x39, 0x63, 0x05, 0xf0, 0x3d, 0xc0, 0x27,
0xcc, 0xc3, 0x52, 0x4a, 0x0a, 0x11, 0x18, 0xa8}},
{ 240, {0x28, 0xcb, 0x11, 0x32, 0xc9, 0x6c, 0xe2, 0x86,
0x42, 0x1d, 0xca, 0xad, 0xb8, 0xb6, 0x9e, 0xae}},
{ 768, {0xeb, 0x62, 0x63, 0x8d, 0x4f, 0x0b, 0xa1, 0xfe,
0x9f, 0xca, 0x20, 0xe0, 0x5b, 0xf8, 0xff, 0x2b}},
{2048, {0xcc, 0x58, 0x2f, 0x8b, 0xa9, 0xf2, 0x65, 0xe2,
0xb1, 0xbe, 0x91, 0x12, 0xe9, 0x75, 0xd2, 0xd7}},
{4096, {0xff, 0x25, 0xb5, 0x89, 0x95, 0x99, 0x67, 0x07,
0xe5, 0x1f, 0xbd, 0xf0, 0x8b, 0x34, 0xd8, 0x75}}
};
static ArcfourVector const testArcfour128Key1[] = {
{ 0, {0x9a, 0xc7, 0xcc, 0x9a, 0x60, 0x9d, 0x1e, 0xf7,
0xb2, 0x93, 0x28, 0x99, 0xcd, 0xe4, 0x1b, 0x97}},
{ 240, {0x06, 0x59, 0x02, 0xe4, 0xb6, 0x20, 0xf6, 0xcc,
0x36, 0xc8, 0x58, 0x9f, 0x66, 0x43, 0x2f, 0x2b}},
{ 768, {0xec, 0xcb, 0xe1, 0x3d, 0xe1, 0xfc, 0xc9, 0x1c,
0x11, 0xa0, 0xb2, 0x6c, 0x0b, 0xc8, 0xfa, 0x4d}},
{2048, {0x8a, 0x44, 0x12, 0x64, 0x11, 0xea, 0xa7, 0x8b,
0xd5, 0x1e, 0x8d, 0x87, 0xa8, 0x87, 0x9b, 0xf5}},
{4096, {0xa3, 0x6a, 0x4c, 0x30, 0x1a, 0xe8, 0xac, 0x13,
0x61, 0x0c, 0xcb, 0xc1, 0x22, 0x56, 0xca, 0xcc}}
};
static ArcfourVector const testArcfour256Key1[] = {
{ 0, {0xea, 0xa6, 0xbd, 0x25, 0x88, 0x0b, 0xf9, 0x3d,
0x3f, 0x5d, 0x1e, 0x4c, 0xa2, 0x61, 0x1d, 0x91}},
{ 240, {0x11, 0x4a, 0xe3, 0x44, 0xde, 0xd7, 0x1b, 0x35,
0xf2, 0xe6, 0x0f, 0xeb, 0xad, 0x72, 0x7f, 0xd8}},
{ 768, {0xe7, 0xa7, 0xb9, 0xe9, 0xec, 0x54, 0x0d, 0x5f,
0xf4, 0x3b, 0xdb, 0x12, 0x79, 0x2d, 0x1b, 0x35}},
{2048, {0x18, 0xb6, 0x25, 0x03, 0xbf, 0xbc, 0x07, 0x7f,
0xba, 0xbb, 0x98, 0xf2, 0x0d, 0x98, 0xab, 0x34}},
{4096, {0xf3, 0xe4, 0xc0, 0xa2, 0xe0, 0x2d, 0x1d, 0x01,
0xf7, 0xf0, 0xa7, 0x46, 0x18, 0xaf, 0x2b, 0x48}}
};
static ArcfourVector const testArcfour40Key2[] = {
{ 0, {0x80, 0xad, 0x97, 0xbd, 0xc9, 0x73, 0xdf, 0x8a,
0x2e, 0x87, 0x9e, 0x92, 0xa4, 0x97, 0xef, 0xda}},
{ 240, {0xfa, 0xa1, 0x48, 0xe9, 0x90, 0x46, 0x18, 0x1f,
0xec, 0x6b, 0x20, 0x85, 0xf3, 0xb2, 0x0e, 0xd9}},
{ 768, {0x75, 0xd5, 0xef, 0x26, 0x2b, 0x44, 0xc4, 0x1a,
0x9c, 0xf6, 0x3a, 0xe1, 0x45, 0x68, 0xe1, 0xb9}},
{2048, {0x78, 0x5b, 0x60, 0xfd, 0x7e, 0xc4, 0xe9, 0xfc,
0xb6, 0x54, 0x5f, 0x35, 0x0d, 0x66, 0x0f, 0xab}},
{4096, {0xbf, 0x42, 0xc3, 0x01, 0x8c, 0x2f, 0x7c, 0x66,
0xbf, 0xde, 0x52, 0x49, 0x75, 0x76, 0x81, 0x15}}
};
static ArcfourVector const testArcfour128Key2[] = {
{ 0, {0x72, 0x0c, 0x94, 0xb6, 0x3e, 0xdf, 0x44, 0xe1,
0x31, 0xd9, 0x50, 0xca, 0x21, 0x1a, 0x5a, 0x30}},
{ 240, {0xb3, 0x39, 0x4a, 0x40, 0xaa, 0xbf, 0x75, 0xcb,
0xa4, 0x22, 0x82, 0xef, 0x25, 0xa0, 0x05, 0x9f}},
{ 768, {0xef, 0x2d, 0x67, 0x6f, 0x15, 0x45, 0xc2, 0xc1,
0x3d, 0xc6, 0x80, 0xa0, 0x2f, 0x4a, 0xdb, 0xfe}},
{2048, {0x58, 0x65, 0xfd, 0xbb, 0x5b, 0x48, 0x06, 0x41,
0x04, 0xe8, 0x30, 0xb3, 0x80, 0xf2, 0xae, 0xde}},
{4096, {0x5b, 0xbe, 0xb4, 0x78, 0x7d, 0x59, 0xe5, 0x37,
0x3f, 0xdb, 0xea, 0x6c, 0x6f, 0x75, 0xc2, 0x9b}}
};
static ArcfourVector const testArcfour256Key2[] = {
{ 0, {0xdd, 0x5b, 0xcb, 0x00, 0x18, 0xe9, 0x22, 0xd4,
0x94, 0x75, 0x9d, 0x7c, 0x39, 0x5d, 0x02, 0xd3}},
{ 240, {0xaf, 0x3e, 0x30, 0xf9, 0xc0, 0x95, 0x04, 0x59,
0x38, 0x15, 0x15, 0x75, 0xc3, 0xfb, 0x90, 0x98}},
{ 768, {0x85, 0x14, 0xa5, 0x49, 0x58, 0x58, 0x09, 0x6f,
0x59, 0x6e, 0x4b, 0xcd, 0x66, 0xb1, 0x06, 0x65}},
{2048, {0xdd, 0xd2, 0x78, 0x20, 0x55, 0x01, 0x26, 0x69,
0x8e, 0xfa, 0xad, 0xc6, 0x4b, 0x64, 0xf6, 0x6e}},
{4096, {0x37, 0x0b, 0x1c, 0x1f, 0xe6, 0x55, 0x91, 0x6d,
0x97, 0xfd, 0x0d, 0x47, 0xca, 0x1d, 0x72, 0xb8}}
};
static byte const key1[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10,
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20
};
static byte const key2[] = {
0x1a, 0xda, 0x31, 0xd5, 0xcf, 0x68, 0x82, 0x21,
0xc1, 0x09, 0x16, 0x39, 0x08, 0xeb, 0xe5, 0x1d,
0xeb, 0xb4, 0x62, 0x27, 0xc6, 0xcc, 0x8b, 0x37,
0x64, 0x19, 0x10, 0x83, 0x32, 0x22, 0x77, 0x2a
};
#define ArraySize(x) (sizeof(x) / sizeof(x[0]))
Arcfour cipher;
byte buffer[16];
byte buffer2[128];
byte const zeroes[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
void testArcfour(const char *name, const byte *key, size_t keySize, const struct ArcfourVector *vectors, size_t numVectors)
{
bool ok = true;
Serial.print(name);
Serial.print(" ... ");
while (numVectors > 0) {
cipher.setKey(key, keySize);
cipher.drop(vectors->offset);
memset(buffer, 0, sizeof(buffer));
cipher.encrypt(buffer, buffer, sizeof(buffer));
if (memcmp(buffer, vectors->keystream, sizeof(buffer)) != 0)
ok = false;
cipher.setKey(key, keySize);
cipher.drop(vectors->offset);
cipher.decrypt(buffer, buffer, sizeof(buffer));
if (memcmp(buffer, zeroes, sizeof(buffer)) != 0)
ok = false;
++vectors;
--numVectors;
}
Serial.println(ok ? "passed" : "failed");
}
void perfArcfourSetKey(const char *name, const uint8_t *key, size_t size)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print(name);
Serial.print(" ... ");
start = micros();
for (count = 0; count < 1000; ++count) {
cipher.setKey(key, size);
}
elapsed = micros() - start;
Serial.print(elapsed / 1000.0);
Serial.print("us per operation, ");
Serial.print((1000.0 * 1000000.0) / elapsed);
Serial.println(" per second");
}
void perfArcfourEncrypt(const char *name, const uint8_t *key, size_t size)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print(name);
Serial.print(" ... ");
cipher.setKey(key, size);
start = micros();
for (count = 0; count < 3000; ++count) {
cipher.encrypt(buffer2, buffer2, sizeof(buffer2));
}
elapsed = micros() - start;
Serial.print(elapsed / (sizeof(buffer2) * 3000.0));
Serial.print("us per byte, ");
Serial.print((sizeof(buffer2) * 3000.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
void perfArcfourDecrypt(const char *name, const uint8_t *key, size_t size)
{
unsigned long start;
unsigned long elapsed;
int count;
Serial.print(name);
Serial.print(" ... ");
cipher.setKey(key, size);
start = micros();
for (count = 0; count < 3000; ++count) {
cipher.decrypt(buffer2, buffer2, sizeof(buffer2));
}
elapsed = micros() - start;
Serial.print(elapsed / (sizeof(buffer2) * 3000.0));
Serial.print("us per byte, ");
Serial.print((sizeof(buffer2) * 3000.0 * 1000000.0) / elapsed);
Serial.println(" bytes per second");
}
void setup()
{
Serial.begin(9600);
Serial.println();
Serial.println("Test Vectors:");
testArcfour("Arcfour Key1 40 bit", key1, 5,
testArcfour40Key1, ArraySize(testArcfour40Key1));
testArcfour("Arcfour Key1 128 bit", key1, 16,
testArcfour128Key1, ArraySize(testArcfour128Key1));
testArcfour("Arcfour Key1 256 bit", key1, 32,
testArcfour256Key1, ArraySize(testArcfour256Key1));
testArcfour("Arcfour Key2 40 bit", key2 + (32 - 5), 5,
testArcfour40Key2, ArraySize(testArcfour40Key2));
testArcfour("Arcfour Key2 128 bit", key2 + 16, 16,
testArcfour128Key2, ArraySize(testArcfour128Key2));
testArcfour("Arcfour Key2 256 bit", key2, 32,
testArcfour256Key2, ArraySize(testArcfour256Key2));
Serial.println();
Serial.println("Performance Tests:");
perfArcfourSetKey("Arcfour SetKey 40 bit", key1, 5);
perfArcfourSetKey("Arcfour SetKey 128 bit", key1, 16);
perfArcfourSetKey("Arcfour SetKey 256 bit", key1, 32);
perfArcfourEncrypt("Arcfour Encrypt", key1, 16);
perfArcfourDecrypt("Arcfour Decrypt", key1, 16);
}
void loop()
{
}