mirror of
https://github.com/taigrr/arduinolibs
synced 2025-01-18 04:33:12 -08:00
407 lines
12 KiB
C++
407 lines
12 KiB
C++
/*
|
|
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
This example runs tests on the BLAKE2b implementation to verify correct behaviour.
|
|
*/
|
|
|
|
#include <Crypto.h>
|
|
#include <BLAKE2b.h>
|
|
#include <string.h>
|
|
#include <avr/pgmspace.h>
|
|
|
|
#define HASH_SIZE 64
|
|
#define BLOCK_SIZE 128
|
|
|
|
struct TestHashVector
|
|
{
|
|
const char *name;
|
|
const char *data;
|
|
uint8_t hash[HASH_SIZE];
|
|
};
|
|
|
|
// Test vectors generated with the reference implementation of BLAKE2b.
|
|
static TestHashVector const testVectorBLAKE2b_1 PROGMEM = {
|
|
"BLAKE2b #1",
|
|
"",
|
|
{0x78, 0x6a, 0x02, 0xf7, 0x42, 0x01, 0x59, 0x03,
|
|
0xc6, 0xc6, 0xfd, 0x85, 0x25, 0x52, 0xd2, 0x72,
|
|
0x91, 0x2f, 0x47, 0x40, 0xe1, 0x58, 0x47, 0x61,
|
|
0x8a, 0x86, 0xe2, 0x17, 0xf7, 0x1f, 0x54, 0x19,
|
|
0xd2, 0x5e, 0x10, 0x31, 0xaf, 0xee, 0x58, 0x53,
|
|
0x13, 0x89, 0x64, 0x44, 0x93, 0x4e, 0xb0, 0x4b,
|
|
0x90, 0x3a, 0x68, 0x5b, 0x14, 0x48, 0xb7, 0x55,
|
|
0xd5, 0x6f, 0x70, 0x1a, 0xfe, 0x9b, 0xe2, 0xce}
|
|
};
|
|
static TestHashVector const testVectorBLAKE2b_2 PROGMEM = {
|
|
"BLAKE2b #2",
|
|
"abc",
|
|
{0xba, 0x80, 0xa5, 0x3f, 0x98, 0x1c, 0x4d, 0x0d,
|
|
0x6a, 0x27, 0x97, 0xb6, 0x9f, 0x12, 0xf6, 0xe9,
|
|
0x4c, 0x21, 0x2f, 0x14, 0x68, 0x5a, 0xc4, 0xb7,
|
|
0x4b, 0x12, 0xbb, 0x6f, 0xdb, 0xff, 0xa2, 0xd1,
|
|
0x7d, 0x87, 0xc5, 0x39, 0x2a, 0xab, 0x79, 0x2d,
|
|
0xc2, 0x52, 0xd5, 0xde, 0x45, 0x33, 0xcc, 0x95,
|
|
0x18, 0xd3, 0x8a, 0xa8, 0xdb, 0xf1, 0x92, 0x5a,
|
|
0xb9, 0x23, 0x86, 0xed, 0xd4, 0x00, 0x99, 0x23}
|
|
};
|
|
static TestHashVector const testVectorBLAKE2b_3 PROGMEM = {
|
|
"BLAKE2b #3",
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
{0x72, 0x85, 0xff, 0x3e, 0x8b, 0xd7, 0x68, 0xd6,
|
|
0x9b, 0xe6, 0x2b, 0x3b, 0xf1, 0x87, 0x65, 0xa3,
|
|
0x25, 0x91, 0x7f, 0xa9, 0x74, 0x4a, 0xc2, 0xf5,
|
|
0x82, 0xa2, 0x08, 0x50, 0xbc, 0x2b, 0x11, 0x41,
|
|
0xed, 0x1b, 0x3e, 0x45, 0x28, 0x59, 0x5a, 0xcc,
|
|
0x90, 0x77, 0x2b, 0xdf, 0x2d, 0x37, 0xdc, 0x8a,
|
|
0x47, 0x13, 0x0b, 0x44, 0xf3, 0x3a, 0x02, 0xe8,
|
|
0x73, 0x0e, 0x5a, 0xd8, 0xe1, 0x66, 0xe8, 0x88}
|
|
};
|
|
static TestHashVector const testVectorBLAKE2b_4 PROGMEM = {
|
|
"BLAKE2b #4",
|
|
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
|
|
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
|
|
{0xce, 0x74, 0x1a, 0xc5, 0x93, 0x0f, 0xe3, 0x46,
|
|
0x81, 0x11, 0x75, 0xc5, 0x22, 0x7b, 0xb7, 0xbf,
|
|
0xcd, 0x47, 0xf4, 0x26, 0x12, 0xfa, 0xe4, 0x6c,
|
|
0x08, 0x09, 0x51, 0x4f, 0x9e, 0x0e, 0x3a, 0x11,
|
|
0xee, 0x17, 0x73, 0x28, 0x71, 0x47, 0xcd, 0xea,
|
|
0xee, 0xdf, 0xf5, 0x07, 0x09, 0xaa, 0x71, 0x63,
|
|
0x41, 0xfe, 0x65, 0x24, 0x0f, 0x4a, 0xd6, 0x77,
|
|
0x7d, 0x6b, 0xfa, 0xf9, 0x72, 0x6e, 0x5e, 0x52}
|
|
};
|
|
|
|
BLAKE2b blake2b;
|
|
|
|
byte buffer[BLOCK_SIZE + 2];
|
|
|
|
bool testHash_N(Hash *hash, const struct TestHashVector *test, size_t inc)
|
|
{
|
|
size_t size = strlen(test->data);
|
|
size_t posn, len;
|
|
uint8_t value[HASH_SIZE];
|
|
|
|
hash->reset();
|
|
for (posn = 0; posn < size; posn += inc) {
|
|
len = size - posn;
|
|
if (len > inc)
|
|
len = inc;
|
|
hash->update(test->data + posn, len);
|
|
}
|
|
hash->finalize(value, sizeof(value));
|
|
if (memcmp(value, test->hash, sizeof(value)) != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void testHash(Hash *hash, const struct TestHashVector *test)
|
|
{
|
|
bool ok;
|
|
TestHashVector vec;
|
|
|
|
memcpy_P(&vec, test, sizeof(vec));
|
|
test = &vec;
|
|
|
|
Serial.print(test->name);
|
|
Serial.print(" ... ");
|
|
|
|
ok = testHash_N(hash, test, strlen(test->data));
|
|
ok &= testHash_N(hash, test, 1);
|
|
ok &= testHash_N(hash, test, 2);
|
|
ok &= testHash_N(hash, test, 5);
|
|
ok &= testHash_N(hash, test, 8);
|
|
ok &= testHash_N(hash, test, 13);
|
|
ok &= testHash_N(hash, test, 16);
|
|
ok &= testHash_N(hash, test, 24);
|
|
ok &= testHash_N(hash, test, 63);
|
|
ok &= testHash_N(hash, test, 64);
|
|
|
|
if (ok)
|
|
Serial.println("Passed");
|
|
else
|
|
Serial.println("Failed");
|
|
}
|
|
|
|
void perfHash(Hash *hash)
|
|
{
|
|
unsigned long start;
|
|
unsigned long elapsed;
|
|
int count;
|
|
|
|
Serial.print("Hashing ... ");
|
|
|
|
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
|
|
buffer[posn] = (uint8_t)posn;
|
|
|
|
hash->reset();
|
|
start = micros();
|
|
for (count = 0; count < 1000; ++count) {
|
|
hash->update(buffer, sizeof(buffer));
|
|
}
|
|
elapsed = micros() - start;
|
|
|
|
Serial.print(elapsed / (sizeof(buffer) * 1000.0));
|
|
Serial.print("us per byte, ");
|
|
Serial.print((sizeof(buffer) * 1000.0 * 1000000.0) / elapsed);
|
|
Serial.println(" bytes per second");
|
|
}
|
|
|
|
// Very simple method for hashing a HMAC inner or outer key.
|
|
void hashKey(Hash *hash, const uint8_t *key, size_t keyLen, uint8_t pad)
|
|
{
|
|
size_t posn;
|
|
uint8_t buf;
|
|
uint8_t result[HASH_SIZE];
|
|
if (keyLen <= BLOCK_SIZE) {
|
|
hash->reset();
|
|
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
|
|
if (posn < keyLen)
|
|
buf = key[posn] ^ pad;
|
|
else
|
|
buf = pad;
|
|
hash->update(&buf, 1);
|
|
}
|
|
} else {
|
|
hash->reset();
|
|
hash->update(key, keyLen);
|
|
hash->finalize(result, HASH_SIZE);
|
|
hash->reset();
|
|
for (posn = 0; posn < BLOCK_SIZE; ++posn) {
|
|
if (posn < HASH_SIZE)
|
|
buf = result[posn] ^ pad;
|
|
else
|
|
buf = pad;
|
|
hash->update(&buf, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void testHMAC(Hash *hash, size_t keyLen)
|
|
{
|
|
uint8_t result[HASH_SIZE];
|
|
|
|
Serial.print("HMAC-BLAKE2b keysize=");
|
|
Serial.print(keyLen);
|
|
Serial.print(" ... ");
|
|
|
|
// Construct the expected result with a simple HMAC implementation.
|
|
memset(buffer, (uint8_t)keyLen, keyLen);
|
|
hashKey(hash, buffer, keyLen, 0x36);
|
|
memset(buffer, 0xBA, sizeof(buffer));
|
|
hash->update(buffer, sizeof(buffer));
|
|
hash->finalize(result, HASH_SIZE);
|
|
memset(buffer, (uint8_t)keyLen, keyLen);
|
|
hashKey(hash, buffer, keyLen, 0x5C);
|
|
hash->update(result, HASH_SIZE);
|
|
hash->finalize(result, HASH_SIZE);
|
|
|
|
// Now use the library to compute the HMAC.
|
|
hash->resetHMAC(buffer, keyLen);
|
|
memset(buffer, 0xBA, sizeof(buffer));
|
|
hash->update(buffer, sizeof(buffer));
|
|
memset(buffer, (uint8_t)keyLen, keyLen);
|
|
hash->finalizeHMAC(buffer, keyLen, buffer, HASH_SIZE);
|
|
|
|
// Check the result.
|
|
if (!memcmp(result, buffer, HASH_SIZE))
|
|
Serial.println("Passed");
|
|
else
|
|
Serial.println("Failed");
|
|
}
|
|
|
|
// Deterministic sequences (Fibonacci generator). From RFC 7693.
|
|
static void selftest_seq(uint8_t *out, size_t len, uint32_t seed)
|
|
{
|
|
size_t i;
|
|
uint32_t t, a , b;
|
|
|
|
a = 0xDEAD4BAD * seed; // prime
|
|
b = 1;
|
|
|
|
for (i = 0; i < len; i++) { // fill the buf
|
|
t = a + b;
|
|
a = b;
|
|
b = t;
|
|
out[i] = (t >> 24) & 0xFF;
|
|
}
|
|
}
|
|
|
|
// Incremental version of above to save memory.
|
|
static void selftest_seq_incremental(BLAKE2b *blake, size_t len, uint32_t seed)
|
|
{
|
|
size_t i;
|
|
uint32_t t, a , b;
|
|
|
|
a = 0xDEAD4BAD * seed; // prime
|
|
b = 1;
|
|
|
|
for (i = 0; i < len; i++) { // fill the buf
|
|
t = a + b;
|
|
a = b;
|
|
b = t;
|
|
buffer[i % 128] = (t >> 24) & 0xFF;
|
|
if ((i % 128) == 127)
|
|
blake->update(buffer, 128);
|
|
}
|
|
|
|
blake->update(buffer, len % 128);
|
|
}
|
|
|
|
// Run the self-test from Appendix E of RFC 7693. Most of this code
|
|
// is from RFC 7693, with modifications to use the Crypto library.
|
|
void testRFC7693()
|
|
{
|
|
// Grand hash of hash results.
|
|
static const uint8_t blake2b_res[32] PROGMEM = {
|
|
0xC2, 0x3A, 0x78, 0x00, 0xD9, 0x81, 0x23, 0xBD,
|
|
0x10, 0xF5, 0x06, 0xC6, 0x1E, 0x29, 0xDA, 0x56,
|
|
0x03, 0xD7, 0x63, 0xB8, 0xBB, 0xAD, 0x2E, 0x73,
|
|
0x7F, 0x5E, 0x76, 0x5A, 0x7B, 0xCC, 0xD4, 0x75
|
|
};
|
|
// Parameter sets.
|
|
static const uint8_t b2b_md_len[4] PROGMEM = { 20, 32, 48, 64 };
|
|
static const uint16_t b2b_in_len[6] PROGMEM = { 0, 3, 128, 129, 255, 1024 };
|
|
|
|
size_t i, j, outlen, inlen;
|
|
uint8_t md[64], key[64];
|
|
BLAKE2b inner;
|
|
|
|
Serial.print("BLAKE2b RFC 7693 ... ");
|
|
|
|
// 256-bit hash for testing.
|
|
blake2b.reset(32);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
outlen = pgm_read_byte(&(b2b_md_len[i]));
|
|
for (j = 0; j < 6; j++) {
|
|
inlen = pgm_read_word(&(b2b_in_len[j]));
|
|
|
|
inner.reset(outlen); // unkeyed hash
|
|
selftest_seq_incremental(&inner, inlen, inlen);
|
|
inner.finalize(md, outlen);
|
|
blake2b.update(md, outlen); // hash the hash
|
|
|
|
selftest_seq(key, outlen, outlen); // keyed hash
|
|
inner.reset(key, outlen, outlen);
|
|
selftest_seq_incremental(&inner, inlen, inlen);
|
|
inner.finalize(md, outlen);
|
|
blake2b.update(md, outlen); // hash the hash
|
|
}
|
|
}
|
|
|
|
// Compute and compare the hash of hashes.
|
|
bool ok = true;
|
|
blake2b.finalize(md, 32);
|
|
for (i = 0; i < 32; i++) {
|
|
if (md[i] != pgm_read_byte(&(blake2b_res[i])))
|
|
ok = false;
|
|
}
|
|
|
|
// Report the results.
|
|
if (ok)
|
|
Serial.println("Passed");
|
|
else
|
|
Serial.println("Failed");
|
|
}
|
|
|
|
void perfKeyed(BLAKE2b *hash)
|
|
{
|
|
unsigned long start;
|
|
unsigned long elapsed;
|
|
int count;
|
|
|
|
Serial.print("Keyed Reset ... ");
|
|
|
|
for (size_t posn = 0; posn < sizeof(buffer); ++posn)
|
|
buffer[posn] = (uint8_t)posn;
|
|
|
|
start = micros();
|
|
for (count = 0; count < 1000; ++count) {
|
|
hash->reset(buffer, hash->hashSize());
|
|
hash->update(buffer, 1); // To flush the key chunk.
|
|
}
|
|
elapsed = micros() - start;
|
|
|
|
Serial.print(elapsed / 1000.0);
|
|
Serial.print("us per op, ");
|
|
Serial.print((1000.0 * 1000000.0) / elapsed);
|
|
Serial.println(" ops per second");
|
|
}
|
|
|
|
void perfFinalize(Hash *hash)
|
|
{
|
|
unsigned long start;
|
|
unsigned long elapsed;
|
|
int count;
|
|
|
|
Serial.print("Finalizing ... ");
|
|
|
|
hash->reset();
|
|
hash->update("abc", 3);
|
|
start = micros();
|
|
for (count = 0; count < 1000; ++count) {
|
|
hash->finalize(buffer, hash->hashSize());
|
|
}
|
|
elapsed = micros() - start;
|
|
|
|
Serial.print(elapsed / 1000.0);
|
|
Serial.print("us per op, ");
|
|
Serial.print((1000.0 * 1000000.0) / elapsed);
|
|
Serial.println(" ops per second");
|
|
}
|
|
|
|
void setup()
|
|
{
|
|
Serial.begin(9600);
|
|
|
|
Serial.println();
|
|
|
|
Serial.print("State Size ...");
|
|
Serial.println(sizeof(BLAKE2b));
|
|
Serial.println();
|
|
|
|
Serial.println("Test Vectors:");
|
|
testHash(&blake2b, &testVectorBLAKE2b_1);
|
|
testHash(&blake2b, &testVectorBLAKE2b_2);
|
|
testHash(&blake2b, &testVectorBLAKE2b_3);
|
|
testHash(&blake2b, &testVectorBLAKE2b_4);
|
|
testHMAC(&blake2b, (size_t)0);
|
|
testHMAC(&blake2b, 1);
|
|
testHMAC(&blake2b, HASH_SIZE);
|
|
testHMAC(&blake2b, BLOCK_SIZE);
|
|
testHMAC(&blake2b, BLOCK_SIZE + 1);
|
|
testHMAC(&blake2b, BLOCK_SIZE + 2);
|
|
testRFC7693();
|
|
|
|
Serial.println();
|
|
|
|
Serial.println("Performance Tests:");
|
|
perfHash(&blake2b);
|
|
perfKeyed(&blake2b);
|
|
perfFinalize(&blake2b);
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
}
|